Методы управления частотно-регулируемым приводом (чрп)

Принцип работы

Теперь сам принцип работы частотного преобразователя. Чтобы понять это, предлагаем разобрать рисунок ниже.


Принцип работы

Итак, пройдемся по рисунку, где

  • «В» – это неуправляемый силовой выпрямитель диодного типа.
  • «АИН» – автономный инвертор.
  • «СУИ ШИМ» – система широтно-импульсного управления.
  • «САР» – система автоматического регулирования.
  • «Св» – конденсатор фильтра.
  • «Lв» – дроссель.

По схеме очень хорошо видно, что инвертор регулирует частоту напряжения  за счет системы широтно-импульсного управления (оно высокочастотное). Именно эта часть регулятора отвечает за подключение обмоток статора электродвигателя попеременно то к положительному полюсу выпрямителя, то к отрицательному. Периодичность подключения к полюсам происходит по синусоидальной кривой. При этом частота импульсов определяется именно частотой ШИМ. Так и происходит частотное регулирование.

Принципы построения частотного преобразователя

С непосредственной связью

В преобразователях с непосредственной связью частотный преобразователь представляет собой управляемый выпрямитель. Система управления поочерёдно отпирает группы тиристоров и подключает статорные обмотки двигателя к питающей сети. Таким образом, выходное напряжение преобразователя формируется из «вырезанных» участков синусоид входного напряжения. Частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие — малый диапазон управления частотой вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

Использование незапираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя. «Резаная» синусоида на выходе преобразователя с непосредственной связью является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению КПД системы в целом.

С явно выраженным промежуточным звеном постоянного тока

Наиболее широкое применение в современных частотно-регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока. В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение выпрямляется в выпрямителе, фильтруется фильтром, а затем вновь преобразуется инвертором в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению КПД и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

Как выбрать частотно-регулируемый электропривод

Преобладающее число частотных преобразователей изготавливаются со встроенным фильтром электромагнитной совместимости (ЭМС).

Различаются такие виды управления, как скалярное, бездатчиковое и датчиковое векторное, и др. Согласно заданным приоритетам в принятии управленческих решений, приводы выбираются по:

  • типу нагрузки;
  • напряжению и номиналу двигателя;
  • мощности частотного преобразователя;
  • режиму управления;
  • диапазону частотной регулировки;
  • ЭМС и т. д.

Если ЧРП предназначен для асинхронного двигателя с большим сроком эксплуатации, то рекомендуется выбирать частотный преобразователь с завышенным током на выходе.С помощью современных преобразователей частоты возможно управление с пульта, по интерфейсу или комбинированным методом.

Семейство частотных приводов Power Flex от Rockwell Automation

Компания Rockwell Automation, бессменный лидер на силовом электротехническом рынке, выпустила новую серию частотных электроприводов Allen-Bradley PowerFlex в диапазоне мощностей от 0.25kW до 6770kW. Новая высокоэффективная серия сочетает в себе компактное конструктивное исполнение, широкие функциональные возможности и отличные эксплуатационные характеристики. Применяется в пищевой, бумажной, текстильной промышленности, металлообработке, деревообработке, насосно-вентиляционном оборудовании и т.д. В палитре представлены два класса приводов – Компонентный и Архитектурный. Модели из Компонентного класса предназначены для решения стандартных задач регулирования, а приводы Архитектурного класса за счет гибкого изменения конфигурации могут быть легко адаптированы и встроены в системы управления различного силового оборудования. Все модели предлагают исключительные коммуникационные возможности, широкую гамму панелей оператора и средств программирования, что в значительной степени облегчает эксплуатацию и ускоряет запуск оборудования.

PowerFlex 4

Привод Powerflex 4 является наиболее компактным и недорогим представителем данного семейства. Являясь идеальным устройством регулирования скорости, данная модель обеспечивает универсальность применения с соблюдением требований производителей и конечных пользователей в отношении гибкости, компактности и простоты эксплуатации.

В приводе реализован вольт-частотный закон управления с возможностью компенсации скольжения. Прекрасным дополнением к данной модели является версия ультракомпактного приводы Power@Flex4M, c расширенным рабочим диапазоном мощностей до 2.2 kW при однофазном исполнении и до 11kW-для трехфазного напряжения 400VAC. Предлагаемая ценовая шкала на данную модель позволяет надеяться если не на хит сезона, то на достаточно широкую ее популярность.

PowerFlex 7000

Привода серии PowerFlex 7000 являются уже третьим поколением приводов среднего напряжения от Rockwell Automation. Предназначены для регулирования скорости, момента, направления вращения асинхронных и синхронных двигателей переменного тока. Уникальный дизайн серии PowerFlex 7000 представляет собой запатентованную разработку под маркой PowerCage силовых блоков, содержащих основные силовые компоненты приводы. Новый модульный дизайн прост и представлен небольшим количеством компонентов, что обеспечивает высокую надежность и облегчает эксплуатацию. К основным преимуществам приводов среднего напряжения можно отнести: уменьшение эксплуатационных расходов, возможность запуска больших двигателей от небольших источников питания и повышение качественных характеристик контролируемого технологического процесса и используемого оборудования.

В зависимости от выходной мощности поставляются привода трех типоразмеров:

  • Корпус А – Диапазон мощностей 150-900 кВт при питающем напряжении 2400-6600 В
  • Корпус В – Диапазон мощностей 150-4100 кВт при питающем напряжении 2400-6600В
  • Корпус С – Диапазон мощностей 2240-6770 кВт при питающем напряжении 4160-6600 В

Приводы PowerFlex 7000 могут поставляться с таких вариантами исполнения, как 6-пульсная или 18-пульсная схема или с ШИМ-преобразователем, что дает пользователю существенную гибкость в вопросе снижения влияния гармоник питающей сети. Кроме этого, он обеспечивает прямое бессенсорное векторное управление для улучшения регулирования в зоне низких скоростей, по сравнению с приводами, использующими метод регулирования U/f, а также возможность регулирования момента двигателя, как это осуществляется в приводах постоянного тока. В качестве панели оператора предлагается модуль с жидкокристаллическим дисплеем на 16 строк и 40 знаков.

Allen-Bradley www.rockwell.com

Изготовление

Изготовить данное изделие весьма просто и малозатратно, если знать, как правильно сделать рулонные шторы.

Для начала нужно определиться с цветовой гаммой и плотностью ткани, используемой в изготовлении штор. Чем меньше плотность ткани, тем больше света она будет пропускать.

Для спальни лучше всего подойдут шторы блэкаут, полностью затемняющие помещение, а для кухни – легкие, светлые ткани, пропускающие много солнечного света.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Watch this video on YouTube

Что такое частотный преобразователь, основные виды и какой принцип работы

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Схема работы устройства плавного пуска, его назначение и конструкция

Устройство, виды и принцип действия асинхронных электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

Проверка электродвигателей разного вида с помощью мультиметра

Преимущества частотно-регулируемого привода насосов.

Устройства изменения частоты применяют как для привода насосов небольших автономных водопроводных и отопительных систем, так и для централизованных сетей отопления, горячего и холодного водоснабжения. Преобразователи частоты устанавливают также в электроприводах агрегатов подачи технологических жидкостей, высокоточных дозаторов, систем автоматического тушения пожаров и охлаждения.

Частотные преобразователи позволяют:

  • Осуществлять плавный пуск. При запуске насоса на полную мощность резко увеличивается давление, что может привести к гидроударам. Кроме того, при старте на полном напряжении ток увеличивается в 3-5 раз и более. Преобразователи частоты снижают пусковые токи, а также снижают вероятность гидравлических ударов.
  • Снизить потребление электроэнергии. При работе насосов на полузакрытые задвижки существенно снижается к.п.д. агрегатов. Преобразователи частоты позволяют регулировать подачу в зависимости от потребления путем изменения производительности. Это позволяет снизить потребляемую мощность на 20-70%.
  • Осуществлять автоматическое управление. Современный преобразователь частоты – многофункциональное устройство. Оборудование позволяет регулировать расход и напор по нескольким характеристикам. Устройство также защищает двигатель и насос от перегрузок, перепадов напряжения, обрыва фаз, «сухого хода», заклинивания вала, других аварий и ненормальных режимов работы.
  • Обеспечивать связь с удаленными пунктами управления. Промышленные преобразователи частоты, которые используют для насосных станций городского или сельского водоснабжения, централизованных сетях теплоснабжения, поддерживают базовые протоколы связи. Такие приводы встраиваются в сложные системы автоматизации.

При помощи специализированных устройств можно осуществлять групповое управление насосами на станциях, подключать и отключать резервные агрегаты, задавать алгоритмы управления.

Принцип действия частотного преобразователя

Принцип действия частотного преобразователя базируется на особенностях работы асинхронного электродвигателя. В электрическом двигателе такого типа частота вращения магнитного поля (величина n1) зависит от частоты напряжения питающей сети. В случае, когда питание обмотки статора выполняется трехфазным напряжением, имеющим частоту f, генерируется вращающееся магнитное поле, скорость вращения которого определяется по нижеприведенной формуле:

, где

р – это число пар статорных полюсов.

Переход от скорости вращения поля ω1, которая измеряется в радианах, к частоте вращения n1 (об/мин), выполняется согласно формуле:

, где

60 – это коэффициент пересчета размерности.

Если подставить в это уравнение скорость вращения поля ω1, получим следующее равенство:

Отсюда несложно заключить, что показатель частоты вращения ротора асинхронного электродвигателя зависит от частоты напряжения питающей сети. Именно эта зависимость и отображает всю суть метода частотного регулирования. Частотный преобразователь для электродвигателя изменяет частоту напряжения питания на входе и, как следствие, регулирует частоту вращения ротора. Подчеркнем, что выходная частота в современных частотниках изменяется в широком диапазоне, а, значит, эта величина может быть как ниже, так и выше частоты питающей сети.

Частотник для электродвигателя, принцип работы силовой части которого лег в основу нижеприведенной классификации, соответствует следующим параметрам:

  • Преобразователи с явно выраженным промежуточным звеном постоянного тока.
  • Преобразователи с непосредственной связью (промежуточное звено постоянного тока отсутствует).

По историческим меркам первыми появились частотные преобразователи с непосредственной связью. В этих агрегатах силовая часть представляет собой управляемый выпрямитель, выполненный на тиристорах. Управляющий узел в порядке очереди отпирает группы тиристоров, тем самым формируя выходной сигнал. Сегодня этот метод преобразования в новых разработках не используется.

Как работает преобразователь этого класса? Здесь используется двойное преобразование электроэнергии: входное синусоидальное напряжение (величины L1, L2, L3 на рисунке) с постоянной амплитудой/частотой выпрямляется в выпрямительном блоке (BR), фильтруется и сглаживается в блоке фильтрации (ВF), как результат, — получаем постоянное напряжение. Представленный узел носит название – звено постоянного тока.

решение задач формирования синусоидального переменного напряжения с регулируемой частотой отвечает блок преобразования (BD). Роль электронных ключей, формирующих выходной сигнал, выполняют биполярные транзисторы с изолированным затвором IGВТ. Процесс управления вышеперечисленными блоками происходит согласно заблаговременно запрограммированному алгоритму микропроцессорным модулем или логическим блоком (BL).

Схема ниже показывает, что частотные преобразователи могут быть запитаны от внешнего звена постоянного тока. При этом защита частотника выполняется посредством быстродействующих предохранителей

Важно отметить, что использовать контакторы для питания от звена постоянного тока не рекомендуется. Дело в том, что при контакторной коммутации возникает повышенный зарядный ток и предохранители могут выгореть

Выбор по мощности

Главный критерий выбора частотного преобразователя для электродвигателя — мощность. Частотник не должен быть менее мощным чем управляемый им двигатель. Мощнее быть может, слабее — нет. Но все не так просто, так как конкретное соотношение мощностей зависит от типа оборудования, к которому будет подключаться преобразователь. Частотный преобразователь для электродвигателя с двумя парами полюсов, должен иметь мощность:

  • равную двигателю, если движок работает постоянно (транспортеры);
  • не ниже 150% от мощности, если движок работает с перегрузкой;
  • не менее 120% от мощности движка для центробежных насосов и вентиляторов;
  • для управления моторами подъемной техники, может понадобиться двукратное превышение мощности.

При выборе стоит обратить внимание на описание ПЧ, так как производители часто нормируют нагрузки на постоянный и переменный момент. В некоторых есть отдельные линейки под работу с постоянным и переменным моментом

Например, частотные преобразователи Delta (Дельта).

Мощность и потребляемый ток — два основных критерия выбора

Кроме этого, необходимо отслеживать такие параметры:

  • Номинальный длительный ток преобразователя частоты должен быть не меньше рабочего потребления тока управляемого оборудования.
  • Если подключаться будет несколько двигателей, ток ПЧ должен быть не менее чем на 25% больше суммарно потребляемого подключенными устройствами.

Если надо обеспечить быстрый разгон устройств, лучше выбрать более мощный преобразователь — он быстрее справляется с задачей.

Подключение однофазных преобразователей частоты к трехфазному двигателю

Трехфазные электроприводы несложного оборудования мощностью до 4 кВт допускается включать в однофазную сеть через частотный преобразователь. Это позволяет регулировать скорость вращения вала без редукторов муфт, изменять производительность без задвижек, заслонок и других механических устройств, а также частично устранить недостатки схем пуска через конденсатор.

Для таких электроприводов рекомендовано использовать однофазные преобразователи. Такие устройства имеют емкостный выход, позволяющий отказаться от выносного конденсатора. Рассчитанное значение емкости вводится вручную при настройке преобразователей или автоматически определяется в режиме адаптации частотника к двигателю. Однофазные устройства позволяют рассчитывать оптимальную емкость при тестировании.

Преобразователь для двигателей, включенных в сеть 220 В, подбирают:

  • По диапазону регулирования угловой скорости. Частотник должен обеспечивать изменение частоты вращения в заданном интервале.
  • По максимальной емкости фазосдвигающего элемента. Преобразователь должен обеспечивать пуск электрической машины с заданным моментом на валу. При выборе устройства нужно рассчитать величину емкости, необходимой для старта и корректной работы двигателя, и сравнить ее с характеристиками преобразователя.
  • По мощности. Параметры трехфазного двигателя при однофазном питании сильно отличаются от номинальных и не аналогичны характеристикам однофазных двигателей той же мощности. Для таких приводов выбирают частотный преобразователь с запасом мощности не менее 2 кВт.
  • По дополнительным функциям. При выборе также учитывают наличие дисплея для индикации параметров, входов и выходов для датчиков, встроенных фильтров гармоник, функций самодиагностики, записи событий и другое.

Также следует учесть, что работа трехфазной машины в сети 220 В сильно отличается от нормы. Такие схемы подключения машин через частотник не обеспечивают точного управления и регулировки параметров, не позволяют реализовать сложные алгоритмы. Сфера применения таких приводов – станки, где требуется только регулировка скорости, бытовые маломощные насосы для автономных систем водоподачи и полива.

Преобразователи подключают кабелями марки, рекомендованной производителями. Сечение жил также должно быть не меньше рекомендованного. Для выходной цепи применяется трехпроводный кабель.

В разрыв фазного нулевого провода перед преобразователем устанавливают автоматический выключатель для коммутаций и защиты от коротких замыканий. При питании однофазным напряжением возникают гармоники, которые негативно влияют на работу двигателя и качество напряжения в сети. При высоких требованиях к электромагнитной совместимости, устанавливают входные и выходные фильтры.

Все подключения осуществляют согласно требованиям электробезопасности. После проверки правильности и качества подключений, включают частотный преобразователь в тестовой режим, настраивают интервал скоростей и другие параметры. Далее проверяют работу двигателя на разных скоростях.

Как выбрать ПЧ перед тем, как его купить

Перед тем, как выбрать частотный преобразователь,проверяют электрическую совместимость с двигателем и нагрузочной способностью (мощностью).

Рис. №1. Структурная схема работы системы насосных агрегатов от преобразователя частоты VFD.

При работе преобразователя частоты с одним двигателем выбор проводят в зависимости от паспортных характеристик. При выборе учитываются такие показатели, как:

  1. Мощности по паспорту ПЧ и электродвигателя должны быть равными. Этот параметр действует в случае использования двигателей с двумя парами полюсов (2p=4), со скоростью вращения до 1500 об/мин, с постоянным моментом. Он же действует и для ПЧ, которые могут справиться с перегрузом в 150% (конвейеры, транспортерные ленты) и для преобразователей, работающих с перегрузом 120% (вентиляторы, центробежные насосы).
  2. Величина номинального тока должна быть равной и быть больше продолжительного фактического тока, который потребляется двигателем (тока нагрузки).

Время разгона двигателя при пусковом токе 150% составляет 120% для преобразователей, специализирующихся в насосных агрегатах, от номинального ПЧ обычно не должно превышать 60сек.

  1. Входное напряжение сети должно удовлетворять преобразователь, он должен сохранять свою работоспособность при любых отклонениях напряжения от нормы.
  2. Диапазон регулирования частот, который может поддерживать преобразователь должен удовлетворять высокоскоростному режиму двигателя.
  3. Наличие дискретных входов управления необходимо для ввода различного рода команд, запрограммированных пользователем. Нужны и аналоговые, служат для ввода сигналов задания и для обратной связи. Необходимы и цифровые входы, служащие для высокочастотных сигналов, поступающих от энкордеров или цифровых датчиков скорости и положения.
  4. Число выходных сигналов служат для создания сложных схем для системы насосных станций.
  5. Возможность оперативного управления в рабочем режиме, это могут быть входы управления с помощью пульта. Или управление с помощью шины последовательной связи посредством контроллера или компьютера. Может быть это будет комбинированное управление.
  6. Выбор преобразователя зависит от предпочтения способа управления электродвигателем, скалярное или векторное управление. Зависит раздельного векторного управления двигателями или скалярное управление – поддержание одного постоянного отношения выходного напряжения к выходной частоте. Для насосных агрегатов более свойственен способ векторного управления.
  7. К более точным критериям выбора частотника принадлежит параметр, определяющий работу двигателя на установившейся скорости. При работе преобразователя с одним двигателем необходимая мощность для запуска рассчитывается по формуле:

Рис. №2. Формула расчета полной пусковой мощности.

Ток потребления двигателем от преобразователя при сетевом напряжении 220/380В рассчитывают по формуле:

Рис. №3. Расчет механических характеристик двигателя.

Рис. №4. Таблица неравенств, которые необходимо соблюдать при выборе ПЧ для работы одного частотника с несколькими двигателями.

45Х

Правила подключения и настройки

Для полноценной и эффективной работы инвертора асинхронного электродвигателя его необходимо правильно подключить и настроить. В схему перед частотником устанавливается нужный автоматический выключатель. Если это трехфазная сеть, то выключатель должен быть рассчитан на напряжение 380 В, а сила тока соответствовать номиналу двигателя.

В случае аварийной ситуации в сети на одной фазе, отключены будут и остальные токоведущие проводники. Величина тока разрыва должна соответствовать значению в отдельной фазе электродвигателя. При использовании преобразователя частоты в однофазной сети устанавливается одиночный автоматический выключатель, по номиналу превышающий в три раза значение тока.

В обоих случаях автоматические выключатели не рекомендуется устанавливать в разрыв заземляющего или нулевого проводника, необходимо осуществлять только прямое подключение.

Статорные обмотки механизма соединяются «звездой» или «треугольником», в зависимости от того, какое напряжение поступает от инвертора. Если оно совпадает с наименьшим значением на корпусе электродвигателя, то применяется схема «треугольник». При совпадении высокого значения напряжения соединение проводится по схеме «звезда».

Далее, инвертор подключается к контроллеру и блоку управления, который обычно поставляется в комплекте с преобразователем. Все подключения проводятся по схеме, входящей в руководство по эксплуатации оборудования. После выполнения крепежных работ включается автомат и на инвертор подается питание, о чем будет сигнализировать лампочка на пульте.

Для начала работы частотника включается кнопка запуска и осуществляется поворот соответствующей рукоятки. Электродвигатель медленно начнет вращаться. Если необходимо поменять вращение в обратную сторону, то для этого на пульте находится соответствующий тумблер. Чтобы добиться необходимого количества оборотов двигателя, устанавливается необходимая частота напряжения или вращения, в зависимости от модели оборудования.

https://youtube.com/watch?v=o88AAxmyTNU

Подключение, настройка и запуск преобразователя частоты HY01D523B.Подключение, настройка и запуск преобразователя частоты HY01D523B.

Перспективы применения ЧРП в нефтяной промышленности

Нефтяники прогнозируют массовое внедрение преобразователей частоты на электродвигателях в течении ближайших лет. Это обусловлено описанными в этой статье преимуществами таких устройств, а также увеличением общего потребления электроэнергии в отрасли, вызванной резким увеличением объёмов добычи.

Стоимость электроэнергии в затратах на эксплуатацию насосов составляет примерно 40%. Так как наблюдается постоянный рост тарифов на электроэнергию, нефтяники серьёзно задумались об экономии энергопотребления, в частности о внедрении частотно-регулируемых приводов для насосных агрегатов.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий