Список обозначений в физике

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды

а) общее обозначение

б) мощностью рассеяния 0,125 Вт

в) мощностью рассеяния 0,25 Вт

г) мощностью рассеяния 0,5 Вт

д) мощностью рассеяния 1 Вт

е) мощностью рассеяния 2 Вт

ж) мощностью рассеяния 5 Вт

з) мощностью рассеяния 10 Вт

и) мощностью рассеяния 50 Вт

Резисторы переменные

Терморезисторы

Тензорезисторы

Варисторы

Шунт

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

a) головной телефон

б) громкоговоритель (динамик)

в) общее обозначение микрофона

г) электретный микрофон

Диоды

а) диодный мост

б) общее обозначение диода

в) стабилитрон

г) двусторонний стабилитрон

д) двунаправленный диод

е) диод Шоттки

ж) туннельный диод

з) обращенный диод

и) варикап

к) светодиод

л) фотодиод

м) излучающий диод в оптроне

н) принимающий излучение диод в оптроне

а) амперметр

б) вольтметр

в) вольтамперметр

г) омметр

д) частотомер

е) ваттметр

ж) фарадометр

з) осциллограф

Катушки индуктивности

а) катушка индуктивности без сердечника

б) катушка индуктивности с сердечником

в) подстроечная катушка индуктивности

Трансформаторы

а) общее обозначение трансформатора

б) трансформатор с выводом из обмотки

в) трансформатор тока

г) трансформатор с двумя вторичными обмотками (может быть и больше)

д) трехфазный трансформатор

Устройства коммутации

а) замыкающий

б) размыкающий

в) размыкающий с возвратом (кнопка)

г) замыкающий с возвратом (кнопка)

д) переключающий

е) геркон

Предохранители

а) общее обозначение

б) выделена сторона, которая остается под напряжением при перегорании предохранителя

в) инерционный

г) быстродействующий

д) термическая катушка

е) выключатель-разъединитель с плавким предохранителем

Фоторезистор

Фотодиод

Фотоэлемент (солнечная панель)

Фототиристор

Фототранзистор

Оптоэлектронные приборы

Диодная оптопара

Резисторная оптопара

Транзисторная оптопара

Тиристорная оптопара

Симисторная оптопара

Кварцевый резонатор

а) лампа накаливания

б) неоновая лампа

в) люминесцентная лампа

Если Вам проще по видео понять, вот можете посмотреть:

Геометрия на плоскости (планиметрия)

Пусть имеется произвольный треугольник:

Тогда, сумма углов треугольника:

Площадь треугольника через две стороны и угол между ними:

Площадь треугольника через сторону и высоту опущенную на неё:

Полупериметр треугольника находится по следующей формуле:

Формула Герона для площади треугольника:

Площадь треугольника через радиус описанной окружности:

Формула медианы:

Свойство биссектрисы:

Формулы биссектрисы:

Основное свойство высот треугольника:

Формула высоты:

Еще одно полезное свойство высот треугольника:

Теорема косинусов:

Теорема синусов:

Радиус окружности, вписанной в правильный треугольник:

Радиус окружности, описанной около правильного треугольника:

Площадь правильного треугольника:

Теорема Пифагора для прямоугольного треугольника (c — гипотенуза, a и b — катеты):

Радиус окружности, вписанной в прямоугольный треугольник:

Радиус окружности, описанной вокруг прямоугольного треугольника:

Площадь прямоугольного треугольника (h — высота опущенная на гипотенузу):

Свойства высоты, опущенной на гипотенузу прямоугольного треугольника:

Длина средней линии трапеции:

Площадь трапеции:

Площадь параллелограмма через сторону и высоту опущенную на неё:

Площадь параллелограмма через две стороны и угол между ними:

Площадь квадрата через длину его стороны:

Площадь квадрата через длину его диагонали:

Площадь ромба (первая формула — через две диагонали, вторая — через длину стороны и угол между сторонами):

Площадь прямоугольника через две смежные стороны:

Площадь произвольного выпуклого четырёхугольника через две диагонали и угол между ними:

Связь площади произвольной фигуры, её полупериметра и радиуса вписанной окружности (очевидно, что формула выполняется только для фигур в которые можно вписать окружность, т.е. в том числе для любых треугольников):

Свойство касательных:

Свойство хорды:

Теорема о пропорциональных отрезках хорд:

Теорема о касательной и секущей:

Теорема о двух секущих:

Теорема о центральном и вписанном углах (величина центрального угла в два раза больше величины вписанного угла, если они опираются на общую дугу):

Свойство вписанных углов (все вписанные углы опирающиеся на общую дугу равны между собой):

Свойство центральных углов и хорд:

Свойство центральных углов и секущих:

Условие, при выполнении которого возможно вписать окружность в четырёхугольник:

Условие, при выполнении которого возможно описать окружность вокруг четырёхугольника:

Сумма углов n-угольника:

Центральный угол правильного n-угольника:

Площадь правильного n-угольника:

Длина окружности:

Длина дуги окружности:

Площадь круга:

Площадь сектора:

Площадь кольца:

Площадь кругового сегмента:

G

gg — good game — хорошая игра. Говорится обычно в конце игры или матча. Говорится проигравшим. Иногда говорит и выигравший, как комплимент.

GF — girlfriend – девушка. В чате могут спросить D U HV GF? Есть ли у тебя девушка?

gf — good fight — хороший бой. Может использоваться в дуэльных играх. Например, Mortal Kombat.

gl — good luck – удачи. Говорится перед игрой команде или сопернику.

GMTA — great minds think alike — Великие умы мыслят одинаково. Огромный комплимент от сокомандника.

GOL — Giggling Out Loud — Очень смешно!

GR8 – great — замечательно, великолепно.

GTG — got to go — должен идти

gh — good half или good hunt. В первом случае говорится во время середины игры, когда есть раунды. Например, отыграл половину раундов на отлично – пишешь gh. Иногда используется как пожелание в начале игры — удачной охоты.

gk — good kill — хорошее убивство.

gt — good try — хорошая попытка.

gj — good job — хорошая работа.

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R  – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук.  Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания  в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды  – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания,

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V  – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод, стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT – транзистор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Что означает маркировка процессоров Intel Core

Маркировка процессоров Intel Core включает несколько элементов, которые расположены один за другим. Первый элемент – это название бренда, под которым выпускается процессор. Это может быть Intel Core, Intel Pentium, Intel Celeron или Intel Xeon. Название бренда во многом определяет сферу применения процессора. Intel Core – это основный бренд, который используется в настольных компьютерах и ноутбуках, Intel Pentium и Intel Celeron – это бюджетные модели процессоров, которые встречаются в недорогих ПК и ноутбуках, а Intel Xeon – это процессоры для серверов и высокопроизводительных рабочих станций.

Следующий элемент маркировки — это так называемый модификтор бренда, он используется для брендов Intel Core и Intel Xeon. В большинстве случаев модификатор бренда состоит из буквы и цифры, которая указывает на расположение данной модели во всей линейке процессоров. Чем больше цифра – тем выше по уровню процессор. Например, модели Core i3 – это бюджетные процессоры, Core i5 – процессоры среднего уровня, Core i7 – флагманские процессоры, которые закрывают линейку Core. Также недавно появились процессоры Core i9, которые еще на один уровень выше.

После названия бренда и модификатора идет непосредственно номера процессора, первая цифра которого указывает на поколение Intel Core, к которому этот процессор относится. Например, Core i9-9900K – это девятое поколение, а Core i7-4770K – четвертое. После номера поколения располагается число из трех цифр, которое указывает на расположение этого процессора в рамках поколения. Обычно, чем больше это число, тем более производительным является процессор.

Последним элементом маркировки процессоров Intel является буквенный суффикс, в котором зашифровываются некоторые важные особенности данной модели процессора. Например, на возможность разгона или уровень потребления энергии. Более подробную информацию о значениях разных буквенных суфиксов можно получить из приведенных ниже таблиц.

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Природа происхождения

Определение

Электрический ток — это направленное движение заряженных частиц под воздействием электрического поля.

В качестве частиц выступают:

  • в металлических проводниках — электроны;
  • в полупроводниках — дырки или электроны;
  • в вакууме — электроны (при определенных условиях);
  • в газах — электроны и ионы;
  • в растворах и расплавах электролитов — ионы.

Пока по проводнику не течет электрический ток частицы движутся хаотично. И их количество перетекших в одном направлении примерно соответствует и количеству частиц, перетекших в противоположном направлении.

Но ситуация меняется после того, как по проводнику пускают ток. В этом случае количество движущихся в одном направлении частиц значительно возрастает. И чем больше их проходит через поперечное сечение проводника за единицу времени, тем больше и сила тока.

Как передать показания и оплатить электроэнергию по лицевому счету

После внесения данных о платеже пользователь нажимает кнопку «Продолжить». Перед окончанием операции пользователю предлагается тщательно проверить введенную информацию, и, если все верно, подтвердить совершение платежа с помощью кода, присланного на мобильный телефон.

При выборе «Электроэнергии» откроется окно с перечнем поставщиков электроэнергии. В верхней части окна находится поисковая строка, где можно указать реквизиты организации, которая поставляет электроэнергию клиенту. В нижней – список всех организаций, предоставляющих услуги подачи электроэнергии и с которыми Сбербанк заключил договор на оплату.

Золотые подсвечники

C

сya (cyaz) – see you – увидимся. Применяется при прощании

CU — See You — До скорого.

CUL8R — See You Later – Увидимся позже.

CSL — Can’t Stop Laughing — Не могу прекратить смеяться.

C — to see – видеть. Может применяться с IC или UC: я вижу или ты видишь.

CIAO — чао, пока. У англоязычных применяется редко. Обычно фраза проскакивает у итальянцев или американцев итальянского происхождения.

COS / CUZ — because — потому что. Сокращение, которое применяется не только в играх.

CUL8R — call you later или see you later. Позвоню тебе позже или Увидимся позже.

CUL — see you later — увидимся позже.

CWOT — complete waste of time — пустая трата времени. Разочаровавшийся игрок может такое сказать при слишком простой игре или слишком неинтересном разговоре в чате.

Динамика

Второй закон Ньютона:

Здесь: F — равнодействующая сила, которая равна сумме всех сил действующих на тело:

Второй закон Ньютона в проекциях на оси (именно такая форма записи чаще всего и применяется на практике):

Третий закон Ньютона (сила действия равна силе противодействия):

Сила упругости:

Общий коэффициент жесткости параллельно соединённых пружин:

Общий коэффициент жесткости последовательно соединённых пружин:

Сила трения скольжения (или максимальное значение силы трения покоя):

Закон всемирного тяготения:

Если рассмотреть тело на поверхности планеты и ввести следующее обозначение:

Где: g — ускорение свободного падения на поверхности данной планеты, то получим следующую формулу для силы тяжести:

Ускорение свободного падения на некоторой высоте от поверхности планеты выражается формулой:

Скорость спутника на круговой орбите:

Первая космическая скорость:

Закон Кеплера для периодов обращения двух тел вращающихся вокруг одного притягивающего центра:

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца

Основные формулы

Модельное разнообразие и оснащение Тойота Камри

Единица измерения

Так как сила тока — это количественная величина, то в физике есть и единица ее измерения. Она позволяет проводить сравнительный анализ различных токов и их действий.

В чем измеряется

Формула силы тока записывается так:

\(I=\frac{\triangle q}{\triangle t}\)

где \(\triangle t\) — это единица времени, а \(\triangle q\) — количества электрического заряда, протекшего за указанный промежуток времени через поперечное сечение проводника.

В Интернациональной системе (СИ) заряд измеряется в Кулонах, а время — в секундах. В соответствии с этим единица измерения силы тока — Кулон/секунду. По международному соглашению ее стали называть Ампером.

Примечание

В 1948 году было предложено определять силу тока по взаимодействию двух проводников, расположенных в вакууме на расстоянии одного метра друг от друга и длиной в один метр.

За силу тока в 1 A принимают такой ток, при котором два проводника притягиваются друг к другу (ток течет в одном направлении) или отталкиваются (ток течет в разных направлениях) с силой 0,0000002 H.

На практике очень часто применяются кратные единицы силы тока:

1 кА = 103 А, 1 мкА = 10-6 А, 1 мА = 10-3 А

В честь кого названа единица измерения

Единица измерения силы тока была названа в честь французского ученого Андрэ-Мари Ампер. Его называют «отцом» учения о электромагнетизме. Именно он ввел в науку такие термины как электрический ток, электростатика и электродинамика, гальванометр, напряжение, электродвижущая сила, соленоид. Амперу удалось найти доказательство теоремы «О циркуляции магнитного поля» и описать математически силу взаимодействия между токами.

Колебания

Уравнение описывающее физические системы способные совершать гармонические колебания с циклической частотой ω:

Решение предыдущего уравнения является уравнением движения для гармонических колебаний и имеет вид:

Период колебаний вычисляется по формуле:

Частота колебаний:

Циклическая частота колебаний:

Зависимость скорости от времени при гармонических механических колебаниях выражается следующей формулой:

Максимальное значение скорости при гармонических механических колебаниях:

Зависимость ускорения от времени при гармонических механических колебаниях:

Максимальное значение ускорения при механических гармонических колебаниях:

Циклическая частота колебаний математического маятника рассчитывается по формуле:

Период колебаний математического маятника:

Циклическая частота колебаний пружинного маятника:

Период колебаний пружинного маятника:

Максимальное значение кинетической энергии при механических гармонических колебаниях задаётся формулой:

Максимальное значение потенциальной энергии при механических гармонических колебаниях пружинного маятника:

Взаимосвязь энергетических характеристик механического колебательного процесса:

Энергетические характеристики и их взаимосвязь при колебаниях в электрическом контуре:

Период гармонических колебаний в электрическом колебательном контуре определяется по формуле:

Циклическая частота колебаний в электрическом колебательном контуре:

Зависимость заряда на конденсаторе от времени при колебаниях в электрическом контуре описывается законом:

Зависимость электрического тока протекающего через катушку индуктивности от времени при колебаниях в электрическом контуре:

Зависимость напряжения на конденсаторе от времени при колебаниях в электрическом контуре:

Максимальное значение силы тока при гармонических колебаниях в электрическом контуре может быть рассчитано по формуле:

Максимальное значение напряжения на конденсаторе при гармонических колебаниях в электрическом контуре:

Переменный ток характеризуется действующими значениями силы тока и напряжения, которые связаны с амплитудными значениями соответствующих величин следующим образом. Действующее значение силы тока:

Действующее значение напряжения:

Мощность в цепи переменного тока:

Трансформатор

Если напряжение на входе в трансформатор равно U1, а на выходе U2, при этом число витков в первичной обмотке равно n1, а во вторичной n2, то выполняется следующее соотношение:

Коэффициент трансформации вычисляется по формуле:

Если трансформатор идеальный, то выполняется следующее соотношение (мощности на входе и выходе равны):

В неидеальном трансформаторе вводится понятие КПД:

Волны

Длина волны может быть рассчитана по формуле:

Разность фаз колебаний двух точек волны, расстояние между которыми l:

Скорость электромагнитной волны (в т.ч. света) в некоторой среде:

Скорость электромагнитной волны (в т.ч. света) в вакууме постоянна и равна с = 3∙108 м/с, она также может быть вычислена по формуле:

Скорости электромагнитной волны (в т.ч. света) в среде и в вакууме также связаны между собой формулой:

При этом показатель преломления некоторого вещества можно рассчитать используя формулу:

Примеры нахождения силы тока в задачах

Задача №1

Определите силу тока проводнике, имеющем сопротивление 55 Ом при напряжении в сети 220В.

Решение

\(I=\frac UR\)

Вычисление

\(I=\frac{220}{50}=4.4\;A\)

Ответ: сила тока в проводнике 4,4 А.

Задача №2

Сила тока в резисторе при напряжении 100В (U1) составляет 4 А (I1). Если напряжение увеличить на 20В (Δ U), как изменится сила тока (I2), протекающего через этот резистор?

Решение

По условию задачи сопротивление резистора не изменяется. Тогда:

\(\frac{U1}{I1}=\frac{U2}{I2}\;\Rightarrow\;I2=\frac{I1\times U2}{U1}\)

\(U2=U1+\triangle U\)

\(I2=\frac{I1\times\left(U1+\triangle U\right)}{U1}\)

Вычисление

\(I2=\frac{4\times\left(100+20\right)}{100}=4.8\;A\)

Ответ: сила тока станет 4,8 А.

Задача №3

Определите силу тока в цепи с внешним сопротивлением 10 Ом и источником постоянного тока, ЭДС которого составляет 15В, а внутреннее сопротивление – 1 Ом.

Решение

\(I=\frac\varepsilon{R+r}\)

Вычисление

\(I=\frac{15}{10+1}=1.37A\)

Ответ: 1,37 А.

Задача №4

При какой силе тока (I) проволока с сопротивлением (R) 20 Ом за 300 секунд (t) выделит 6 кДж теплоты (Q)?

Решение

\(I=\sqrt{\frac Q{Rt}}\)

Вычисление

\(I=\sqrt{\frac{6000}{20\ast300}}=1A\)

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон сохранения

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием

Закон Кулона

Электростатика

Электрический заряд может быть найден по формуле:

Линейная плотность заряда:

Поверхностная плотность заряда:

Объёмная плотность заряда:

Закон Кулона (сила электростатического взаимодействия двух электрических зарядов):

Где: k — некоторый постоянный электростатический коэффициент, который определяется следующим образом:

Напряжённость электрического поля находится по формуле (хотя чаще эту формулу используют для нахождения силы действующей на заряд в данном электрическом поле):

Принцип суперпозиции для электрических полей (результирующее электрическое поле равно векторной сумме электрических полей составляющих его):

Напряженность электрического поля, которую создает заряд Q на расстоянии r от своего центра:

Напряженность электрического поля, которую создает заряженная плоскость:

Потенциальная энергия взаимодействия двух электрических зарядов выражается формулой:

Электрическое напряжение это просто разность потенциалов, т.е. определение электрического напряжения может быть задано формулой:

В однородном электрическом поле существует связь между напряженностью поля и напряжением:

Работа электрического поля может быть вычислена как разность начальной и конечной потенциальной энергии системы зарядов:

Работа электрического поля в общем случае может быть вычислена также и по одной из формул:

В однородном поле при перемещении заряда вдоль его силовых линий работа поля может быть также рассчитана по следующей формуле:

Определение потенциала задаётся выражением:

Потенциал, который создает точечный заряд или заряженная сфера:

Принцип суперпозиции для электрического потенциала (результирующий потенциал равен скалярной сумме потенциалов полей составляющих итоговое поле):

Для диэлектрической проницаемости вещества верно следующее:

Определение электрической ёмкости задаётся формулой:

Ёмкость плоского конденсатора:

Заряд конденсатора:

Напряжённость электрического поля внутри плоского конденсатора:

Сила притяжения пластин плоского конденсатора:

Энергия конденсатора (вообще говоря, это энергия электрического поля внутри конденсатора):

Объёмная плотность энергии электрического поля:

Как можно измерить силу тока

Для измерения силы тока используется прибор, называемый амперметром. На электрических схемах он обозначается буквой А, заключенной в окружность.

В любом проводнике замкнутой цепи, собранной последовательно, протекает электрический ток одинаковой величины. Поэтому для его измерения достаточно просто разомкнуть эту цепь в любом месте и подключить амперметр. Нельзя подключать его к источнику тока при отсутствии устройства потребления.

Ток бывает переменный и постоянный. И для его измерения необходимы разные устройства. На шкале амперметров для постоянного тока имеется одно из следующих обозначений — «-», «DC» или указание на полярность подключения. Амперметры, предназначенные для измерения силы переменного тока обозначаются «\(\sim\)» или «АС».

Амперметр для постоянного тока необходимо включать в цепь с соблюдением полярности, то есть к клемме прибора, имеющей обозначение «+», присоединяют провод, идущий от положительного электрода.

Примечание

Если на источнике тока отсутствует указание полярности, то узнать ее можно по электрической схеме. Короткая линия всегда соответствует «минусу», а длинная — «плюсу».

Амперметр для переменного тока не имеет полярности и подключается без ее учета.

Описание прибора

Амперметр — это один из электроизмерительных приборов. Он обладает очень низким сопротивлением, чтобы не оказывать влияния на величину измеряемой силы тока. Ведь закон Ома гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Это означает, что чем больше сопротивление проводников, тем меньше сила тока.

Шкала прибора может быть градуирована не только в А, но и в других кратных единицах — мкА, мА, кА.

Амперметры бывают:

  • аналоговые (стрелочные);
  • цифровые (электронные).

Измерители стрелочного типа не нуждаются в источнике питания, так как потребляют электрический ток непосредственно из измеряемой цепи. Но они показывают величину силы тока с некоторой задержкой, а не мгновенно.

Электронные амперметры практически полностью лишены такого недостатка как инерционность. Современные процессоры, используемые в этих моделях, обеспечивают частоту обновления показателей до 1000 в минуту. Их недостатком является высокая цена и необходимость отдельного источника питания для функционирования.

Как найти силу тока

С проблемой определения силы тока сталкиваются и при решении задач, и в повседневной жизни. Вычислить этот параметр для проводника или электрической цепи можно не только путем проведения измерений, но и при помощи формул.

В проводнике

Основными величинами, характеризующими электрический ток, являются сила, напряжение и сопротивление. Взаимосвязь между ними была установлена экспериментальным путем в 1826 году Георгом Омом. В последствии она была сформулирована в виде закона, который и был назван в честь ученого.

Определение

Закон Ома: сила тока в участке цепи или проводнике обратно пропорциональна сопротивлению и прямо пропорциональна напряжению.

Рассчитать силу тока в проводнике также можно, если разделить мощность на напряжение.

При протекании тока происходит нагревание проводника. И по количеству выделившегося тепла на основании закона Джоуля-Ленца возможно провести вычисление силы тока.

В цепи

Реальный источник тока всегда обладает своим внутренним сопротивлением.

Определение

Закон Ома для полной цепи формулируется так: сила тока в полной цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна сумме внутреннего и внешнего сопротивления.

Формулы

Закон Ома для участка цепи:

\(I=\frac UR\)

где R — сопротивление проводника, а U — напряжение.

Закон Ома для полной цепи:

\(I=\frac\Sigma{R+r}\)

где ε — электродвижущая сила источника тока, R + r — сумма сопротивлений источника и внешней нагрузки.

Формула, для определения силы тока по мощности и напряжению:

\(I=\frac PU\)

где P — мощность, а U — напряжение.

Определение

Закон Джоуля-Ленца: при протекании по проводнику тока происходит выделение тепла (Q), которое равно произведению квадрата силы тока (I) на время (t), которое он протекал и на сопротивление проводника (R).

Математически формула выглядит так:

\(Q=I^2Rt\)

Исходя из нее можно вывести еще одну формулу для расчета силы тока:

\(I=\sqrt{\frac Q{Rt}}\)

Интерьер

Салон Шкода Йети 2014 тоже немного изменился. Передняя часть обладает простыми тканевыми сиденьями, имеющими небольшую боковую поддержку и подогрев, что очень хорошо. Свободного места хватает. На втором ряду расположен диван, который вмещает трех пассажиров. Хотя там свободного места меньше, все пассажиры не будут чувствовать дискомфорт даже во время длительных поездок. Приятно, что инженеры оснастили задний ряд столиками с подстаканниками в спинках передних кресел.

Перед водителем размещено 3-спицевое рулевое колесо, оснащенное алюминиевые вставками и клавишами, позволяющими управлять мультимедийным центром. Руль можно настроить по высоте и вылету. Водительская дверь может похвастаться широким кармашком и выемкой под бутылку, куда точно можно поставить литровую тару. Приборная панель имеет классический стиль, представленный аналоговыми датчиками в колодцах, а также большим, информативным бортовым компьютером.

Передняя панель Шкода Йети нового кузова в самом верху получила отделения для мелочи. Далее разместилась пара дефлекторов климатической установки и клавиша «аварийки». Нижняя часть обладает небольшим дисплеем мультимедийной и навигационной системы. Есть немного механических клавиш и два круглых регулятора. Блок настройки «климата» имеет привычный стиль, однако оснащен некоторыми уникальными элементами, заметными по фотографиям. Сама нижняя часть получила клавиши, которые включают режим спуска, парковки, ESP и прочее.

Тоннель имеет большую пепельницу и отделение для мелочевки, однако наверняка оба отделения будут служить нишей для различной мелочи. Далее идет переключатель КПП, рукоятка механического стояночного тормоза, а также подлокотник. Над головой можно заметить 2 фонарика, отделение для очков и несколько клавиш, позволяющих управлять освещением салона. Багажное отделение получило 405 л. Однако при необходимости его можно расширить, убрав задний ряд. В таком случае багажник получил 1 760 литров полезного пространства.

Вся боль и радости Skoda Yeti. Какой мотор брать на вторичке?Вся боль и радости Skoda Yeti. Какой мотор брать на вторичке?

Заключение

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий