Гидроэлектростанция

Мощности

Есть разные гидроэлектростанции, которые можно поделить по вырабатываемой мощности:

  1. Очень мощные – с выработкой более 25 МВт.
  2. Средние – с выработкой до 25 МВт.
  3. Малые – с выработкой до 5 МВт.

Мощность ГЭС зависит от в первую очередь от потока воды и КПД самого генератора, который на ней применяется. Но даже самая эффективная установка не сможет производить большие объемы электроэнергии при слабом напоре воды. Также стоит учитывать, что мощность гидроэлектростанции не является постоянной. В силу естественных природных причин уровень воды в дамбе может увеличиваться или уменьшаться. Все это оказывает влияние на объемы производимой электроэнергии.

Крупнейшие аварии и происшествия

  • Крупнейшей аварией за всю историю ГЭС является прорыв плотины китайского водохранилища Баньцяо на реке Жухэ в провинции Хэнань в результате тайфуна Нина 1975 года. Число погибших более 170 тыс. человек, пострадало 11 млн.
  • 17 мая 1943 года — операция британских войск Chastise по подрыву плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлёкшие за собой гибель 1268 человек, в том числе около 700 советских военнопленных.
  • 9 октября 1963 года — одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии, погибло более двух тысяч человек.
  • В ночь на 11 февраля 2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошёл прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли.
  • 5 октября 2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъёма уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тыс. домов, 35 человек погибли.
  • 17 августа 2009 года — авария на Саяно-Шушенской ГЭС (самой мощной в России). В результате аварии погибло 75 человек, оборудованию и помещениям станции был нанесён серьёзный ущерб.

Крупнейшие гидроэлектростанции в России:

По состоянию на 2017 год в России имеется 15 действующих гидроэлектростанций свыше 1000 МВт, и более сотни гидроэлектростанций меньшей мощности.

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Река
Саяно-Шушенская ГЭС 6,40 23,50 р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 р. Ангара, г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 р. Ангара, г. Кодинск
Волжская ГЭС 2,66 11,63 р. Волга, г. Волгоград и г. Волжский (плотина ГЭС находится между городами)
Жигулёвская ГЭС 2,46 10,34 р. Волга, г. Жигулёвск
Бурейская ГЭС 2,01 7,10 р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8)* 3,50 (2,2)* р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,40 5,7 р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45)* 2,67 (1,8)* р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 р. Кунья, пос. Богородское
Воткинская ГЭС 1,04 2,28 р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 1,74 р. Сулак, п. Дубки

Примечание:

* – указана проектная (фактическая)  мощность / среднегодовая выработка.

Примечание:  Фото //www.pexels.com, //pixabay.com

//ru.wikipedia.org/wiki/Гидроэлектростанция#Крупнейшие_ГЭС

карта сайта

крупнейшие большие мощность малые турбина мощные источник энергии работа первые высота плотины составляющие строительство принцип работы кпд гидроэлектростанции россии мира цена город на карте презентация доклад беларуситепловая первая самая мощная принцип плотина гэс гидроэлектростанция какая на реке купить ротор эль гури своими руками фото на волге для дома видео для детейэнергия каскад проблемы гидроэлектростанцийаварии на гидроэлектростанциях

Коэффициент востребованности
4 670

Перспективы и потенциал гидроэнергетики

Развитие гидроэнергетики набирает обороты во всем мире. Однако гидроэра в развитых странах давно настала, а почти весь потенциал гидроресурсов исчерпан.

В странах Западной Европы используется 70% гидроресурсов, в Японии – около 90%. Наиболее развитые страны либо строят ГАЭС и мелкие ГЭС, либо вкладываются в модернизацию уже работающих станций. Исключением является Канада, так как в ней гидроресурс практически не освоен.

Активнее всего сферу гидроэнергетики развивает Китай, где располагается практически 50% всех малых гидростанций в мире.

Россия также старается развить водную энергетику. На данный момент 10% от получаемого электричества производят с помощью гидроресурсов. Однако гидропотенциал России огромен и не освоен.

5
3
голоса

Рейтинг статьи

Принцип действия

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и, как следствие, концентрации реки в определённом месте, или деривацией — естественным потоком воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается всё энергетическое оборудование. В зависимости от назначения, оно имеет своё определённое деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию потока воды в электрическую энергию. Есть ещё всевозможное дополнительное оборудование, устройства управления и контроля работы ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Особенности

  • Стоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • Турбины ГЭС допускают работу во всех режимах от первой до максимальной мощности и позволяют плавно изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, посёлки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

Условия для установки гидроэлектростанции

Несмотря на заманчивую дешевизну энергии, вырабатываемую гидрогенератором, важно учесть особенности водного источника, ресурсы которого вы планируете задействовать для собственных нужд. Ведь далеко не каждый водоток подойдет для эксплуатации мини-ГЭС, тем более круглогодичной, поэтому не помешает иметь в резерве возможность подключения к централизованной магистрали

Ведь далеко не каждый водоток подойдет для эксплуатации мини-ГЭС, тем более круглогодичной, поэтому не помешает иметь в резерве возможность подключения к централизованной магистрали.

Несколько «за» и «против»

Основные плюсы индивидуальной гидроэлектростанции очевидны: недорогое оборудование, которое вырабатывает дешевое электричество, да еще и природе не вредит (в отличие от плотин, перекрывающих ток реки). Хотя абсолютно безопасной систему назвать нельзя – все-таки вращающиеся элементы турбин могут нанести травмы жителям подводного мира и даже людям.

Чтобы предупредить несчастные случаи, гидростанцию нужно оградить, а если система полностью скрыта водой – установить на берегу предупреждающий знак

Преимущества мини-ГЭС:

  1. В отличие от других «бесплатных» энергоисточников (солнечных батарей, ветрогенераторов), гидросистемы могут работать вне зависимости от времени суток и погоды. Единственное, что может им помешать – замерзание водоема.
  2. Для установки гидрогенератора необязательно наличие большой реки – те же водяные колеса с успехом можно использовать даже в мелких (но быстрых!) ручьях.
  3. Установки не выделяют вредных веществ, не загрязняют воду и работают практически бесшумно.
  4. Для монтажа мини-ГЭС мощностью до 100 кВт не нужно оформлять разрешительную документацию (хотя все зависит от местных властей и типа установки).
  5. Избыток электричества можно продавать в соседние дома.

Что касается недостатков – серьезной помехой для продуктивной эксплуатации оборудования может стать недостаточная сила течения. В этом случае придется возводить вспомогательные сооружения, что сопряжено с дополнительными затратами.

Если потенциальной энергии расположенной рядом реки при приблизительном расчете не хватит на выработку электричества в объеме, достаточном для практического применения, стоит обратить внимание на способы сооружения ветрогенераторов. Ветряк послужит эффективным дополнением

Измерение силы водного потока

Первое, что нужно сделать, чтобы задуматься о виде и способе монтажа станции, – измерить скорость водного потока на облюбованном источнике.

Самый простой способ – опустить на стремнину любой легкий предмет (например, теннисный мячик, кусок пенопласта или рыбацкий поплавок) и засечь секундомером время, за которое он проплывет расстояние до какого-нибудь ориентира. Стандартная дистанция для «заплыва» – 10 метров.

Если водоем находится далековато от дома, можно построить отводной канал или трубопровод, и заодно и позаботиться о перепадах высоты

Теперь нужно пройденное расстояние в метрах разделить на количество секунд – это и будет скорость течения. Но если полученное значение будет меньше 1 м/сек, потребуется возвести искусственные сооружения, чтобы ускорить поток перепадами высот.

Это реально осуществить с помощью разборной плотины или неширокой сливной трубы. Но без хорошего течения от идеи с гидростанцией придется отказаться.

Классификация

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные — вырабатывают от 25 МВт и выше;
  • средние — до 25 МВт;
  • малые гидроэлектростанции — до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также ещё по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах.

Принцип работы всех видов турбин схож — поток воды поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передаётся на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующегося напора воды. Здесь можно выделить следующие ГЭС:

  • плотинные ГЭС. Это наиболее распространённые виды гидроэлектрических станций. Напор воды в них создаётся посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные ГЭС. Такие электростанции строят в тех местах, где велик уклон реки. Необходимый напор воды в ГЭС такого типа создаётся посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создаётся более высокая плотина, и создаётся водохранилище — такая схема ещё называется смешанной деривацией, так как используются оба метода создания необходимого напора воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определённые периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъёмники, способствующие навигации по водоёму, рыбопропускные, водозаборные сооружения, используемые для ирригации, и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Классификация гидроэлектростанций. Типы и виды гидроэлектростанций:

В зависимости от степени напора водяной массы различают:

– низконапорные гидроэлектростанции (высота напора здесь варьируется в пределах от 3 до 25 метров), при этом устанавливаются поворотно-лопастные гидротурбины;

– средненапорные гидроэлектростанции (высота напора здесь может находиться в пределах 25-60 метров), при этом практикуется установка гидротурбин радиально-осевого и поворотно-осевого типа;

– высоконапорные гидроэлектростанции (высота напора здесь больше 60 метров), при этом используются гидротурбины ковшового и радиально-осевого типа.

В зависимости о мощности вырабатываемой электроэнергии встречаются:

– ГЭС большой мощности, более 25 МВт;

– ГЭС средней мощности, менее 25 МВт;

– маломощные ГЭС, мощность которых не превышает 5 МВт.

В зависимости от принципа использования водного ресурса, различают:

– плотинные станции генерации электроэнергии. ГЭС такого типа – наиболее распространенный вариант. Плотина (дамба) возводится с целью перегораживания русла реки и подъема уровня воды для создания необходимого напора. Вода подается на гидротурбины непосредственно из созданного водохранилища. Сфера применения – многоводные реки на равнинах и горные реки с узким руслом;

– приплотинные станции. ГЭС данного типа возводятся с целью получения повышенного напора. Плотина полностью перегораживает речное русло, а вода подается через специальный канал к гидротурбинам, расположенным в нижней части ГЭС;

– станции деривационного типа, возводимые в местах с большим уклоном реки. Вода отводится к зданию ГЭС через водоотводы. Деривационные ГЭС могут быть с напорной деривацией, безнапорные или смешанного типа;

– гидроаккумулирующие станции. Станции подобного типа в обычной обстановке могут аккумулировать вырабатываемую электроэнергию, а в моменты пиковых нагрузок отдавать в систему для поддержания станции в рабочем состоянии;

– гирляндная свободно-проточная станция. Принцип работы такой станции следующий: в речной проток поперек русла (под углом) опускается трос с нанизанными роторами, которые под воздействием течения вырабатывают электроэнергию. Данный тип ГЭС является примером преобразования потенциала водной массы в электроэнергию без возведения плотины.

Классификация гидроэлектростанций

Гидроэлектростанции классифицируются по нескольким признакам:

По принципу действия

Плотинные

Это самый распространенный тип ГЭС. Для их работы создается плотина, перекрывающая русло реки для создания напора. Плотинные гидроэлектростанции строятся как у равнинных рек, так и в местах сужения русел горных рек.

Приплотинные

Такие ГЭС строят при сильном водном напоре. Реку при этом полностью перегораживают с помощью плотины, а станцию располагают снизу за плотиной. Вода поступает к турбинам по напорным тоннелям.

Деривационные

Деривационные гидроэлектростанции строятся на руслах рек с большим уклоном по принципу отведения воды. Большой уклон не позволяет накапливать воду в нужных количествах, поэтому воду забирают из русла и искусственным путем подводят к самой станции по водоотводу с малым уклоном. В результате к гидростанции вода поступает с большой высоты. Именно разницей в уровнях жидкости обусловлен сильный напор станции.

Гидроаккумулирующие (ГАЭС)

В ГАЭС строятся два бассейна: нижний и верхний, сама станция располагается около нижнего бассейна. Во время возникновения избыточных электрических мощностей в системе электроснабжения агрегаты выполняют роль насосов, качая воду из нижнего бассейна наверх.

При необходимости воду пускают по трубам вниз, запуская турбины. Преимуществом ГАЭС является то, что они собирают электричество и используют его во время пиковых нагрузок.

По мощности АЭС делятся на:

малые (до 5 МВт);

средние (5-25 МВт);

мощные (больше 25 МВт).

По напору воды

Энергия воды преобразуется в электричество при помощи вращения лопастей. Так как турбины разного типа рассчитаны на разные нагрузки, то от напора воды зависят характеристики и материал используемых турбин.

Деление ГЭС по максимальному напору воды:

низконапорные (3-25 м);

средненапорные (25-60 м);

высоконапорные (больше 60 м).

Принцип действия

Схема плотины гидроэлектростанции

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и, как следствие, концентрации реки в определённом месте, или деривацией — естественным потоком воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается всё энергетическое оборудование. В зависимости от назначения, оно имеет своё определённое деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию потока воды в электрическую энергию. Есть ещё всевозможное дополнительное оборудование, устройства управления и контроля работы ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Особенности

  • Стоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях.
  • Турбины ГЭС допускают работу во всех режимах от первой до максимальной мощности и позволяют плавно изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, посёлки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

Плюсы и минусы гидроэлектростанций

Плюсы и минусы ГЭС и созданных водохранилищ занесены в таблицу.

Преимущества ГЭС Недостатки ГЭС
Практически полная возобновляемость источника энергии Выбросы в атмосферу водяного пара, являющегося вторым (после CO2) парниковым газом по влиянию на глобальное потепление
Отсутствие токсических выбросов в атмосферу Заболачивание земель
Долгая эксплуатация (более 100 лет) Изменение фауны, миграция животных в затопленных районах
Усиленное размножение рыб в водохранилищах Перекрывание рек для нереста рыб
Дешевизна получаемой энергии Переформирование русел рек
Улучшение условий для орошения и судоходства Влияние на климат (становится более умеренным)

Предыстория развития гидростроения в России[3]

Первая очередь строительства ГЭС:

Район Название Мощность,тыс. кВт
Северный Волховская 30
  Нижнесвирская 110
  Верхнесвирская 140
Южный Александровская 200
Уральский Чусовая 25
Кавказский Кубанская 40
  Краснодарская 20
  Терская 40
Сибирь Алтайская 40
Туркестан Туркестанская 40

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны — ГОЭЛРО, который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником — Днём энергетика. Глава плана, посвященная гидроэнергетике, называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации. Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России — мощностью 7394, в Туркестане — 3020, в Сибири — 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций, возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями. Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) — вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Гидроэлектростанции в мире

Крупнейшие ГЭС

Наименование Мощность,ГВт Среднегодовая выработка, млрд кВт·ч Собственник География
Три ущелья 22,50 98,00 р. Янцзы, г. Сандоупин, Китай
Итайпу 14,00 92,00 Итайпу-Бинасионал р. Парана, г. Фос-ду-Игуасу, Бразилия/Парагвай
Силоду 13,90 64,80 р. Янцзы, Китай
Гури 10,30 40,00 р. Карони, Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс, Бразилия

Крупнейшие гидроэлектростанции России

По состоянию на 2017 год в России имеется 15 действующих гидроэлектростанций свыше 1000 МВт, и более сотни гидроэлектростанций меньшей мощности.

Наименование Мощность,ГВт Среднегодовая выработка, млрд кВт·ч Собственник География
Саяно-Шушенская ГЭС 6,40 23,50 РусГидро р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 ЕвроСибЭнерго р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 ЕвроСибЭнерго р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ЕвроСибЭнерго р. Ангара, г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 РусГидро, Русский алюминий р. Ангара, г. Кодинск
Волжская ГЭС 2,66 11,63 РусГидро р. Волга, г. Волгоград и г. Волжский (плотина ГЭС находится между городами)
Жигулёвская ГЭС 2,46 10,34 РусГидро р. Волга, г. Жигулёвск
Бурейская ГЭС 2,01 7,10 РусГидро р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,50 (2,2) РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,40 5,7 РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 РусГидро р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) Татэнерго р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 РусГидро р. Кунья, пос. Богородское
Воткинская ГЭС 1,04 2,28 РусГидро р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 1,74 РусГидро р. Сулак, п. Дубки

Примечания:

  1. ↑ Мощность и выработка при проектном уровне водохранилища; в настоящее время фактическая мощность и выработка значительно ниже, указаны в скобках.
Другие гидроэлектростанции России

ГЭС ее понятие и виды гидроэлектростанций

Гидроэлектростанция (ГЭС) — это станция для выроботки электроэнергии, использующая в качестве источника энергии энергию водных масс, приливов на водотоках. В основном размещение ГЭС происходит на реках, сооружая плотины и водохранилища. Для эффективной работы гидроэлектростанции необходимы как минимум два фактора, такие как:

  1. Гарантированность обеспеченния водой круглый год
  2. Большие улоны реки, для более сильного течения

ГЭС отличаются вырабатываемой мощностью, поэтому выделяют три вида ГЭС по мощности:

  • Мощные — от 25 МВт и выше;
  • Средние — до 25 МВт;
  • Малые гидроэлектростанции — до 5 МВт;

Также ГЭС отличают по максимальному количеству использования воды:

  • Высоконапорные — более 60 м;
  • Средненапорные — от 25 м;
  • Низконапорные — от 3 до 25 м.

Существует и отдельный тип ГЭС, так называемая ГАЭС, что расшифровывается как гидроаккумулирующая электростанция.

Гидроаккумулирующая электростанция — это гидроэлектростанция, используемая для выравнивания суточной неоднородности графика электрической нагрузки. ГАЭС служат для накопления электроэнергии во время низкого потребления сетями электричества (в ночной период) и отдачи её во время пиковых нагрузок, уменьшая тем самым необходимость изменения мощности в течение суток основных электростанций.

Здание ГЭС Сооружение, подземная выработка или помещение в плотине, в которомустанавливается гидросиловое электротехническое 

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий