Чем отличается якорь от ротора?

Проверка и включение

Перед первым после ремонта запуском двигателя его нужно как следует проверить. Для начала все вставленные «катушки» прозванивают. Это поможет узнать наличие обрыва или плохого контакта. Между «укладками» замеряется сопротивление, чтобы при включении не возникло короткого замыкания.

Сразу подавать 220 В на двигатель не стоит, лучше подать пониженное напряжение. Пусть ротор крутится медленно, тут главное выяснить, не греется ли двигатель. Если все прошло хорошо, и не появился дым, значит, ремонт двигателя прошел удачно.

В интернете есть много фото по перемотке двигателей. Это поможет новичкам наглядно ознакомиться с процессом.

Решение проблемы

Данный вид диагностики довольно сложен. Необходимо иметь навыки работы с мультиметром, а также суметь разобрать болгарку.

Если ваш инструмент вдруг перестал работать, то лучше сразу отправиться в мастерскую:

  • даже если вы убедитесь в том, что вышел из строя именно якорь, и установите причину его поломки, заменить его или отремонтировать самостоятельно у вас вряд ли получится. Все равно придется нести инструмент в мастерскую;
  • если на инструмент еще действует гарантия, то самостоятельное вскрытие болгарки может аннулировать действие гарантийных обязательств производителя.

Чтобы обеспечить долгую работу инструмента, выбирайте продукцию известных фирм с большим опытом работы в данной отрасли. Также соблюдайте правила эксплуатации инструмента, ведь очень часто они выходят из строя именно по этой причине.

Советы в статье «Открытая электропроводка в интерьере» здесь.

Проверка якоря двигателя, как проверить болгарку:

Чтобы проверить статор и ротор на межвитковое замыкание мультиметром, не потребуется много времени. Дольше придется разбирать двигатель. Болгарка, дрель, перфоратор – каждый инструмент можно отремонтировать, определив неисправность. Проверку лучше разбить на несколько основных этапов, и последовательно не спеша выполнять действия.

Защита статора тепловым реле

В процессе эксплуатации электродвигатель может потреблять повышенный ток из сети и испытывать сильный нагрев. Причины могут быть разные, например, слишком большая нагрузка на валу, частые включения и выключения мотора, повышенная температура окружающей среды. Такие нештатные режимы работы могут привести к перегреву статорных обмоток и выходу их из строя. Для предотвращения повреждения электродвигателя в статорной системе устанавливается один или два биметаллических тепловых реле – это термовыключатели, называемые кликсонами.

Термовыключатель кликсон

При повышении температуры статора выше положенного значения происходит размыкание биметаллического контакта кликсона. Термовыключатель размыкает цепь питания катушки управления силовым контактором, который подает напряжение на электромотор. Контактор отключает электромотор от силовой электросети. Дальнейшее включение контактора и, следовательно, электродвигателя возможно лишь после охлаждения обмоток статора и замыкания биметаллической пары термовыключателя.

Устройство асинхронного однофазного электродвигателя

Как и любой другой электрический двигатель, асинхронный однофазный двигатель состоит из двух основных частей. А именно, из ротора и статора. Статор является неподвижной частью асинхронного двигателя . Именно на контактные выводы обмотки статора подаётся питание однофазным переменным током с напряжением 220 вольт. А ротор — это подвижная (вращающаяся) часть асинхронного двигателя. Через ротор, посредством вала, двигатель соединяется с какой-нибудь механической нагрузкой. Как ротор, так и статор электродвигателя, оба состоят из стального сердечника и обмотки. Однофазный асинхронный электродвигатель по конструкции похож на трехфазный асинхронный двигатель. Основное отличие заключается в устройстве обмотки статора двигателя.

Короткозамкнутый ротор асинхронного однофазного электродвигателя

В подавляющем большинстве случаев, бытовые асинхронные однофазные электродвигатели имеют короткозамкнутый ротор. Короткозамкнутый ротор обычно изготавливают нижеописанным способом.

Сердечник ротора спрессовывают из множества круглых листов электротехнической стали. Каждый стальной лист изолируют друг от друга слоем лака. Такой способ изготовления сердечника применяется для уменьшения потерь электроэнергии. Если бы сердечники изготавливались из единого куска стали, то были бы большие потери на образование вихревых токов. То есть, электродвигатель потреблял бы больше электроэнергии, чем ему практически нужно для выполнения работы. А также ротор перегревался бы даже при небольших нагрузках. Однако, все же существует разновидность асинхронных двигателей с массивным ротором.

В итоге, получается конструкция цилиндрической формы с выполненными в ней пазами. Пазы параллельны друг другу. Однако, они не параллельны оси самого ротора. Чаще всего они имеют некоторый перекос направления относительно этой оси. Этот перекос уменьшает высшие гармонические ЭДС, вызванные пульсациями магнитного потока. Такие пульсации происходят из-за того, что магнитное сопротивление зубцов статора и ротора, образованных благодаря пазам, намного ниже магнитного сопротивления обмотки, которая находится в пазах.

То есть, часть ротора, на которой находится обмотка, имеет неоднородную структуру по своей окружности. Сначала сталь, потом алюминий, затем опять сталь и так далее. Потому и магнитное сопротивление на разных участках этой окружности очень отличается. А отсюда пульсации магнитного потока. А скосы позволяют свести к минимуму различие магнитных сопротивлений. И соответственно уменьшатся пульсации. Проще говоря, благодаря такому направлению пазов, работа асинхронного двигателя становится более плавной и менее шумной. К примеру, работа электродвигателя с ротором, у которого нет такого скоса у пазов для обмотки, будет сопровождаться сильным гудением или свистом.

В пазах находятся стержни из сплава алюминия. При изготовлении ротора алюминий впрессовывается или заливается в пазы. С двух сторон цилиндра ротора стержни соединяются (замыкаются) алюминиевыми кольцами. На кольцах могут располагаться лопасти для охлаждения электродвигателя. Алюминиевые стержни и кольца представляют собой обмотку ротора. Такой вид обмотки обычно называется — «беличья клетка». Однако, по форме она скорее напоминает колесо, в котором бегают белки для соблюдения моциона. Обмотка типа «беличья клетка» может иметь некоторые разновидности в своем устройстве.

Статор асинхронного однофазного электродвигателя

Сердечник статора также набран из отдельных стальных листов. По той же причине, что и сердечник ротора. И также на сердечнике статора имеются пазы. В пазах расположена обмотка статора. Но в отличии от обмотки ротора, эта обмотка намотана в пазах медной обмоточной проволокой. Питание переменным током напряжением 220 вольт подключают к обмотке статора. А то, каким образом подключают питание, зависит от особенностей принципа работы однофазного асинхронного электродвигателя с короткозамкнутым ротором.

Ротор и статор в электродвигателе. Что это и зачем?

Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье я попробую подробно разобрать конструкцию этих деталей и их принцип действия.

Оборудование

Для упрощения и процесса сборки и повышения производительности изготовления изделий при помощи сварки широко применяются различные сборочно-сварочные приспособления. По большей части сборка тавровых соединений деталей производиться на специальных столах – стапелях, оборудованных универсальными зажимами, фиксирующими и установочными устройствами. Они обеспечивают четкое и точное расположение деталей в нужном месте конструкции и под заданным углом. Также применяются различные шаблоны и кондукторы в зависимости от сложности сварной конструкции.

Что делать при появлении перечисленных отклонений в работе?

Частота вращения якоря электродвигателя поддерживается постоянной. При холостых оборотах неисправность может не проявляться. Под нагрузкой трение компенсируется увеличением тока, протекающего через обмотки. Если стали заметны отклонения в работе болгарки, дрели, стартера, то нужно снять подачу напряжения.

Дальнейшая эксплуатация приборов может привести к пожару или к поражению человека электрическим током. Первым делом рекомендуется осмотреть корпус изделия, оценить проводку на целостность, отсутствие оплавленных частей и повреждения изоляции. На ощупь проверяют температуру всех частей прибора. Рукой пробуют вращать якорь, он должен перемещаться легко, без заеданий. Если механические части целые и нет загрязнений переходят к разборке.

Проверка обмоток двигателя

Электронный тестер роторов – это стандартный цифровой мультиметр. Прежде чем приступать к тестированию замыкания, следует проверить мультиметр и его готовность к работе. Переключатель выставляют на измерение сопротивления и касаются щупами друг друга. Прибор должен показать нули. Выставляют максимальную величину измерения и проводят проверку:

  • сначала следует проверить ротор на обрыв цепи. Прикасаясь черным щупом к контактному кольцу, красным нужно прозвонить обмотки. Стрелка прибора зашкалила, значит, обмотка имеет обрыв цепи витков. Ротор следует отдавать в перемотку;
  • замеряем сопротивление для определения возможности короткого замыкания на корпус. На контактное кольцо крепим черный щуп, красным следует прозвонить на замыкание корпус ротора. В случае низкого показания значения сопротивления и звукового сигнала, такой якорь необходимо отдавать в ремонт;
  • проведение прозвона на межвитковое замыкание витков ротора. Подкрепляем щупы на контактные кольца якоря. При значении на шкале прибора, от 1,5 Ом до 6 Ом, мы проверяли исправный прибор. Все другие значения на шкале означают неисправность мультиметра.
Как прозвонить электродвигательКак прозвонить электродвигатель

На этом проверка ротора закончена. Следует еще раз напомнить основные этапы определения неисправности. Прежде чем проверять, болгарку или любой другой прибор следует обесточить. Перед проведением замеров, следует визуально осмотреть корпуса, изоляцию и отсутствия нагаров на статоре и роторе.

При разборке инструмента в первый раз, записывайте все свои шаги. Это позволит иметь подсказку в следующий раз, избежать появления лишних деталей при сборке. При выходе щетки за край щеткодержателя менее 5 мм, такие щетки следует заменить. Проверить межвитковое замыкание можно электронным тестером, то есть мультиметром.

Как произнес Шекспир: «Ничто не вечно под Луной». Домашняя техника, как досадно бы это не звучало, не являются исключением. Случается, что самый надёжный механизм перегорает. И нужно готовиться повстречать данный факт без паники, с твёрдой уверенностью, что безнадежных ситуаций нет. Как устроена болгарка, какие будут неисправности, как проверить якорь электродвигателя, найти причину поломки и убрать проблемы? Познание устройства главных узлов электроинструмента дозволит мастеру своими силами провести диагностику и ремонт угловой шлифовальной машины.

Фактически во многих электроприборах, использующихся в быту, применяется асинхронный электронный движок. Принципиальным преимуществом этого типа мотора будет то, что при изменении нагрузки туда, частота оборотов не изменяется. Это значит, что если, например, длительно и без остановки резать камень бытовой болгаркой, никаких наружных признаков перегрузки мотора приметно не будет. Скорость вращения диска будет неизменная, звук однотонным. Поменяется только температура, однако этого конечно и даже не увидеть, если руки одеты в перчатки.

При невнимательном отношении, основное преимущество игровых слотов превращается в недочет. Асинхронные движки очень чувствительны к перегреву, существенное превышение рабочей температуры влечёт за собой оплавление изоляции на обмотках ротора. Сначала мотор работает с перебоями, и потом — когда произойдёт межвитковое куцее замыкание — движок остановится совершенно. Стоит пару раз очень перегреть движок болгарки и, более возможно, что якорь оплавится. Сегодня, от высочайшей температуры отпаиваются контакты, соединяющие провода первичной обмотки с коллектором, что ведёт к прерыванию подачи электронного тока.

Признаками поломки якоря болгарки являются: завышенное искрение щёток на коллекторе мотора, вибрация мотора на малых оборотах, вращение рабочего вала в различные стороны. Если такие симптомы находятся, работу инвентарем следует закончить — это небезопасно. Подозрения просто проверить при помощи легких тестов.

Проверка якоря и статора в домашних условияхПроверка якоря и статора в домашних условиях

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типахэлектродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором

Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Виды электромеханических устройств

Статор — понятие и принцип действия

Используют ротор в таких электромеханических устройствах, как двигатели, работающие на постоянном и переменном электрическом токе, генераторы.

Агрегаты, работающие на переменном токе

К таким агрегатам относятся различные электродвигатели. Наиболее распространенная модель данного устройства состоит из следующих частей:

  • Алюминиевый или чугунный ребристый корпус с монтажной коробкой для подключения обмоток статора и ротора;
  • Статор – неподвижная часть в виде полого цилиндра, расположенная внутри корпуса. Обмотка статора состоит из 3 пар расположенных друг напротив друга намотанных в пазы корпуса катушек из медного изолированного провода
  • Цельнометаллический цилиндрический ротор с валом и пазами, в которые впаяны обладающие высокой токопроводящей способностью алюминиевые стержни.


Двигатель, запитываемый от переменного тока

Вращается ротор на двух опорных подшипниках, запрессованных на его валу. Охлаждение работающего на больших оборотах электродвигателя происходит, благодаря крыльчатке – небольшому вентилятору, состоящему из множества лопастей и расположенному на одном из концов вала ротора. Также эффективному охлаждению работающего агрегата способствует ребристая структура алюминиевого корпуса.

Принцип работы подобного двигателя заключается в следующем:

  1. При подключении тока к агрегату он попеременно проходит через одну из трех пар катушек статора.
  2. При протекании по парам статорных катушек электрического тока они создают магнитное поле, силовые линии которого пересекают ротор.
  3. Попеременно запитываемые пары катушек создают подвижное магнитное поле, которое по закону электромагнитной индукции провоцирует появление в неподвижных металлических стержнях ротора электрического тока.
  4. Индуцированный ток в роторе приводит к появлению силы, выталкивающей его из магнитного поля статора. Так как частота подачи тока на катушки статора в среднем составляет порядка 30 импульсов в секунду, появившаяся в роторе выталкивающая сила приводит к его вращению с большой скоростью.

Важно! В зависимости от одновременности вращения ротора и порождающего это движение магнитного поля электрический двигатель переменного тока может быть синхронный (ротор агрегата вращается синхронно с магнитным полем статора) и асинхронный (вращение якоря не синхронизировано с движением магнитного поля статора). Первый вид отличается высокой мощностью и надежностью, в то время как второй характеризуется большим разнообразием конструкций и областей применения

Машины постоянного тока

Наиболее распространенный электродвигатель постоянного тока щеточного вида представляет собой электрический агрегат, состоящий из:

  • Чугунного корпуса с ребрами охлаждения и специальным монтажным коробом для подключения обмоток агрегата;
  • Вала из прочной инструментальной стали с двумя подшипниками;
  • Якоря, состоящего из сердечника (набора пластин из специальной электротехнической стали), якорной обмотки (размещенных в пазах сердечника катушек из медного провода);
  • Индуктора, состоящего из полюсов возбуждения с намотанными на них катушками из медного провода;
  • Коллектора – расположенных на валу медных пластин, к которым подключаются выводы катушек якорной обмотки;
  • Подпружиненных графитовых или металлографитовых щеток (щеточной группы).

Охлаждается такой двигатель, как и аналог, работающий от переменного тока, – расположенной на валу крыльчаткой.


Двигатель, работающий от постоянного тока

Важно! В отличие от электродвигателя переменного тока частотой вращения ротора в таком силовом агрегате управляет специальный блок, который при помощи установленного на валу датчика Холла определяет положение ротора и его скорость. Работает подобный агрегат следующим образом:

Работает подобный агрегат следующим образом:

  1. На обмотку возбуждения подается напряжение, создавая тем самым постоянное магнитное поле;
  2. Через щетки и коллектор напряжение подается на катушки сердечника якоря – возникающее при этом магнитное поле отталкивается от такого же, образованного индуктором, вследствие чего двигатель начинает вращаться («запускается»);
  3. Впоследствии при вращении через щетки запитываются остальные катушки якорной обмотки, что приводит к равномерному вращению якоря с определённой скоростью.

Останавливают вращение такого агрегата прекращением подачи напряжения на щеточную группу.

Помимо описанных выше электромоторов, к машинам, работающим на постоянном токе, относится также роторный стартер – устройство, необходимое для запуска бензиновых и дизельных автомобильных двигателей внутреннего сгорания.

Проверка асинхронного электродвигателя

Кроме коллекторных, в быту можно встретить и асинхронные двигатели, устанавливаемые в некоторых моделях стиральных машин или в компрессорах холодильников. Гораздо чаще они используются в компрессорах, насосах, различных станках и другом оборудовании. Несмотря на высокую надежность, данные электродвигатели также подвержены поломкам и неисправностям. В этих конструкциях роль якоря выполняют обмотки статора, поэтому визуальный осмотр нужно начинать именно с них.

Часто обмотки перестают работать, когда они отсырели или, произошел обрыв витков. Поэтому если двигатель очень долго не эксплуатировался, необходимо выполнить проверку сопротивления изоляции с помощью мегомметра. При отсутствии мгаомметра, агрегат в целях профилактики рекомендуется разобрать и сушить обмотки статора в течение нескольких суток.

Вполне возможно, что причина неисправности кроется не в самом электродвигателе, а связана с какими-либо другими факторами. Поэтому, прежде чем начинать ремонтировать сам агрегат, следует убедиться в наличии напряжения, проверить магнитные пускатели, кабели подключения, тепловое реле. Если в схеме имеется конденсатор, его тоже нужно проверить. При исправности всех перечисленных элементов, можно приступать к разборке двигателя для первичного осмотра. Проверка должна проводиться при полном отсутствии электропитания. Необходимо предотвратить самопроизвольное или ошибочное включение агрегата.

В процессе осмотра, кроме других деталей, особенно тщательно проверяются обмотки статора. Они должны быть целыми, без торчащих или оторванных проводков

Особое внимание следует обращать на черные пятна, указывающие на возможное подгорание проводов. В исправном состоянии проводники имеют темно-красный цвет

Почернение наступает при выгорании электроизоляционного лака, наносимого на их поверхность. При осмотре может быть выявлено полное или частичное выгорание обмотки и межвитковое замыкание. При частичном выгорании двигатель будет работать и быстро нагреваться. Поэтому обмотка в любом случае перематывается полностью.

Если внешний осмотр не дал результатов, дальнейшую диагностику нужно проводить с помощью измерительных приборов. Чаще всего для этих целей используется мультиметр, позволяющий определить целостность обмотки, наличие или отсутствие пробоя на корпус.

В двигателях на 220В прозваниваются пусковая и рабочая обмотки. Сопротивление пусковой должно быть в 1,5 выше, чем у рабочей. В электродвигателях на 380В, подключаемых звездой или треугольником, схема разбирается, после чего поочередно прозванивается каждая обмотка. Сопротивление на каждой из них должно быть одинаковым, с отклонением не более чем на 5%. Также все обмотки обязательно прозваниваются между собой и на корпус. Если значение сопротивления не бесконечно, это свидетельствует о наличии пробоя обмоток на корпус или между собой. В этом случае требуется их полная перемотка.

Отдельно проверяется сопротивление изоляции обмоток двигателя. В этом случае мультиметр не поможет, потребуется мегомметр на 1000В, подключаемый к отдельному источнику питания. При выполнении измерений один провод прибора касается корпуса двигателя в неокрашенном месте, а другой провод поочередно соединяется с каждым выводом обмотки. Если сопротивление изоляции составляет менее 0,5 Мом, значит двигатель требует просушки

При выполнении измерений нужно соблюдать осторожность и не касаться измерительных проводов. Измеряемое оборудование должно быть обесточено, продолжительность измерений составляет не менее 2-3 минут

Наибольшую сложность представляет поиск межвиткового замыкания. Его невозможно выявить при визуальном осмотре. Для трехфазных двигателей применяются специальные измерители индуктивности, которые в норме показывают одинаковое значение на всех обмотках. При наличии повреждения, индуктивность у такой обмотки будет наиболее низкой.

Проверка якоря двигателя, Как проверить болгаркуПроверка якоря двигателя, Как проверить болгарку

Выход из строя коллекторного двигателя делает электроприбор полностью непригодным для эксплуатации, а дорогостоящие услуги ремонтных мастерских заставляют владельцев испорченного бытового оборудования принимать решение о приобретении нового товара. Но при наличии некоторых навыков и в условиях ограниченного бюджета многие домашние мастера задумываются о целесообразности ремонта электродвигателей своими руками.

Якорь — электродвигатель

Якорь электродвигателя состоит из вала, на который напрессовывается сердечник, набранный из лакированной электротехнической стали толщиной 0 5 мм, с пазами для обмотки, и коллектор. Обмотка якоря двухслойная с диаметральным шагом из провода марки ПЭЛШКО. Коллектор набирается из пластин красной меди, изолированных друг от друга миканитовыми прокладками. Армирование коллектора выполняется на пластмассе и осуществляется при помощи стальных колец, укладываемых перед опрессовкой коллектора в выточки, имеющие форму ласточкиного хвоста. Для предотвращения замыкания коллекторных пластин кольца перед укладкой изолируются лентой из стекловолокна. В результате армирования прочность коллектора увеличивается. Присоединение обмотки к коллектору производится так же, как и в двигателях постоянного тока.

Якорь электродвигателя разбирают в такой последовательности: отвертывают конусный ролик 4 ( см. рис. 82) с вала якоря; при помощи съемника спрессовывают подшипник 5 и вентилятор 8; снимают маслоотбойные кольца 2; заменяют негодные подшипники, снимают обмотку, наматывают новую, собирают якорь и электродвигатель. Центровку якоря по горизонтали производят крышкой ( заглушкой) 19 подшипника.

Якорь электродвигателя состоит из пакета пластин трансформаторной стали, якорной обмотки, вентилятора ( крыльчатки) и коллектора. Коллектор якоря имеет медные пластины ( ламели), между которыми положены прокладки из миканита.

Схема вращения натирочных.

Якорь электродвигателя состоит из пакета пластин трансфор-матерной стали, якорной обмотки, вентилятора ( крыльчатки) и коллектора.

Якорь электродвигателя вращается на двух подшипниках, расположенных в подшипниковых щитах. На валу якоря для охлаждения электродвигателя имеется центробежный вентилятор. Воздух засасывается через жалюзи крышек подшипникового щита со стороны коллектора, проходит через машину и выбрасывается вентилятором через решетки верхнего подшипникового щита.

Якорь электродвигателя вращается в двух самоустанавливающихся бронзографитовых втулках, пропитанных турбинным маслом.

Схема электробритвы Харьков.

Якорь электродвигателя собран из листов 7 такой же формы, как и якорь двигателя ДП-4. Катушки 6 обмотки якоря намотаны на зубцы сердечника и изолированы от них полосками электрокартона. Три выводных конца катушек якоря соединены между собой, а три другие припаяны к трем коллекторным пластинам, запрессованным в пластмассу.

Надетое на сердечник кольцо К соскакивает с сердечника при включении катушки в цепь переменного тока, а если его удерживать, то оно нагревается вихревыми токами.

Якорь электродвигателя и сердечник трансформатора по условиям своей работы находятся в переменном магнитном поле, поэтому в них должны циркулировать вихревые токи. Поскольку их изготовляют из ферромагнетиков, то, кроме потерь энергии на нагревание вихревыми токами, в них возникают еще и потери, обусловленные гистерезисом.

Якорь электродвигателя состоит из штампованных листов электротехнической стали, запрессованных на валу в виде пакета.

Каркасы электроаппаратных катушек из полиамида.

Якорь электродвигателя, спрессованный пластмассой в литьевой форме.

Принцип действия литьевой пресс-формы.

Особенности работы асинхронного двигателя болгарки

Практически во всех электроприборах, использующихся в быту, применяется асинхронный электрический двигатель.

жным преимуществом этого типа мотора является то, что при изменении нагрузки на него, частота оборотов не меняется. Это означает, что если, к примеру, долго и без остановки резать камень бытовой болгаркой, никаких внешних признаков перегрузки двигателя заметно не будет. Скорость вращения диска будет постоянная, звук однотонным. Изменится только температура, но этого можно и не заметить, если руки одеты в перчатки.

При невнимательном отношении, преимущество может превратиться в недостаток. Асинхронные двигатели очень чувствительны к перегреву, значительное превышение рабочей температуры влечёт за собой оплавление изоляции на обмотках ротора. Вначале мотор будет работать с перебоями, а потом — когда произойдёт межвитковое короткое замыкание — двигатель остановится совсем. Стоит несколько раз сильно перегреть двигатель болгарки и, наиболее вероятно, что якорь оплавится. Кроме того, от высокой температуры отпаиваются контакты, соединяющие провода первичной обмотки с коллектором, что ведёт к прерыванию подачи электрического тока.

Как проверить коллекторный электродвигатель мультиметром - обмотки статора и ротораКак проверить коллекторный электродвигатель мультиметром — обмотки статора и ротора

Замена якоря на болгарке Интерскол 125/900/Замена якоря на болгарке Интерскол 125/900/

Замена подшипников на болгарке.  Replacement of bearings angular polishers.Замена подшипников на болгарке. Replacement of bearings angular polishers.

Схема соединения обмоток электродвигателя

Обмотки электродвигателя могут подключаться к сети одним из двух способов – «звезда» и «треугольник». И выбирать подходящий стоит исходя не из удобства или простоты конструкции, а из величины питающего напряжения.

Для ЭД высокой мощности целесообразно использовать комбинированную систему «треугольник-звезда». Она снижает пусковые токи и делает старт более плавным.

Схема соединения обмоток электродвигателя «треугольником»

При использовании схемы «треугольник» обмотки ЭД подключаются последовательно, соединяясь концами и началами друг с другом. Точки их соединения также подключаются к фазам. Выглядит это следующим образом:

Главное достоинство схемы подключения «треугольник» – ЭД, присоединённый к сети таким образом, способен развивать полную мощность. То есть ту, которая указана в паспорте как номинальная.

Тем не менее, пусковые токи для подключённого электродвигателя очень высокие – они превышают номинальные примерно в 7 раз. И вследствие этого «плавность» работы машины также страдает

Это очень важно учесть при проектировании электропитания устройства и определении сферы практического использования

Схема соединения обмоток электродвигателя «звезда»

Подключение по типу «звезда» подразумевает соединение концов обмоток статора в одной точке. Другими своими концами они подключаются к фазам электропитания. Выглядит это следующим образом:

Подключение по схеме «звезда» гарантирует плавность и «мягкость» работы электродвигателя. Кроме того, для старта машины не требуется относительно высоких пусковых токов. Но недостатком этой методики подключения является сниженная мощность работы устройства.

Тем не менее, важно учесть, что рассчитанные на рабочее напряжении 220/380 Вольт ЭД можно подключать к сети с линейным напряжением 380 В исключительно с использованием схемы «звезда»

Комбинированная схема запуска электродвигателя «звезда-треугольник»

Обе вышеприведённые схемы соединения обмоток асинхронных электродвигателей обладают как достоинствами, так и недостатками. «Треугольник» позволяет машине достичь полной мощности, но требует высоких значений пускового тока для старта. «Звезда» не нуждается в высоком пусковом токе и гарантирует плавную работу устройства, но не даёт ЭД достичь номинальной мощности.

Для решения этой проблемы применяется комбинированная схема подключения «звезда-треугольник». Она применяется в первую очередь для электродвигателей, имеющих высокую мощность (от 5 кВт). Комбинированная схема подразумевает оснащение мотора специальным реле, которое и переключает способ соединения обмоток прямо во время работы.

Так, при запуске ЭД с комбинированным подключением работает по схеме «звезда». Это снижает пусковые токи до их номинальных значений. Но как только ротор раскручивается до высоких оборотов, реле переключает схему соединения на «треугольник». Именно поэтому мотор может достигнуть своей номинальной мощности.

При переключении наблюдается резкий скачок тока. Из-за этого разогнавшийся ротор сначала теряет обороты, но затем постепенно ускоряется.

Стоит отметить, что комбинированное подключение поддерживают только электродвигатели со специальной маркировкой (Y/Δ).

Физические свойства[править | править код]

Не фиксируется кнопка включения

Частое нажатие кнопки с усилием приводит к износу контактирующих поверхностей, и кнопка перестает фиксироваться. Этот дефект один из самых распространенных, возникающих в период эксплуатации болгарок.

В следующем видео на болгарке модели «Макита» отсутствует фиксация кнопки в требуемом положении. После разборки, визуально хорошо просматриваются изношенные поверхности на кнопке и фиксирующем пазу на корпусе болгарки. Ремонт производится двумя способами.

С заменой изношенной кнопки на новую

Здесь следует убрать радиус закругления на фиксирующем пазу и выровнять посадочную плоскость под кнопку. При этом обработку выполнять очень аккуратно с минимальным снятием материала пластика. Свойства пластика, как непрочного мягкого материала, позволяют выбрать режим механической обработки с низкими оборотами инструмента, позволяющими регулировать оптимальную его подачу при устранении дефектов поверхности.

С исправлением изношенной кнопки

Автор прав, что далеко не всегда можно найти новую кнопку взамен изношенной. Метод восстановления кнопки имеет актуальность, особенно для мастеров, работающих вне пределов деятельности специализированных торговых точек

Важно: посадочную поверхность кнопки зачистить надфилем не более чем на несколько десятых миллиметра, а контактную поверхность «усика» кнопки только выровнять, не снимая лишний материал

Эти методы носят разовый характер, следующая такая поломка может привести к замене деталей на новые.

Makita 9558/9555 самопроизвольно выключается / Выключается во время работы / Износилась кнопкаMakita 9558/9555 самопроизвольно выключается / Выключается во время работы / Износилась кнопка

Ремонт электроинструмента. Перемотка статора (катушек возбуждения) часть2.Ремонт электроинструмента. Перемотка статора (катушек возбуждения) часть2.

Grinder Repair - Replacing the Spindle Gear (Makita Part # 227505-7)Grinder Repair — Replacing the Spindle Gear (Makita Part # 227505-7)

Ромонтируем кнопку на болгарке, переделываемРомонтируем кнопку на болгарке, переделываем

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий