Датчики ао «нииэм» как средства контроля и измерения постоянных и переменных токов, напряжений и активной мощности

Содержание

Классификация датчиков

Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.

Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.

Среди последних чаще всего встречаются:

  • Датчики постоянного тока
  • Датчики амплитуды переменного тока
  • Датчики сопротивления и другие аналогичные приборы.

Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.

Клещи электроизмерительные КЭИ

Разъемными датчиками можно назвать и такое средство измерения, как токовые клещи. Кроме стандартных клещей-мультиметров для разовых измерений постоянных и переменных токов до 600 А (КЭИ-0,6М, рис. 5а) или 1000 А (КЭИ-1,0М, рис. 5б), в АО «НИИЭМ» разработаны клещи больших токов. В частности, в Госреестр включены клещи для измерения токов до 3000 А с диаметром отверстия под токовую шину 90 мм и до 5000 А с диаметром 160 мм (рис. 6). Последняя разработка — это высоковольтные клещи для измерения токов до 1000 А при потенциале на токовой шине до 10 кВ.

Рис. 5. Клещи-мультиметры: а) КЭИ-0,6М и б) КЭИ-1,0М

Рис. 6. Клещи больших токов до 5000 А

Клещи КЭИ-1 (10 кВ), показанные на рис. 7, являются современным средством измерения, снабженным целым рядом функций, делающих их привлекательными для потребителей. Полностью электронные клещи содержат микропроцессор, цифровой свето­диодный индикатор, автономный источник питания. При минимальном токе потребления высоковольтные клещи обеспечивают диапазон измеряемых токов 0?100 и 0?1000 А с основной приведенной погрешностью не более 1%. Клещи поддерживают функцию энергосбережения «Сон», содержат светодиод, который упрощает работу в темное время суток. Для удобства эксплуатации предусмотрены съемные 60-см ручки, а сам прибор легко помещается в специальный носимый заплечный чехол.

Рис. 7. Электронные высоковольтные клещи КЭИ-1 (10кВ)

Высоковольтные электронные клещи КЭИ-1 (10 кВ) также внесены в Госреестр и успешно заменяют аналогичный, но морально устаревший стрелочный прибор Ц-4502.

Датчики переменного и постоянного тока


Такие приборы универсальные и востребованы. Их конструкция включает в себя магнитопровод, имеющий зазор и компенсационную обмотку, электронную плату обработки сигналов и датчик Холла. Когда ток протекает по шине, соединённой с первым элементом, то возникает магнитная индукция. Выходной сигнал усиливается, а потом передаётся в компенсационную обмотку. Благодаря нивелированию магнитных полей датчик тока Холла работает как нуль-устройство. При этом полоса частот, что проходит через него, варьируется от 0 герц до 200 кГц. Существуют и приборы, которые по отдельности пропускают один из видов – это датчик постоянного тока и переменного. Чтобы вы имели представление об особенностях их работы, предлагаем рассмотреть функционирование второго из них.

Возможно, вам также будет интересно

По решению Национальной администрации по безопасности дорожного движения США с 2006 года в Америке все легковые автомобили будут оснащаться датчиками давления в шинах для повышения уровня безопасности и уменьшения количества аварий. Рынок с потенциальной емкостью 150 млн устройств в год пытаются захватить многие производители электроники, в том числе и Philips. Система контроля давления вшинах (Tire

Компания Keysight Technologies, Inc. объявила о начале выпуска нового экономичного и гибкого одноканального прибора, который поможет ускорить создание нового поколения телекоммуникационных систем, функционирующих в миллиметровом диапазоне, а также радаров и систем спутниковой связи. Новая модель осциллографов серии UXR от компании Keysight — UXR0051AP Infiniium UXR-Series работает во временной области как осциллограф реального времени с полосой

Летом текущего года стало известно о завершении сделки по продаже Siemens Wireless Modules (WM) — подразделения Siemens, специализировавшегося на производстве GSM/GPRS,модулей. Его покупателями выступили частная лондонская фирма Granville Baird и венчурный фонд T,Mobile Venture Fund, являющийся структурным подразделением крупнейшего западноевропейского оператора Deutsche Telekom. С 4 июня подразделение Siemens WM превратилось в компанию Cinterion Wireless Modules со штаб-квартирой в Мюнхене (Германия). Председатель совета директоров Cinterion Wireless Modules Норберт Мюрер (Norbert Muhrer),бывший директор департамента Siemens Wireless Modules, рассказал в интервью журналу «Компоненты и технологии» о причинах и следствиях совершенной сделки, а также о планах и стратегии новой компании.

Индуктивный датчик: принцип действия и устройство

Индуктивный датчик является очень распространенным устройством, входящим в состав низового оборудования в автоматизированных системах управления производством. Устройства широко применяются в машиностроении, текстильной, пищевой и других отраслях промышленности.

Наиболее эффективно приборы используются в станках в качестве конечных выключателей, а также в автоматических линиях.

При этом индуктивные датчики реагируют только на металлы, оставаясь нечувствительными к другим материалам. Данное свойство позволяет увеличить защищенность устройств от помех, вводя в их зону чувствительности различные смазки, эмульсии и другие вещества, что не вызовет ложного срабатывания.

Объектами, на которые воздействует индуктивный датчик положения, являются различные металлические детали: кулачки, ползуны, зубья шестеренок. Во многих случаях может применяться прикрепленная к деталям оборудования пластина.

По статистике, из всех используемых датчиков положения более 90 процентов приходится на индуктивные устройства.

Это можно объяснить их отличными эксплуатационными характеристиками, низкой стоимостью и одновременно высокой надежностью, чего нельзя сказать о других приборах.

Бесконтактный выключатель (индуктивный датчик) работает по следующим принципам. Входящий в состав устройства генератор производит электромагнитное поле, которое взаимодействует с объектом. Необходимую длительность сигнала управления и гистерезис при переключении обеспечивает триггер. Усилитель позволяет увеличить до необходимого значения амплитуду сигнала.

Расположенный в датчике световой индикатор обеспечивает оперативность настройки, контроль работоспособности и показывает состояние выключателя. Для защиты от проникновения в устройство воды и твердых частиц используется компаунд. Корпус изделия позволяет монтировать индуктивный датчик приближения и защищает приспособление от механических воздействий. Его изготавливают из полиамида или латуни, комплектуя метизными компонентами.

В процессе работы устройства при подаче напряжения катушкой индуктивности генератора создается переменное магнитное поле, которое располагается перед активной поверхностью выключателя. При попадании в зону чувствительности объекта воздействия происходит снижение качества контура и амплитуды колебаний. В результате происходит срабатывание триггера и изменяется состояние выхода выключателя.

Индуктивный датчик имеет некоторые особенности применения. Он может распознавать различные группы металлов, благодаря отсутствию износа и механического воздействия является долговечным приспособлением. Устройства комплектуют с помощью механизмов защиты от короткого замыкания и перегрузок.

Они имеют стойкость к высокому давлению, впускаются в различных вариантах для применения при высоких (до 150 Сo) и низких (от – 60 Со) температурах. Индуктивный датчик обладает устойчивостью к активным химическим средам, может иметь аналоговый или дискретный выход для определения положения относительно устройства объекта воздействия.

Виды исполнения

Измерители «дитца» подразделяются на аналоговые и цифровые:

Аналоговые измерители. Как правило способны измерять только переменный ток, показания в них снимаются со встроенного амперметра. Такие приборы были широко распространены до появления цифровых измерителей.

Цифровые (самые популярные). Внутри таких приборов установлена интегральная схема, как правило они обладают расширенным функционалом или дополнительными функциями мультиметра (тестера).

Специализированные высоковольтные электроизмерительные клещи

В отдельный вид следует выделить измерители специального назначения, измерительные клещи Ц 90 (более современный вариант Ц 4502), предназначенные для измерения силы тока в мощных электроустановках до 10 000 вольт. С помощью этого инструмента можно измерить только силу переменного тока от 15 до 600А. Принцип действия измерителя аналогичен с обычными измерителями трансформаторного типа, конструкция таких клещей немного видоизменена для безопасной работы оператора. В конструкции предусмотрены изолирующая часть с изолирующими рукоятками, а также разработаны правила безопасности при проведении измерений данным способом.

«В настоящее время с развитием технологий такой способ измерения практически не применяется из-за высокого риска поражения электрическим током.»

Скважины и септики

Датчик тока своими руками

Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.


Датчик тока фирмы Arduino. Стрелкой указан USB-разъём.

Необходимые компоненты:

  1. Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
  2. Резистор 1 кОм.
  3. Резистор 470 Ом.
  4. Светодиод.

Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.

Принципиальная схема

Схема датчика на основе диодного однополупериодного выпрямителя показана на рис. 2 Конденсатор С1 подавляет импульсные сетевые помехи, выпрямитель собран на конденсаторе С2 и диоде VD1.

На выходе интегрирующей цепи R1C3 формируется постоянное напряжение, пропорциональное среднему значению тока нагрузки.

Все детали установлены на печатной плате из фольгированного с одной стороны стеклотекстолита, чертёж которой показан на рис. 3.

Рис. 2. Схема датчика на основе диодного однополупериодного выпрямителя.

Датчик налаживания не требует. Выпрямительный диод должен быть диодом Шоттки, но если чувствительность не нужна и датчик рассчитан на ток более 0,5 А, можно применить обычный выпрямительный или импульсный диод, например, серий 1N400x, 1N4148, КД522. Поскольку датчик пассивный, его чувствительность и крутизна передаточной характеристики относительно невелики (см. рис. 1).

Рис. 3. Печатная плата для схемы датчика.

Используйте последнюю версию операционной системы

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Классификация датчиков

По своей сути каждый датчик является составной частью регулирующих, сигнальных, измерительных и управляющих приборов. С его помощью преобразуется та или иная контролируемая величина в определенный тип сигнала, позволяющий измерять, обрабатывать, регистрировать, передавать и хранить полученную информацию. В некоторых случаях датчик может оказывать воздействие на подконтрольные процессы. Всеми этими качествами в полной мере обладает датчик тока, используемый во многих устройства и микросхемах. Он преобразует воздействие электрического тока в сигналы, удобные для дальнейшего использования.

Датчики, применяемые в различных устройствах, классифицируются в соответствии с определенными признаками. По возможности измерений входных величин, они могут быть: электрическими, пневматическими, датчиками скорости, механических перемещений, давления, ускорения, усилия, температур и других параметров. Среди них измерение электрических и магнитных величин занимает примерно 4%.
Каждый датчик преобразует входную величину в какой-либо выходной параметр. В зависимости от этого, контрольные устройства могут быть неэлектрическими и электрическими.

Среди последних чаще всего встречаются:

  • Датчики постоянного тока
  • Датчики амплитуды переменного тока
  • Датчики сопротивления и другие аналогичные приборы.

Основным достоинством электрических датчиков является возможность передачи информации на определенные расстояния с высокой скоростью. Применение цифрового кода обеспечивает высокую точность, быстродействие и повышенную чувствительность измерительных приборов.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Форматирование аккумулятора

Принцип действия клещей

Первые токоизмерительные приборы подобного рода представляли собой своеобразные трансформаторы, к которым подключался обычный амперметр. Сами прищепки, являющиеся видимой частью прибора, одновременно представляют собой первичную обмотку трансформатора. При помещении в нее проводника, по которому течет ток, из-за своего электромагнитного поля он будет индуцироваться на эту обмотку. После этого электроток пойдет на вторичную обмотку. С нее и будут сниматься показатели.


Процесс измерения электротока в щитке с помощью многофункционального аппарата АКТАКОМ — АТК-4001

Важно! Первые виды этих приборов были простым дополнением к измерительным приборам и помогали удобнее фиксировать измеряемый провод. Значения, которые показывал амперметр, приходилось рассчитывать дополнительно, поскольку требовалось учесть коэффициент трансформации

Еще один нюанс: работа только с переменным током, так как с постоянными значениями трансформаторы не работают

Значения, которые показывал амперметр, приходилось рассчитывать дополнительно, поскольку требовалось учесть коэффициент трансформации. Еще один нюанс: работа только с переменным током, так как с постоянными значениями трансформаторы не работают.

Вам это будет интересно Особенности набора электрика

Современные токовые клещи могут работать с любыми видами электротока, но для измерения постоянных значений вместо амперметра они используют датчик Холла, позволяющий фиксировать электромагнитное поле и его напряженность.


Устройство в комплекте с инструкцией по эксплуатации

Готовый ДТ MLX91206

Кумулятивная схема, где используется тончайший слой ферромагнитоструктуры или ИМС. Последний выступает в качестве коммутатора магнитполя, обеспечивая тем самым, высокое усиление и наладку эквивалентности шумосигнала. Более актуален этот вариант ДТ для измерения постоянно-переменного напряжения до 90 кгц с изоляцией омического свойства, что характеризуется незначительными внедряемыми потерями и малым временем отклика.

Кроме того, из преимуществ можно выделить простоту сборки и маленькие размеры фюзеляжа.

ДТ MLX91206 – это регулятор, который пока удовлетворяет спрос в автопромышленности. Помимо этого, ДТ этого типа применяется в других источниках питания: для защиты от перегрузки, в двигательных системах и т.д.

Чаще всего ДТ на микросхеме MLX91206 применяется в гибридных автомобильных системах, как автоинверторы.

Интересно и то, что датчик этот оснащен качественной защитной системой от перенапряжения, что позволяет использовать его в качестве отдельного регулятора, интегрированного к кабелю.

Принцип функционирования датчика подобного типа основан на преобразовании магнитполя, возникаемого от токов, проходящих сквозь проводник. Схема не имеет верхнего ограничения измеряемого уровня напряжения, так как выход и его параметры в данном случае зависят от проводникового размера и непосредственной дистанции от ДТ.

Что касается отличий этого типа ДТ от аналогичных:

  1. Скорость аналогового выхода, которая выше (этому способствует ЦАП 12 бит).
  2. Наличие программируемого переключателя.
  3. Надежная защита от переплюсовки и перенапряжения.
  4. Выход ШИМ с разрешением АЦП 12 бит.
  5. Большущая полоса пропускания, параметры которой равны 90 кГц и многое другое.

Одним словом, ДТ этого типа является компактным и эффективным датчиком, изготовленным по технологии Триасис Холл. Технология подобного типа считается классической и традиционной, она чувствительна к плотности потока, который приложен четко параллельно поверхности.

Измерения, которые удается провести с помощью готового датчика, изготовленного по технологии Триасис Холл, делятся на измерения небольшого напряжения до 2 А, тока средн. величины до 30 А и токов до 600 А (больших).

Рассмотрим подробнее возможности этих измерений.

  • Малые токи измеряются с помощью датчика за счет повышения параметров магнитполя через катушку вокруг ДТ. В данном случае чувствительность измерения будет обусловлена габаритами катушки и кол-вами витков.
  • Токи в диапазоне до 30 А или средние токи измеряются с учетом допустимости напряжения и общей рассеиваемости мощности дорожки. Последние обязаны быть довольно толстыми и широкими, иначе непрерывной обработки среднего тока достичь не удастся.
  • Наконец, измерение больших токов – это использование медных и толстых дорожек, способных приводить напряжение на обратной стороне печатной платы.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Ограничения ACS712

Основное смущающее пользователей ограничение — максимальный вольтаж измеряемого напряжения, равный 5В. В принципе, вопрос решается достаточно просто обычным делителем, позволяющим поднять значение характеристики практически до любого номинала.

Отсутствие корпуса, также не вызывает проблем — миниатюрность самой конструкции позволяет ее упаковать в оболочку аппарата содержащую сам микроконтроллер, естественно с электрической изоляцией контактных площадок на случай измерения много амперных токов. А вот устанавливать датчик рядом с излучателями магнитного поля крайне не рекомендуется — будут сбиты показания сенсора. Для чего собственно и нужен, в некоторых случаях, экранирующий корпус.

Теперь, что касается чувствительности: чем датчик рассчитан на больший ампераж работы, тем она ниже

Что тоже нужно брать во внимание, при проектировании схем на основе ACS712. Отдельным вариантом тут выступает ACS713 30A, частично сохраняющий названую возможность за счет относительно удачной схемы

Датчики с увеличенным диаметром отверстия под токовую шину

Серия датчиков измерения тока ДТХ-У (постоянный ток) и ДТХ-П (переменный ток) перекрывает диапазон контролируемых токов от 50 до 4000 А с допустимой перегрузкой по току в 1,5 раза от номинального значения. Пластмассовые корпуса этих устройств удобно крепятся в двух плоскостях или с помощью DIN-рейки, диаметр отверстия под токовую шину составляет от 14 мм в датчиках ДТХ-Т (рис. 2а) до 30 мм в датчиках ДТХ-300 (рис. 2б) или 40 мм в ДТХ-1000 (риc. 2в).

Рис. 2. Внешний вид датчиков серии ДТХ

На рис. 3 представлена новинка: разработанный датчик тока ДТХ-5000 способен измерять постоянный и переменный ток до 5000 А. Прибор рассчитан под плоскую токовую шину размером 100?40 мм, электрическая прочность изоляции которой на переменном токе 50 Гц/1 мин составляет не менее 12 000 В. Ток потребления по цепи питания не превышает 850 мА, допустимая основная приведенная погрешность не более 1%, коэффициент преобразования 1/5000. Габаритные размеры датчика 215?220?144 мм. В настоящее время готовятся документы на сертификацию датчика в органах Госстандарта.

Рис. 3. Новинка: разработанный датчик измерения постоянного и переменного токов до 5000 А

Калибровка приборов осуществляется отделом главного метролога предприятия-разработчика, или по требованию заказчика датчики поверяются в Госстандарте государственным поверителем.

Технические характеристики

Рассмотрим характеристики платы ACS712 более подробно, естественно с разделением их в зависимости от возможностей различных моделей:

  • Питание — 5В;
  • потребляемый ток — 0,11А;
  • сопротивление по шинам — до 1,2 мОм;
  • вид измеряемой характеристики — постоянный или переменный ток;
  • температурный режим работы — от –40 до +85°С;
  • дополнительные индикаторы — присутствует светодиод поступления тока на питание устройства;
  • размеры (в среднем) — 31 x 13 мм;
  • критичная сила тока, приводящая к пробою устройства — 50А.

Чувствительность:

Модель мВ/А
ACS712 5A 185
ACS712 20A 100
ACS712 30A 66
ACS713 20A 185
ACS713 30A 133

Внутренняя электронная схема сенсора:

Возможно, вам также будет интересно

При необходимости измерения температуры одним из ключевых моментов является выбор типа используемых датчиков. Принимаемое решение должно максимально полно учитывать условия конкретной задачи.

В статье представлена краткая историческая справка о появлении первых электроприводов и их дальнейшем развитии, а также приведен пример современного оборудования в этой области — сервоусилителя SERVOSTAR S700 от компании Kollmorgen.

Компания «Ниеншанц-Автоматика» представляет новые промышленные компьютеры Front Man

1 августа, 2005Результатом обобщенного опыта многолетней работы компании в области продаж, конфигурирования и сборки компьютерного оборудования стало создание собственного производства промышленных компьютеров.

Марка Front Man объединяет четыре линейки устройств, специально разработанных, протестированных и сертифицированных для работы в жестких условиях производственных предприятий и агрессивной окружающей среды, таких как пыль, влага, низкие/высокие температуры (0~55°C), вибрация (до 640 ГЦ), ударные нагрузки (10G). Уникальность этой техники в том, что кроме конструктивных отличий, обеспечивающих ее …

Управление батареей ноутбука

Измерение тока с помощью эффекта Холла

Тот факт, что эффект Холла зависит от магнитного поля, означает, что его можно использовать в качестве бесконтактной технологии. Таким образом, он не является «навязчивым», в отличие от наиболее распространенного способа измерения тока, который заключается в использовании шунта (низкоомного резистора) и измерении падения напряжения на нем. Использование эффекта Холла для измерения тока по своей природе надежно в приложениях большой мощности, поскольку оно не опирается на потенциал земли в качестве эталона.

Для обычного датчика тока на основе эффекта Холла это означает размещение датчика перпендикулярно магнитному полю и использование концентратора, обычно ферромагнитного сердечника, имеющего форму кольца или квадрата, расположенного вокруг проводника, несущего измеряемый ток (рисунок ниже). Датчик обычно держат в небольшом воздушном зазоре, образованном между двумя концами ферромагнитного сердечника.

С датчиком тока IMC-Холла чувствительный элемент расположен параллельно протекающему току. В этом случае ферромагнитный сердечник не требуется; однако для защиты от перекрестных помех может потребоваться защита. Это означает, что его можно использовать для измерения тока, протекающего по шине или дорожке печатной платы, просто расположив датчик над шиной или дорожкой. Этот тип датчика активируется технологией IMC-Hall с использованием встроенного магнитного концентратора (IMC), разработанного компанией Melexis.

По сути, это магнитное поле, генерируемое током, который обнаруживается благодаря эффекту Холла, а не самим протекающим током.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.

По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.

Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Пример использования измерительного преобразователя переменного тока T201

Пример использования в качестве датчика тока для обратной связи

T201 может использоваться в качестве датчика тока для обратной связи с преобразователем частоты, что позволяет экономить расход энергии при малых нагрузках и регулировать объем подачи сырья на шнековый пресс в зависимости от нагрузки на его электропривод.

Обеспечение обратной связи работы электродвигателей

С помощью Т201 на конвейере обеспечивается обратная связь работы электродвигателей. Анализ потребляемого двигателем тока позволяет получить данные не только о состоянии включения и выключения, но и отследить перегрузку, холостой ход или заклинивание.

Контроль состояния «ТЭНа» под слоем утеплителя

Для предотвращения замерзания продукта в трубопроводе принимаются меры не только по утеплению, но и по обогреву. С помощью Т201 обеспечивается контроль состояния ТЭН’а под слоем утеплителя.

Схема на микросхеме 711

ВНИМАНИЕ!
Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.

Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.

Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий