Частотный преобразователь

Оборудование для ремонта

Для диагностики и устранения неисправностей частотных преобразователей используют специализированное программное обеспечение, диагностические стенды, контрольно-измерительные приборы.

  • Источник переменного напряжения на 220, 380, 660 В частотой 50-60 Гц. Питающее напряжение должно совпадать с номинальным напряжением преобразователя.
  • Двигатель переменного тока. Электрическая машина необходима для тестирования работоспособности преобразователя частоты. Номинальное напряжение, потребляемый ток и другие характеристики электродвигателя и преобразователя частоты должны совпадать.
  • Реостат с переменным сопротивлением до 10 кОМ.
  • Многофункциональное средство измерения электрических величин. Мультиметр используется для определения целостности схем, а также диагностики параметров транзисторов и других целей.
  • Имитатор сигналов с блока управления и датчиков обратной связи.
  • Устройство для определения искажений амплитуды напряжения с выходных силовых клемм преобразователя, измерения высокочастотных составляющих.
  • Осциллограф для оценки длительности и формы импульсов, приходящих на инвертор.

При поломках ПЧ обязательно проведение комплексной диагностики. Простая замена неисправных микросхем и блоков далеко не всегда решает проблему. Особенно важна точная диагностика и настройка преобразователей для высокоточных электроприводов. Например, для регуляторов серводвигателей.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление. 

Пуск и остановка электродвигателя осуществляются с панели или пульта управления частотника. При этом преобразователь осуществляет регулировку частоты вращения и остановку при возникновении аварийных ситуаций автоматически.

2) Внешнее управление. 

ЧП с поддержкой интерфейсов передачи данных можно подключать к удаленному ПК для контроля текущих параметров и задания режимов работы привода.

3) Управление по дискретным входам или “сухим контактам”. 

4) Управление по событиям. 

Некоторые модели ЧП позволяют запрограммировать время пуска или остановки, работу двигателя в другом режиме. Преобразователи такого типа применяют для полностью или частично автоматизированного технологического оборудования.

Преимущества частотных преобразователей.

Основные преимущества использования частотных преобразователей:

1) Экономия электроэнергии. 

Применение ЧП позволяет снизить пусковые токи и регулировать потребляемую мощность двигателя в зависимости от фактической нагрузки.

2) Увеличение срока службы промышленного оборудования. 

Плавный пуск и регулировка скорости вращения момента на валу позволяют увеличить межремонтный интервал и продлить срок эксплуатации электродвигателей.

Возможность отказаться от редукторов, дросселирующих задвижек, электромагнитных тормозов и другой регулирующей аппаратуры. снижающей надежность и увеличивающей энергопотребление оборудования.   

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом. 

5) Широкий диапазон мощности двигателей. 

Частотные преобразователи устанавливают как на однофазные конденсаторные двигатели мощностью менее 1 кВт, так и на синхронные электромашины мощностью в десятки МВт.

6) Защита электродвигателя от аварий и аномальных режимов работы. 

ЧП комплектуют защитой от перегрузок, коротких замыканий, пропадания фаз. Преобразователи также обеспечивают перезапуск при возобновлении подачи электроэнергии после ее отключения.

Возможность бесступенчатой точной регулировки частоты вращения без потерь мощности, что невозможно при использовании редукторов. 

7) Снижение уровня шума работающего двигателя.

Возможность замены двигателей постоянного тока асинхронными электрическими машинами с частотными регуляторами. Для оборудования, требующего регулировки момента и скорости вращения, часто используются двигатели постоянного тока, скорость вращения которых пропорциональна поданному напряжению. Такие электрические машины стоят дороже асинхронных и требуют дорогостоящих промышленных выпрямителей. Замена двигателей постоянного тока на асинхронные электромашины с частотным управлением дает хороший экономический эффект.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин. Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов.Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Цветы из фоамирана, орхидея, шаблоны

Режимы управления

Частотники различают по видам управления:

  • скалярный тип (отсутствие обратной связи),
  • векторный тип (наличие обратной связи, или ее отсутствие).

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.Частотный преобразователь.Как подключить трёхфазный электродвигатель от 220В.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

45Х

Подключение однофазных преобразователей частоты к трехфазному двигателю

Трехфазные электроприводы несложного оборудования мощностью до 4 кВт допускается включать в однофазную сеть через частотный преобразователь. Это позволяет регулировать скорость вращения вала без редукторов муфт, изменять производительность без задвижек, заслонок и других механических устройств, а также частично устранить недостатки схем пуска через конденсатор.

Для таких электроприводов рекомендовано использовать однофазные преобразователи. Такие устройства имеют емкостный выход, позволяющий отказаться от выносного конденсатора. Рассчитанное значение емкости вводится вручную при настройке преобразователей или автоматически определяется в режиме адаптации частотника к двигателю. Однофазные устройства позволяют рассчитывать оптимальную емкость при тестировании.

Преобразователь для двигателей, включенных в сеть 220 В, подбирают:

  • По диапазону регулирования угловой скорости. Частотник должен обеспечивать изменение частоты вращения в заданном интервале.
  • По максимальной емкости фазосдвигающего элемента. Преобразователь должен обеспечивать пуск электрической машины с заданным моментом на валу. При выборе устройства нужно рассчитать величину емкости, необходимой для старта и корректной работы двигателя, и сравнить ее с характеристиками преобразователя.
  • По мощности. Параметры трехфазного двигателя при однофазном питании сильно отличаются от номинальных и не аналогичны характеристикам однофазных двигателей той же мощности. Для таких приводов выбирают частотный преобразователь с запасом мощности не менее 2 кВт.
  • По дополнительным функциям. При выборе также учитывают наличие дисплея для индикации параметров, входов и выходов для датчиков, встроенных фильтров гармоник, функций самодиагностики, записи событий и другое.

Также следует учесть, что работа трехфазной машины в сети 220 В сильно отличается от нормы. Такие схемы подключения машин через частотник не обеспечивают точного управления и регулировки параметров, не позволяют реализовать сложные алгоритмы. Сфера применения таких приводов – станки, где требуется только регулировка скорости, бытовые маломощные насосы для автономных систем водоподачи и полива.

Преобразователи подключают кабелями марки, рекомендованной производителями. Сечение жил также должно быть не меньше рекомендованного. Для выходной цепи применяется трехпроводный кабель.

В разрыв фазного нулевого провода перед преобразователем устанавливают автоматический выключатель для коммутаций и защиты от коротких замыканий. При питании однофазным напряжением возникают гармоники, которые негативно влияют на работу двигателя и качество напряжения в сети. При высоких требованиях к электромагнитной совместимости, устанавливают входные и выходные фильтры.

Все подключения осуществляют согласно требованиям электробезопасности. После проверки правильности и качества подключений, включают частотный преобразователь в тестовой режим, настраивают интервал скоростей и другие параметры. Далее проверяют работу двигателя на разных скоростях.

Автоматизация насоса с разгоном и автоподдержкой давления

Мотор подключается к клеммам частотника. При нажатии кнопки «пуск» реле срабатывает, подключает частотник, дает возможность плавной работы по заданной программе. В аварийном положении частотника или мотора цепь замыкается, включает реле, которое отключает выход частотника. Снова включить схему защита позволит только при устранении поломки и нажатии сброса блокировки.

Датчик давления соединен с входом частотника, создавая обратную связь в уравновешивании давления. Работа стабилизации контролируется регулятором частотника. Нужное давление устанавливается потенциометром с помощью пульта частотника. При аварии горят индикаторные лампы. Шкаф с устройством управления подогревается специальными нагревателями, которые включаются от термореле. От коротких замыканий защищает автоматический выключатель.

Автоматизация водоснабжения считается в техническом развитии важнейшим аспектом. Это нашло свою актуальность не только на крупных станциях водоснабжения. Насосы с приборами автоматики создают комфортную работу отдельных водопроводов. Для организации такого водопровода необходимо рассчитать скважинный насос, подобрать по результатам расчета преобразователь частоты.

Первый пуск

После выполнения всех подключений необходимо еще раз проверить правильность сборки схемы и качество контактных соединений. Далее приступают к настройке преобразователя, пробному пуску привода.

  • Перед подачей напряжения на частотный преобразователь необходимо убедиться, что на устройстве отключена подача команд на двигатель, а запуск электрической машины никому не повредит.
  • При включении питания должны заработать встроенные в частотник вентиляторы охлаждения и загореться дисплей. На нем должно отображаться состояние “ выключено ” или “OFF” .
  • Далее требуется восстановить заводские настройки частотного регулятора. Для этого используется ввод соответствующей команды или нажатие клавиши Reset. Некоторые модели преобразователей затем следует перезагрузить.
  • Далее вводят все характеристики двигателя, фильтров и других вспомогательных элементов привода и осуществляют программирование частоты вращения, параметров регулирования и другие настройки. Некоторые модели частотников определяют фактические характеристики электродвигателей автоматически.
  • Далее осуществляется пробный пуск привода в ручном режиме. При этом проверяют правильность направления вращения вала и работу двигателя во всем интервале регулируемых скоростей. При необходимости вносят корректировки в предварительные настройки.
  • После чего производят окончательную настройку частотных преобразователей под регулируемый параметр и условия технологического процесса. Настройка преобразователей осуществляется с панели управления или с ПК. Эти операции должен производить специалист по автоматизации.
  • · Далее опробуют привод в тестовом режиме и вносят изменения в настройки, после чего проверяют корректность работы привода еще раз.

Функционал, схема подключения, порядок настройки разных типов и моделей частотных регуляторов могут существенно различаться. При выполнении монтажа и программирования частотников необходимо строго следовать общим правилам по монтажу электротехнического оборудования, инструкции и алгоритму настроек, рекомендованному производителем. Вносить изменения в ПО (программное обеспечение) и схемы подключения категорически запрещено.

Внимание! Фактические характеристики электродвигателей, долго находившихся в эксплуатации или побывавших в капитальном ремонте, могут отличаться от паспортных данных. Для частотно-регулируемого привода рекомендуется использовать новые электрические машины или частотные преобразователи, определяющие фактические параметры электродвигателей автоматически

Как подключить двухклавишный проходной выключатель? Схема подключения и нюансы

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Watch this video on YouTube

Что такое частотный преобразователь, основные виды и какой принцип работы

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Схема работы устройства плавного пуска, его назначение и конструкция

Устройство, виды и принцип действия асинхронных электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

Проверка электродвигателей разного вида с помощью мультиметра

Принцип работы устройства

Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Частотный преобразователь 220 - 380 регулятор оборотов электродвигателя сделанного своими рукамиЧастотный преобразователь 220 — 380 регулятор оборотов электродвигателя сделанного своими руками

Полевой транзистор (он же ключ, мосфет и пр.) — это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Преобразователь частоты для асинхронного электродвигателя. Что это такое, как он устроен.Преобразователь частоты для асинхронного электродвигателя. Что это такое, как он устроен.

Изготовление

Изготовить данное изделие весьма просто и малозатратно, если знать, как правильно сделать рулонные шторы.

Для начала нужно определиться с цветовой гаммой и плотностью ткани, используемой в изготовлении штор. Чем меньше плотность ткани, тем больше света она будет пропускать.

Для спальни лучше всего подойдут шторы блэкаут, полностью затемняющие помещение, а для кухни – легкие, светлые ткани, пропускающие много солнечного света.

Техника безопасности

При установке преобразователей и настройке привода обязательно соблюдать ряд общих требований:

  • Все подключения необходимо выполнять при полностью отключенном напряжении питания. Перед их выполнением необходимо проверить, что автоматический выключатель или другой коммутирующий аппарат на вводе отключен.
  • В схеме питания и управления электродвигателем имеются индуктивные и емкостные элементы, которые способствуют сохранению напряжения в цепях привода после отключения питания. При монтаже и настройке преобразователей привода до 7 кВт необходимо подождать не менее 5 минут после отключения напряжения питания, для электрооборудования более 7 кВт время ожидания составляет не меньше 15 минут.
  • Преобразователь должен иметь индивидуальный заземляющий проводник, присоединенный к корпусу и к заземляющему контуру напрямую.
  • Нулевой и заземляющий провод должны быть присоединены к соответствующим шинам. Использовать для заземления нулевой проводник строго запрещается.
  • Долговременное отключение частотно-регулируемого привода должно осуществляться контактором или автоматическим выключателем, установленным перед частотным преобразователем. Нажатие клавиши “ OFF ” отключает двигатель, но не обесточивает электрические цепи.
  • Все электрические соединения выполняются проводами и кабелями, рекомендованного производителем сечения. Нельзя применять токопроводящие изделия с меньшим диаметром жил.
  • Нельзя подключать частотники по непредусмотренной производителем схеме. При некорректной работе преобразователя следует связаться со службой технической поддержки производителя или вызвать профильного специалиста.

Большинство моделей частотных регуляторов поддерживают множество режимов работы и настроек. Их можно адаптировать для использования в различных промышленных установках, комплексных системах автоматизации. Например, для синхронизации и одновременного регулирования производительности нагнетательных вентиляторов котельных, вытяжных установок систем удаления продуктов сгорания.

Подключение, тестирование и программирование частотных регуляторов должно выполняться специалистами, имеющими допуск к электрооборудованию, профильное образование и прошедшими инструктаж по ТБ.

Источник

Схема подключения преобразователя частоты

После переделки вся схема станка, содержащая два привода, имеет вид:

Схема подключения преобразователя частоты

Первым делом скажу, что если делать всё по уму, то надо обеспечить защиту по входу – поставить быстродействующие предохранители или, на худой конец, автоматы с характеристикой “В”. Но что есть, то есть – из защиты только советский 3п С6.

Приводы вытяжки и полировки имеют две общих части – питание и кнопку “Стоп”. Кнопка “Стоп” (SB3) имеет два электрически независимых контакта, которые останавливают оба привода сразу.

Привод вытяжки подключен по классической схеме с самоподхватом, о которой я писал неоднократно. Ссылки – в начале статьи.

Рассмотрим поближе то, что нас интересует – схему подключения ПЧ:

Рабочая схема подключения ПЧ Delta

По силовой части я уже говорил, там всё просто.

По части управления. На схеме обозначены названия клемм, их видно и на фото установки. Чтобы вся схема работала правильно, все эти клеммы нужно правильно запрограммировать, без этого в подключении ПЧ никуда. Поэтому настройка ПЧ и его подключение – два неразрывно связанных понятия.

Далее буду говорить применительно к конкретному ПЧ (инструкция в конце статьи).

Перед настройкой ПЧ желательно вернуть его параметры к заводским настройкам (по умолчанию), особенно, если он где-то уже использовался. Все параметры, которые я менял, сведены в таблицу:

Таблица параметров ПЧ
Номер Название Значение Описание значения
00,03 Отображаемый на дисплее параметр при подаче питания 1 Фактическая выходная частота
01,00 Максимальная выходная частота Fmax 60 Гц Ограничение регулировки сверху
01,01 Частота максимального напряжения 50 Гц Номинальная частота двигателя
01,08 Нижний предел выходной частоты 30 % Ограничение частоты снизу (от Fmax=60Гц это 18Гц)
02,08 Скорость изменения частоты 0,1 Работа кнопок Больше/Меньше
03,04 Коэффициент усиления аналогового выхода 103 % Коррекция показаний вольтметра
03,08 Режим работы встроенного вентилятора 3 При нагреве ПЧ
04,04 Режим управления Пуск/Стоп 2 Трехпроводная схема без фиксации
04,06 Функция входа MI4 11 Уменьшить выходную частоту
04,07 Функция входа MI5 10 Увеличить выходную частоту
06,01 Токоограничение при разгоне 100 % Защита ПЧ
06,02 Токоограничение при работе 90 % Защита ПЧ
06,03 Защита от превышения момента (OL2) 2 Защита ПЧ
06,04 Уровень перегрузки OL2 100 % Защита ПЧ
06,06 Тепловое реле защиты двигателя (OL1) Режим для стандартного двигателя
07,00 Номинальный ток двигателя (1 кВт) 2,2 Для работы теплового реле 06,06

Двигатель в работе на номинальной мощности не используется – ведь полировка это очень нежный процесс. Поэтому нагрева и тем более перегрузки ни у двигателя, ни у частотника не ожидается. Ток двигателя на низких частотах, до 30 Гц – до 1,5 А (падает КПД), на высоких, до 60 Гц – до 1 А.

Скорость меняется кратковременным нажатием на кнопки Больше/Меньше.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий