Почему в наших розетках именно 220/230 вольт? интересные факты

сколько ампер в сети 220 вольт — сколько ампер в сети 220в? — 22 ответа



В разделе Техника на вопрос сколько ампер в сети 220в? заданный автором Возвращение Великого Заица лучший ответ это Ток короткого замыкания в сети 0,4 кВ бытового сектора может достигать 6 кА (6000 А). Обычно величины токов к. з. 1..2 кА. А так, чайник кушает 10 А, плита — 16 А, комп — 3 А.

Ответ от 2 ответа

Привет! Вот подборка тем с ответами на Ваш вопрос: сколько ампер в сети 220в?

Ответ от Анатолий Марченковвсе не правильно, сечение 2,5 максимальное 27А, автомат ставят на 16А на провод (чтобы вырубал и не грелся провод) 16A в цепи 220В, может максимально выдержать 3,5кВТ. И так разберем, холодильник 1-2квт +чайник (в пик вскипание) 1-2квт того 2-4 квт, получается можно подключить на один провод, стиралка 0,3-3 квт, а вот эл. плита (в зависимости от производитель ) может достигать и 6-10квт ( что есть 32-40А) по этому отдельный провод (4-6 сечение) и розетка, что бы не сгореть. Да желательно и под микроволновку, духовку отдельный провод .

Ответ от Геннадий ГривинЗакон Ома никто не отменял.. . Советские розетки допускали нагрузку до 6 ампер…

Ответ от Александр КолесникВопрос почти бессмысленен. Если в розетку ничего не воткнуть, то и при наличии напряжения ток равен 0. Если там два провода замкнуть накоротко, то ток возрастёт до значений, превосходящих расчётные для предохранителей (пробок) , отчего оные сгорят нафик. А вообще-то всё зависит от мощности потребителя (ток равен мощность разделить на 220).

Ответ от ДАмпер это ватты деленые на вольты. От нуля ( если ничего не включено ) и дальше. Чайник на 2 кВт потребляет ток 9 ампер.

Ответ от ЁергейРовно столько, сколько способна выдержать проводка и автоматы.

Ответ от Олег СавицкийСечение провода которые заложены в наших домах 2.5квадратов к которым подключены елрозетки. Следовательно номиналным током в среднем 16А вывод не более 16А. И всё зависит от включаемой нагрузки. Можно и 30А сделать только провода все поплавятся и пожар не загорами.

Ответ от Ѐоман ПинчукСварка может 16-20 ампер потреблять А тестер включенный на измерение тока не надо сунуть в розетку — получишь КЗ и заодно проверишь работу своих автоматов

Ответ от GTшесть

Схема параллельного включения

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Почему в розетке переменный ток

Еще в позапрошлом веке Тесла выдвинул гипотезу, что электричество в жилых помещениях (квартирах и домах) должно быть переменным. Ученый обосновал, что применение токов этого вида наиболее приемлемо, исходя из следующих заключений:

  • Передается по проводам с наименьшими потерями.
  • Легко поддается трансформации.
  • Намного безопаснее по отношению к постоянному.

Вам это будет интересно Особенности резонанса в электрической цепи

Постоянный ток отличают противоположные свойства:

  • Проходит по проводке с большими потерями.
  • Процесс трансформации из одного напряжения в иное проходит сложно.

Основной вывод – использование тока переменного значения непосредственно связано с безопасностью и потерями в линиях электрических проводов. Для снижения расходов на электроэнергии напряженье должно быть высоким. На вышках электропередач проходит ток высокого напряжения 1000В, 10000В, а также 500000В. Хотя это и представляет опасность для жизни, но обуславливает экономичность. Для трансформации электроэнергии обустраивают трансформаторные будки, откуда ток на выходе имеет напряжение 380В или 220В.

Можно привести пример: в качестве трансформатора берется зарядное устройство для мобильного телефона, и она полностью безопасна, так как в ней встроен преобразователь.

Стоит лишь закоротить розетку, то ток с переменным значением автоматически перекрывается и электрической дуги не образовывается. По этим причинам использование переменного показателя гораздо выгоднее и безопаснее.


Количество электричества

Особенности электропроводки

Очень важно знать, что при использовании современных бытовых приборов и техники старая электропроводка может не выдержать их мощности. В конечном итоге это может привести к короткому замыканию или воспламенению в самом слабом месте на кабеле, где сопротивление самое слабое

По этой причине нужно позаботиться о том, чтобы проводка в помещении соответствовала всем требованиям. Если в доме силовая линия старая или сделана из алюминия, тогда ее следует заменить. Сейчас проводка в домах делается только из проводов с медным сечением.

Также очень важной особенностью при прокладывании электропроводки является предварительное определение нагрузки, которую будет держать кабель. Это повлияет на выбор типа провода, его толщину и длину

Для этого нужно сделать расчеты или использовать специальные таблицы с оптимальными значениями каждого показателя. В жилых помещениях проводка делается закрытой, поэтому обязательно следует позаботиться о защите кабеля.

Последовательное подключение токоприемников

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

40Вт — 1210 Ом

60Вт — 806 Ом

100Вт — 485 Ом

200Вт — 242 Ом

В итоге и получается, что на маленьком сопротивлении выделяется маленькое напряжение.

Преподаватели физики очень часто задают вопрос: если две лампочки разной мощности включить последовательно в одну цепь, какая из них будет светить ярче?

Ответ здесь представлен выше. Менее мощная лампа в этом случае, будет всегда светиться ярче.

Если взять еще более мощный прибор, например 2-х киловаттный чайник или фен, то разница в напряжении будет еще существеннее. Почти все оно будет отдаваться менее мощной лампе, чайник же при этом даже не запустится.

Он будет восприниматься сетью как обычный провод, через который просто течет общий ток. Фактически сеть его замечать не будет, отдавая все напряжение на маломощный объект.

Для наглядности это можно сравнить с потоком воды, проходящего последовательно через трубы разного диаметра. Сначала у него на пути попадается труба малого диаметра (эл.приемник малой мощности), и чтобы прогнать через нее воду, придется приложить существенное усилие=напряжение.

Далее идет труба с гораздо большим диаметром (эл.приемник большей мощности). При прохождении через нее, никакого усилия=напряжения, вода практически не прикладывает.

Поток как бы и не замечает этого несущественного сужения. То же самое и с электричеством при последовательной схеме.

Распределительный щиток

Именно распределительный щиток является как бы «мозгом» всей системы электроснабжения дома. Он представляет собой металлическую коробку с вмонтированными узлами, от которых отходят провода в тот или иной участком дома. Все узлы в коробке смонтированы так, чтобы не касаться друг друга.

Основными элементами распределительного  щитка являются защитные предохранители. Они монтируются на общем входе в щиток и на каждую группу потребителей. Современные предохранители заменили традиционные электрические пробки, где разрыв сети в случае короткого замыкания происходил после расплавления входящих в состав пробок легкоплавких вставок. Сегодня эту роль выполняют автоматические предохранители, а попросту – автоматы, где разрыв сети происходит при критическом повышении температуры благодаря встроенным датчикам. Каждый автомат рассчитан на определенную мощность потребителей тока.

Распределительный щиток

Как и где обрывается нулевой проводник

Основных причин, по которым происходит отгорание или обрыв нулевого проводника, две: 1– недостаточный гальванический контакт нулевого проводника в местах соединения, 2– чрезмерный некомпенсированный ток, идущий по нулевой линии. Разномастные импульсные всплески в сети, идущие от компьютеров с дешевыми блоками питания, резкие включения мощных нагрузок только на одну из фаз могут привести к отгоранию нулевого провода. Обрыв проводника происходит, как правило, в слабых местах – в плохо пропаянных контактах, скрутках, не советующих ПУЭ. Как говорится, где тонко, там и рвется.

Что следует знать о силе тока и напряжении

Мало знать, какой ток в розетке — переменный или постоянный. Требуется учитывать множество других факторов. Многие считают, что чем выше его напряжение, тем он опаснее. На самом же деле все обстоит совершенно наоборот. Как уже говорилось, с повышением напряжения падает сила тока, а при поражении, для организма опасен именно этот параметр. Но данное утверждение верно только для постоянной величины. Переменный ток не имеет определенной силы – этот параметр будет зависеть от нагрузки. Чем больше приборов включено в электрическую розетку 220 вольт, тем выше данная величина в проводнике. Ограничителем повышения этого параметра будет служить защитная автоматика, которая не позволит силе тока возрасти до критических пределов, отключив питание домашней сети.

Краткий экскурс в теорию

Сегодня мы не будем сильно углубляться в теоретические основы электротехники, а попытаемся кратко объяснить суть проблемы. Тем, кто желает более детально ознакомиться с данным вопросом, рекомендуем прочитать на нашем сайте серию статей по физике переменного электрического тока.

Штатная установка выключателя.

Приведем в качестве примера фрагмент бытовой электросети, где организовано подключение электролампы освещения и штепсельного разъема (розетки).

Фрагмент бытовой сети с подключением лампы и розетки

Обозначения:

  • L – фаза.
  • N – ноль.
  • Ps – розетка.
  • Sw – выключатель освещения.
  • Lm – лампа.

Как известно, в однофазных цепях электрический ток (Ì) течет от фазы к нулю. В приведенном выше рисунке выключатель SW находится в разомкнутом положении, следовательно, лампа будет обесточена, в чем можно убедиться, измерив напряжение U2. При этом на штепсельном разъеме и части сети до выключателя (отмечено красным) будет оставаться рабочий потенциал U1, соответствующий фазному напряжению. Это штатный режим работы для данной схемы, где выключатель размыкает фазный провод.

Обратим внимание, если производить замеры индикатором напряжения, то он покажет наличие фазы на одном из контактов штепсельного разъема и ее отсутствие на обоих контактах патрона лампы

Установка выключателя на ноль

Теперь посмотрим, что произойдет, если поменять фазу и ноль местами, или, что чаще встречается на практике, установить выключатель на ноль, а не фазный провод.

Выключатель установлен неправильно

Внешне такое изменение никак не проявит себя. Лампа будет так же, как и в предыдущем примере включаться и выключаться, а на контактах розетки присутствовать разность потенциалов. Но, возникают определенные нюансы, которые проявляются в виде наличия напряжения на контактах патрона и части нулевой линии между лампой и выключателем. В чем несложно убедиться, используя электрический пробник.

Такой вариант подключения несет в себе потенциальную угрозу поражения электротоком при попытке замены или ремонта светильника.

Характерно, что измерения вольтметром наличия напряжения между контактами патрона осветительного прибора не принесут результатов. Прибор покажет «0», поскольку на контактах будет один уровень потенциала фазы.

Резюмируя итоги главы можно констатировать, что неправильное подключение контактов выключателей в распределительной коробке не оказывает значимого влияния на работу электрических приборов, подключенных к розетке. Помимо этого мы выяснили о необходимости комбинированного применения измерительных приборов (вольтметра и пробника).

Почему возникает необходимость перехода от ампер к киловаттам и обратно

Свести описание электрической сети только к одной единице не получается. Необходимость использования двух разных единиц измерения параметров возникает из-за того, что в подавляющем большинстве случаев конкретная проводка обслуживает несколько потребителей, каждый из которых вносит свой вклад в силу протекающего тока.

В результате

  • сечение проводов удобно рассчитывать по максимальной силе протекающего через них тока;
  • аналогичным образом подбираются автоматические выключатели, которые защищают приемники и провода от перегрузки и короткого замыкания;
  • основной же характеристикой любого подключаемого к розетке электрического устройства как токоприемника или нагрузки традиционно является его мощность.

Популярность указания мощности потребления, как одного из главных параметров электроприбора, определяется также тем, что оплата электроэнергии осуществляется по электросчетчику, который отградуирован в кВт*час.

Соответственно при известной стоимости одного кВт*час оплата электроэнергии определяется простым перемножение трех чисел: мощности, продолжительности работы и стоимости одного кВт*час.

С учетом особенности определения расходов на электроэнергию становится понятным преимущество применения для мощных устройств не полезной мощности, измеряемой в кВт, а полной мощности, которая определяется в кВА.

Оно выгодно тем, что дает возможность выполнять расчеты по единой методике без отдельного учета фактического фазового сдвига тока и напряжения.

Принцип идентичности расчетов при знании полной мощности распространяется также на расчет тока.

Сам пересчет из одной единицы в другую выполняется по представленным выше соотношениям (1) и (2) и из-за их простоты не составляет больших проблем.

В данном случае свою роль играет то, что напряжение U можно считать константой, которая меняется только от количества фаз проводки.

Далее приведем основные правила выполнения таких расчетов применительно к наиболее часто встречающихся на практике случаям.

Связь мощности и тока в трехфазной сети

Принцип расчета мощности и тока для трехфазных сетей остается прежним. Главное отличие заключается в незначительной модернизации расчетных формул, что позволяет полноценно учесть особенности построения этого вида проводки.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Как самостоятельно установить и подключить электромагнитный замок

В качестве базового соотношения традиционно берется выражение:

W =1,73* U*I, (4)

причем U в данном случае представляет собой линейное напряжение, т.е. составляет U = 380 В.

Из выражения (4) вытекает выгодность применения в обоснованных случаях трехфазных сетей: при такой схеме построения проводки токовая нагрузка на отдельные провода падает в корень из трех раз при одновременном трехкратном увеличении отдаваемой в нагрузку мощности.

Для доказательства последнего факта достаточно заметить, что 380/220 = 1,73, а с учетом первого числового коэффициента получаем 1,73 * 1,73 = 3.

Приведенные выше правила связи токов и мощности для трехфазной сети формулируются в следующей форме:

  • один кВт соответствует 1,5 А потребляемого тока;
  • один ампер соответствует мощности 0,66 кВт.

Укажем на то, что все сказанное справедливо в отношении случая соединения нагрузки так называемой звездой, что наиболее часто встречается на практике.

Возможно еще соединение треугольником, которое меняет правила расчета, но оно встречается достаточно редко и в этой ситуации целесообразно обратиться к специалисту.

Сколько ампер в розетке 220В ?

Чтобы узнать сколько ампер в обычной домашней розетке 220В, в первую очередь вспомним, что в Амперах измеряется сила тока:

Сила тока «I» – это физическая величина, которая равна отношению заряда «q», проходящего через проводник, ко времени (t), в течении которого он протекал.

Главное, что нам в этом определении важно – это то, что сила тока возникает лишь когда электричество проходит через проводник, а пока к розетке ничего не подключено и электрическая цепь разорвана, движения электронов нет, соответственно и ампер в такой розетке тоже нет. В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю

В розетке, к которой не подключена нагрузка, ампер нет, сила тока равно нулю.

Если бы нашу электропроводку не защищала автоматика, установленная в электрощите, и максимальная подключаемая мощность оборудования (как и сила тока), ничем бы не контролировались, то количество ампер в бытовой розетке 220В могло быть каким угодно. Сила тока росла бы до тех пор, пока бы от высокой температуры не разрушились механизм розетки или провода.

При протекании высокого тока, проводники или места соединений, не рассчитанные на него, начинают нагреваться и разрушаются.  В качестве примера можно взять спираль обычной лампы накаливания, которая, при прохождении электрического тока, раскаляется, но т.к. вольфрам, из которого она сделана – тугоплавкий металл, он не разрушается, чего нельзя ждать от контактов механизма розетки.

Чтобы рассчитать сколько ампер будет в розетке, при подключении того или иного прибора или оборудования, если под рукой нет амперметра, можно воспользоваться следующей формулой:

Формула расчета силы тока в розетке

I=P/(U*cos ф) , где I – Сила тока (ампер), P – мощность подключенного оборудования (Вт), U – напряжение в сети (Вольт), cos ф – коэффициент мощности (если этого показателя нет в характеристиках оборудования, принимать 0,95)

Пример расчета:

Давайте рассчитаем по этой формуле сколько ампер сила тока в обычной домашней розетке с напряжением (U) 220В при подключении к ней утюга мощностью 2000 Вт (2кВт), cos ф у утюга близок к 1.

I=2000/(220*1)=9.1 Ампер

Значит, при включении и нагреве утюга мощностью 2кВт, в сила тока в розетке будет около 9,1 Ампер.

При одновременном включении нескольких устройств в одну розетку, ток в ней будет равен сумме токов этого оборудования.

Какая максимальная величина силы тока для розеток

Чаще всего, современные домашние розетки 220В рассчитаны на максимальный ток 10  или 16 Ампер. Некоторые производители заявляют, что их розетки выдерживают и 25 Ампер, но таких моделей крайне мало.

Старые, советские розетки, которые еще встречаются в наших квартирах, вообще рассчитаны всего на 6 Ампер.

Максимум, что вы сможете встретить в стандартной типовой квартире, это силовую розетку для электроплиты или варочной панели, которая способна выдерживать силу тока до 32 Ампер.

Это гарантированные производителем показатели силы тока, который выдержит розетка и не разрушится. Эти характеристики обязательно указаны или на корпусе розетки или на её механизме.

При выборе электроустановочных изделий имейте ввиду, что, например, розетка на 16 Ампер выдержит около 3,5 киловатт мощности, а на 10 Ампер уже всего 2,2 Киловатт.

Ниже представлена таблица, максимальной мощности подключаемого оборудования для розеток, в зависимости от количества ампер, на которые они рассчитаны.

Какая сила тока в розетке 220в и 380в?

Для большинства бытовых электроприборов необходимы розетки 220 вольт. Раньше для их подключения использовали два провода (фазу и ноль). Сегодня применяют трехпроводную схему подключения, где третий провод соединяет корпус электроприбора с контуром заземления. Если в процессе эксплуатации нарушится изоляция и корпус окажется под напряжением, то при касании к нему человека автоматически сработает устройство защитного отключения (УЗО) и подача электропитания будет немедленно прекращена.

Выбирая, какую розетку установить, надо учесть мощность приборов, которые предполагается к ней подключать. Например, розетка 25А 220В рассчитана на потребляемую мощность 5,5 кВт, т.е. способна выдерживать большинство бытовых электроприборов. Для ее подключения необходимо использовать медный провод сечением 2,5 мм2. Но, для большинства приборов (компьютер, телевизор, пылесос) можно использовать и менее мощные розетки на 16А. Они рассчитаны на 3,5 кВт. А вот для подключения электроплит и духовок потребуется оборудование, рассчитанное на 32А 220В, мощностью до 7 кВт.

Полезное видео

⚡️#3 Переменный и постоянный ток. Частота тока. В розетке есть + и — !⚡️#3 Переменный и постоянный ток. Частота тока. В розетке есть + и — !

В домашней розетка на двести двадцать вольт, шестнадцать ампер – так называемые бытовые розетки. То есть, это означает, что наши розетки рассчитаны на шестнадцать ампер. Но дома есть и другие розетки, к примеру у плиты, и здесь уже речь идет о тридцати двух амперах (есть модификации). Все же остальные розетки рассчитаны дома на силу тока в шестнадцать ампер. Если же у Вас сохранились старые розетки Советского образца, то они были рассчитаны на шесть ампер. Так же в продаже имеются розетки на десять ампер, поэтому можно подобрать оптимальный вариант в зависимости от подключаемой нагрузки.

Можно ответить одним словом – ни сколько. Пока к розетке не подключена нагрузка – ток не идёт. сила тока зависит от сопротивления нагрузки (напряжение делённое на сопротивление равно току)т. е. чем более мощный потребитель (чем мощнее тем меньше сопротивление) вы включите в вашу розетку. тем больше в ней будет ток. Если вы имеете ввиду какой ток выдерживает розетка, то его значение указано на корпусе и для обычных розеток составляет 16 Ампер.

В общем-то из школьной физики можно вспомнить что измеряется в амперах.

В Амперах измеряется сила тока, если чуть доступней, то пока в розетку не подключён тот или иной прибор, нет там никакой «силы тока».

Другими словами нисколько ампер нет в розетке.

А выдерживают домашние обычные розетки (штепсельные)

Если это в мощности электроприборов, то прибор до 3,5-й кВт можно подключать к такой розетке (16-ь Ампер).

А это большинство электроприборов используемых в квартирах, холодильник, микроволновые печи и даже электрочайники с утюгами.

Если прибор более мощный, то нужна розетка на 25-ь Ампер, или даже на 32-а Ампера, но надо учитывать и сечение провода электропроводки, обычный провод не выдержит такой нагрузки.

К примеру при подключении мощной электроплиты (свыше 3,5 кВт) разводка делается от щитка, устанавливается отдельный автомат и подбирается своя отдельная розетка.

Наверное вопрос необходимо понимать в таком варианте:

Сколько ампер должна (или выдерживает) домашняя розетка?

Хотя и это вопрос не является правильным, так как не только розетка выдерживает амперы, но большую часть – провода (проводка)

Итак все домашние розетки для пользования бытовыми приборами, исключая электрические плиты, стиральные машинки и прочие профессиональные механизмы, в том числе и сварочные аппараты, рассчитаны на силу тока в максимум 16 ампер

Конечно кратковременно они могут выдержать и большие токи, но последствия могут быть плачевными, так как начнёт гореть проводка в прямом и переносном смысле, начнёт плавиться изоляция, в местах соединений проводов между собой или колодкой будут греться и т.д.

В домашней розетке может находится от 0 (нуля) до бесконечности ампер

А рассчитаны домашние розетки на силу тока не более 16 ампер.

Подключите к розетке любой из потребителей, и сила тока тут же станет иметь числовое выражение, и оно будет зависеть от мощности этого самого потребителя. Так при мощности потребителя в 1 Квт (1000 Вт – это обычный кипятильник) сила тока в розетке будет 4,5 Ампера. Ну а дальше подставляйте значения согласно мощности вашего потребителя.

Максимальной мощности потребители, могущие сколько нибудь продолжительное время работать в бытовых розетках, это 3,5 киловатта (а лучше вообще три) потому и номиналом мощности бытовых розеток является 16 ампер.

Можно воткнуть в розетку и мощный потребитель в 10 Квт, и тогда ток будет 45 Ампер, только кратковременно – проводка не выдержит, она как правило из провода сечением 2,5 квадрата (розеточная группа)

Ампераж в розетке напрямую зависит от того – каким сечением проводка подведена, насколько близка к поставщику розетка, сколько потребителей нагружено на линию.

Исходя из этого можно смело утверждать, что разница будет существенна, но ни 16 ампер, как написали некоторые авторы – Вы ведь не спросили сколько выдерживает розетка 1 или 100 ампер, вы задали вопрос сколько в ней ампер!

Но поверьте при коротком замыкании, при условии выдерживания проводки и рубильников (пробок) ампераж будет куда существенней 16 ампер указанных в предыдущих ответах – он будет может и 300 ампер.

Многие дилетанты задаются таким ответом и категорически спорят отталкиваясь на надписях розеток, вилок, пробок и выключателей – даже не подозревая насколько больше и опаснее в розетке ампераж!

Не буду рассуждать посмотрите видео!

✅Измеряем ток короткого замыкания в розетке 220 вольт✅Измеряем ток короткого замыкания в розетке 220 вольт

Сечение кабеля

Опять стоит вспомнить курс физики и уяснить, что чем толще кабель, тем большую силу тока для домашней розетки он может выдержать.

В домашней розетке отверстия для ввода сделаны идеально под сечение 2,5 квадратных миллиметра. Почему так?

Смотрим по таблице меди. На 2,5 квадратных миллиметра максимально может приходиться почти шесть киловатт и сила тока в двадцать семь ампер. Для полуторного значения эти цифры меньше в полтора раза. Каждое подключение должно иметь определенный запас по мощности в целях безопасности. Но и слишком большое сечение будет способствовать абсолютно ненужным потерям электроэнергии. Нужен идеальный баланс, который и был найден.

Так что даже, если кому-то и повезет включить очень мощный прибор в розетку с максимальной мощностью шестнадцать ампер, с кабелем ничего не случится, ведь он проложен с запасом. Однако для самого пластика и фурнитуры это подключение может оказаться фатальным.

Для этого и предусмотрена третья защита.

Нормы напряжения в электросети по ГОСТу

В нормативном документе определено несколько показателей, позволяющих характеризовать качество электроэнергии в точках присоединения (ввод в сети потребителей). Перечислим наиболее значимые параметры и приведем допустимые диапазоны отклонений для каждого из них:

  • Для установившегося отклонения напряжения не более 5,0% от номинала (допустимая норма) при длительном временном промежутке и до 10% для краткосрочной аномалии (предельно допустимая норма). Заметим, что данные показатели должны быть прописаны в договоре о предоставлении услуг, при этом указанные нормы должны отвечать действующим нормам. Например, для бытовых сетей (220 В) быть в пределах 198,0-220,0 В, а для трехфазных (0,40 кВ) – не менее 360,0 В и не более 440 Вольт.
  • Перепады напряжения, такие отклонения характеризуются амплитудой, длительностью и частотой интервалов. Нормально допустимый размах амплитуды не должен превышать 10,0% от нормы. К перепадам также относят дозу фликера (мерцание света в следствии перепадов напряжения, вызывают усталость), это параметр измеряется специальным прибором (фликометром). Допустимая краткосрочная доза – 1,38, длительная – 1.

    Пример устоявшегося отклонения и колебания напряжения

  • Броски и провалы. К первым относятся краткосрочные увеличения амплитуды напряжения, превышающие 1,10 номинала. Под вторым явлением подразумевается уменьшение амплитуды на величину более 0,9 от нормы, с последующим возвращением к нормальным параметрам. Ввиду особенностей природы процессов данные отклонения не нормируются. При частом проявлении рекомендуется установить ограничитель напряжения (для защиты от бросков) и ИБП (при частых провалах).
  • Перенапряжение электрической сети, под данным определением подразумевается превышение номинала на величину более 10% длящееся свыше 10-ти миллисекунд.

    Примеры перенапряжения и провала (А), бросков (В)

  • Несимметрия напряжения. Допустимое отклонение коэффициента несимметрии от нормы – 2,0%, предельное – 4,0%.
  • Несинусоидальность напряжения. Определяется путем расчета коэффициента искажения, после чего полученное значение сравнивают с нормативными значениями.

    Пример нарушения синусоидальности напряжения

  • Отклонения частоты. Согласно действующим требованиям нормально допустимое отклонение этого параметра 0,20 Гц, предельно допустимое – 0,40 Гц.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий