Что такое сопротивление

Что делать, чтобы понизить напряжение у себя дома

Если по каким-то причинам коллективное обращение в организацию затруднено, или поставщик электроэнергии игнорирует заявления, не предоставляя качественную энергию, вы можете понизить напряжение в своей квартире или для конкретного прибора.

Для этого нужен стабилизатор сетевого напряжения, самый дешевый вариант – это стабилизатор релейного типа. С его помощью электропитание в частном доме вернется к номинальным параметрам. Подробнее мы рассматривали этот вопрос в статье: https://samelectrik.ru/kak-ponizit-postoyannoe-i-peremennoe-napryazhenie.html.

А при возможности подключения к трём фазам – установите переключатель фаз, например, ПЭФ-301. Он автоматически выберет линию с лучшими параметрами. Или реле напряжения типа РН-111 для защиты самых дорогих потребителей. Если его номинального тока будет недостаточно – подключите нагрузку через контактор.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Повышенное напряжение в сети 220 вольт! Перегорают светодиодные лампы! Что делать?Повышенное напряжение в сети 220 вольт! Перегорают светодиодные лампы! Что делать?

Как защитить дом или квартиру от высокого напряжения.Как защитить дом или квартиру от высокого напряжения.

Теперь вы знаете, какие причины возникновения высокого напряжения в доме либо квартире, а также как можно защитить технику от негативного влияния этого явления. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Перенапряжение в сети
  • Как выбрать стабилизатор для дома
  • Основные неисправности электропроводки

Повышенное напряжение в сети 220 вольт! Перегорают светодиодные лампы! Что делать?Повышенное напряжение в сети 220 вольт! Перегорают светодиодные лампы! Что делать?

Как защитить дом или квартиру от высокого напряжения.Как защитить дом или квартиру от высокого напряжения.

Напряжение.

По определению напряжение — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Из курса физики мы помним, что потенциал электростатического поля — это скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду. Давайте рассмотрим небольшой пример:

В пространстве действует постоянное электрическое поле, напряженность которого равна E. Рассмотрим две точки, расположенные на расстоянии d друг от друга. Так вот напряжение между двумя точками представляет из себя ни что иное, как разность потенциалов в этих точках:

U = \phi_1\medspace-\medspace \phi_2

В то же время не забываем про связь напряженности электростатического поля и разности потенциалов между двумя точками:

\phi_1\medspace-\medspace \phi_2 = Ed

И в итоге получаем формулу, связывающую напряжение и напряженность:

U = Ed

В электронике, при рассмотрении различных схем, напряжение все-таки принято считать как разность потенциалов между точками. Соответственно, становится понятно, что напряжение в цепи — это понятие, связанное с двумя точками цепи. То есть говорить, к примеру, «напряжение в резисторе» — не совсем корректно. А если говорят о напряжении в какой-то точке, то подразумевают разность потенциалов между этой точкой и «землей». Вот так плавно мы вышли к еще одному важнейшему понятию при изучении электроники, а именно к понятию «земля» Так вот «землей» в электрических цепях чаще всего принято считать точку нулевого потенциала (то есть потенциал этой точки равен 0).

Давайте еще пару слов скажем о единицах, которые помогают охарактеризовать величину напряжения. Единицей измерения является Вольт (В). Глядя на определение понятия напряжения мы можем легко понять, что для перемещения заряда величиной 1 Кулон между точками, имеющими разность потенциалов 1 Вольт, необходимо совершить работу, равную 1 Джоулю. С этим вроде бы все понятно и можно двигаться дальше

А на очереди у нас еще одно понятие, а именно ток.

Влияние электрического тока на человека

Проходя через тело человека, электроэнергия оказывает на организм сразу несколько видов воздействия. Всего их существует четыре:

  1. Термическое (нагрев).
  2. Электролитическое (диссоциация, приводящая нарушению химических свойств жидкостей).
  3. Механическое (разрыв тканей как следствие гидродинамического удара и судорожного сокращения мышц).
  4. Биологическое (нарушение биологических процессов в клетках).

В зависимости от величины, пути прохождения, частоты и длительности воздействия электроток может вызывать абсолютно разные как по характеру, так и по тяжести повреждения организма. Самыми распространенными из них можно считать:

  • Контактный ожог. Возникает за счет преобразования электрической энергии в тепловую. Обычно возникает в местах входа и выхода электротока, но при высокочастотном воздействии может распространяться и на другие поверхности тела.
  • Дуговой ожог. Наблюдается обычно в высоковольтных установках (1 000 В и выше). Обусловлен тепловым воздействием на поверхностные участки тела высокотемпературной дугой. Обычно дуговой ожог сопровождается металлизацией кожи, вызванной напылением металла проводника дугой.
  • Электроофтальмия. Ожог сетчатки глаза воздействием на нее ультрафиолетового света запредельной для глаз величины. Этот тип ожога вызывается свечением электрической дуги, возникающей при коротком замыкании в электроустановках. При серьезной аварии на высоковольтных установках человек может получить ожог сетчатки прежде, чем рефлекторно успеет закрыть глаза.
  • Механические травмы. В этом случае действие электротока сопровождается разрывом кожи, сосудов, мышечной ткани из-за судорожных неконтролируемых перегрузок мышц. Дополнительные механические повреждения могут быть получены и обычным путем, к примеру, падением с высоты или ударом об оборудование из-за электрического поражения.
  • Электрический удар. Наиболее опасный и самый распространенный вид поражения. Подразделяется он на 4 степени:
  1. Судорожное сокращение мышц.
  2. Судорожное сокращение мышц, дыхание и сердцебиение сохраняются.
  3. Остановка дыхания, возможно нарушение сердечного ритма.
  4. Клиническая смерть, дыхания и сердцебиения нет.

Направление электрического тока в металлах

По металлическим проводам перемещаются отрицательно заряженные электроны, т.е. ток идет от «–» к «+» источника. Направление движения электронов называют действительным. Но исторически в науке принято условное направление тока от «+» источника к «–».

Действия электрического тока (преобразования энергии)

Электрический ток способен вызывать различные действия:

  • Тепловое — электрическая энергия преобразуется в тепло. Такое преобразование обеспечивает электроплита, электрический камин, утюг.
  • Химическое — электролиты под действием постоянного электрического тока подвергаются электролизу. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) — положительные ионы (катионы).
  • Магнитное (электромагнитное) — при наличии электрического тока в любом проводнике вокруг него наблюдается магнитное поле, т.е. проводник с током приобретает магнитные свойства.
  • Световое — электрический ток разогревает металлы до белого каления, и они начинают светиться подобно вольфрамовой спирали внутри лампы накаливания. Другой пример — светодиоды, в которых свет обусловлен излучением фотонов при переходе электрона с одного энергетического уровня на другой.
  • Механическое — параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются.

Резистор. Падение напряжения на резисторе. Мощность. Закон Ома — МикроПрогер

Итак, резистор… Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор —  у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Ограничение тока резистором

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа)  показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Падение напряжение на резисторе

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

V=I*R

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2.  При этом считаем сопротивление лампочки равным 0.

V=I*R    =>     R=V/I    =>    R= 12В / 0,2А   =>   R=60Ом

 Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:

Последовательное соединение резисторов

При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:

Параллельное соединение резисторов

Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Двухполюсник и его эквивалентная схема

Двухполюсник представляет собой электрическую цепь, содержащую две точки присоединения к другим цепям. Бывает два вида электрических цепей:

  • цепи, содержащие источник тока или напряжения;
  • двухполюсники, не являющиеся источниками.

Первые характеризуются электрическими параметрами: силой тока, напряжением и импедансом. Для расчёта параметров таких двухполюсников предварительно производят замену реальных элементов цепи на идеальные элементы. Комбинация, которая получается в результате подобной замены, называется эквивалентной схемой.

Внимание! При работе со сложными электрическими схемами с учётом того, что устройство работает на одной частоте, допустимо преобразовывать последовательные и параллельные ветви до получения простой схемы, доступной для расчёта параметров. Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления

Второй вид двухполюсников можно охарактеризовать только величиной внутреннего сопротивления.

Основы электронной теории проводимости

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов.

Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 1028 м–3, что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела.

В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 105 м/с.

Рис. 1

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами — электронами.

Следовательно,

электрический ток в металлах — это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д. Средняя скорость дрейфа электронов очень мала, около 10–4 м/с.

Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅108 м/с.

При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

Изменение сопротивления:

На следующей схеме вы видите разность сопротивлений между системами изображенными на правой и левой стороне рисунка. Сопротивление давлению воды в кране противодействует задвижка, в зависимости от степени открытия задвижки изменяется сопротивление.

Сопротивление в проводнике изображено в виде сужения проводника, чем более узкий проводник тем больше он противодействует прохождению тока.

Вы можете заметить что на правой и на левой стороне схемы напряжение и давление воды одинаково.

Вам необходимо обратить внимание на самый важный факт. В зависимости от сопротивления увеличивается и уменьшается сила тока

В зависимости от сопротивления увеличивается и уменьшается сила тока.

Слева при полностью открытой задвижке мы видим самый большой поток воды. И при самом низком сопротивлении, видим самый большой поток электронов (Ампераж) в проводнике.

Справа задвижка закрыта намного больше и поток воды тоже стал намного больше.

ужение проводника тоже уменьшилось вдвое, я значит вдвое увеличилось сопротивление протеканию тока. Как мы видим через проводник из за выского сопротивления протекает в два раза меньше электронов.

Обратите внимание что сужение проводника изображенное на схеме используется только для примера сопротивления протеканию тока. В реальных условиях сужения проводника не сильно влияет на протекающий ток

Значительно большее сопротивление могут оказывать полупроводники и диэлектрики.

Сужающийся проводник на схеме изображен лишь для примера, для понимания сути происходящего процесса.

Формула закона Ома — зависимость сопротивления и силы тока

Как вы видите из формулы, сила тока обратнапропорциональна сопротивлению цепи.

Больше сопротивление = Меньше ток

* при условии что напряжение постоянно.

Метода треугольника закона Ома

Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Рисунок 5 – Треугольник закона Ома

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Рисунок 6 – Закон Ома для определения R

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Рисунок 7 – Закон Ома для определения I

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

Рисунок 8 – Закон Ома для определения E

В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

Технические характеристики

История открытия закона Ома для участка цепи

Вспомним, что несколько предыдущих уроков были посвящены изучению таких физических величин, как сила тока, напряжение и сопротивление. Мы рассмотрели природу возникновения электрического сопротивления, единицу его измерения и вкратце указали, от каких общих факторов оно зависит. Также мы знаем, что сила тока зависит от электрического поля, которое возникает в проводнике, а напряжение зависит от работы этого поля. Но электрический ток – это упорядоченное движение заряженных частиц, которое также характеризуется работой электрического тока. Следовательно, должна быть какая-нибудь связь между всеми этими понятиями: сила тока, напряжение, сопротивление.

Впервые определил эту зависимость в 1826 году немецкий физик Георг Ом (1789–1854) (рис. 1). Он провел очень большое количество экспериментов, в которых, прежде всего, исследовал зависимость силы тока в цепи от напряжения. Проводились его эксперименты следующим образом: ничего не меняя в электрической цепи, он подключал к ней различное большее число источников тока, в результате чего увеличивалось напряжение, подаваемое в цепь, что приводило к увеличению силы тока. Такие многочисленные эксперименты привели к получению закона силы тока от электрического сопротивления.

Опишем схему проведения экспериментов Георга Ома. В электрическую цепь он подключал проводник, на котором с помощью вольтметра и амперметра измерялись напряжение и сила тока соответственно, ключ и источник тока (рис. 2)

Обратим внимание на то, что в цепи подключено несколько источников тока, и изменение их количества позволяет пронаблюдать за изменением силы тока в цепи в зависимости от напряжения

Рис. 2. Схема экспериментов Г. Ома

В результате измерений прослеживается зависимость , где напряжение измеряется на зажимах AB, т. е. на проводнике.

Для того чтобы пронаблюдать зависимость силы тока от сопротивления, в той же цепи теперь следует не менять количество источников тока, а менять проводники, т. е. сопротивление цепи. Георг Ом поступил следующим образом: вместо одного проводника он подключил другой с вдвое большей длиной, т. е. с вдвое большим сопротивлением (почему это так, вы узнаете на следующем уроке). Аналогично он подключал и проводники с другими длинами и получил зависимость такого вида: . Т. е. при увеличении сопротивления проводника сила тока в нем уменьшается.

На графике зависимость силы тока в проводнике от сопротивления выглядит следующим образом (рис. 3).

Рис. 3. Зависимость силы тока в проводнике от сопротивления

Такая зависимость называется обратно пропорциональной. Эту зависимость Ому пришлось достаточно долго получать, но именно это и привело его к выводу важнейшего закона электродинамики – закону Ома для участка цепи. Собрав вместе те две зависимости, которые мы показали выше, Ом и пришел к своему закону.

Классификация электрического тока по степени воздействия на человека

Электрический ток различается по своей степени воздействия на человека. Он может быть:

  • ощутимым;
  • неотпускающимся;
  • фибрилляционным.

Ощутимым называют электрический ток, при ударе которого человек чувствует явное раздражение. Ощутить на себе удар тока можно при 0,6 мА.

Неотпускающий — электрический ток, вызывающий непроизвольные судорожные движения конечностей, которые прикасаются к оголённым проводам.

Переменный ток, проходя по клеткам человеческого организма, подаёт импульсы, при которых у человека появляется эффект прилипания.

Фибрилляционный ток при ударе вызывает проблемы с сердечной системой. В этот момент человек может умереть от остановки сердца.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий