Проводники, диэлектрики, полупроводники. разбор по-простому

Содержание

Диэлектрики в электростатическом поле. Механизм поляризации диэлектриков. Диэлектрическая проницаемость

Электризация проводников и диэлектриков во внешнем электрическом поле существенно отличается друг от друга: индуцированные заряды на поверхности проводников возникают в результате перемещения свободных зарядов во внешнем поле, в то время как в диэлектрике нет свободных зарядов, способных перемещаться под действием поля.

Электризацию диэлектриков называют поляризацией. Механизм ее заключается в перераспределении зарядов внутри нейтральных атомов и молекул под действием поля, либо в поворотах диполей в полярных диэлектриках, либо смещением подрешеток в пространстве в кристаллическом диэлектрике. Дело в том, что кристаллические решетки многих ионных диэлектриков типа NaCl можно считать состоящими из двух вставленных одна в другую подрешеток, каждая из которых образована ионами одного знака. Во внешнем электрическом поле и происходит смещение этих подрешеток.

Все диэлектрики можно условно разделить на три группы: полярные, неполярные и ионные.

Неполярные диэлектрики состоят из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов (рис. 1, б) совпадают (инертные газы, кислород, бензол, водород и др.).

Рис. 1

Полярные диэлектрики состоят из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают (рис. 1, а) (спирт, вода и др.). В качестве модели молекулы полярного диэлектрика используются электрические диполи — система двух равных по модулю и противоположных по знаку точечных зарядов, находящихся на расстоянии l друг от друга (рис. 2, а). Тепловое движение молекул приводит к хаотической ориентации диполей. Из-за этого на поверхности диэлектрика, а также и в любом его объеме, содержащем большое число молекул (рис. 3, а), электрический заряд в среднем равен нулю.

Рис. 2

Поместим теперь диэлектрик в однородное электростатическое поле между двумя параллельными металлическими пластинами. Со стороны поля на каждый электрический диполь будут действовать две силы, одинаковые по модулю и противоположные по направлению (рис. 2, б). Они создают момент пары сил, стремящийся повернуть диполь так, чтобы ось его была направлена по линиям напряженности поля (рис. 2, в). Положительные заряды смещаются при этом в направлении электростатического поля, а отрицательные — в противоположную сторону.

Рис. 3

Хаотическое тепловое движение молекул препятствует созданию упорядоченной ориентации всех диполей. Только при абсолютном нуле все диполи выстроились бы вдоль линий напряженности. Под влиянием поля происходит лишь частичная ориентация электрических диполей. Это означает, что в среднем число диполей, ориентированных вдоль поля, больше, чем число диполей, ориентированных противоположно полю. На рис. 3, б видно: у положительной пластины на поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а у отрицательно заряженной — положительные. В результате на поверхности диэлектрика возникает нескомпенсированный связанный заряд. Внутри диэлектрика положительные и отрицательные заряды диполей компенсируют друг друга и средний связанный электрический заряд по-прежнему равен нулю.

Неполярный диэлектрик в электрическом поле также поляризуется. Под действием поля положительные и отрицательные заряды молекулы смещаются в противоположные стороны и центры распределения положительного и отрицательного зарядов перестают совпадать, как и у полярной молекулы. Такие деформированные молекулы можно рассматривать как электрические диполи, оси которых направлены вдоль поля. На поверхностях диэлектрика, примыкающих к заряженным пластинам, появляются связанные заряды, как и при поляризации полярного диэлектрика.

Рис. 4

Связанный заряд создает электростатическое поле напряженностью \(~\vec E_1\), направленной в диэлектрике против напряженности внешнего поля зарядов на пластинах (рис. 4). Поэтому поле внутри диэлектрика ослабляется. Напряженность результирующего электростатического поля

\(~\vec E = \vec E_0 + \vec E_1\) или \(~E = E_0 — E_1 .\)

Степень ослабления поля зависит от свойств диэлектрика. Для характеристики электрических свойств диэлектриков вводится особая величина, называемая диэлектрической проницаемостью.

Диэлектрическая проницаемость ε — это физическая величина, показывающая, во сколько раз модуль напряженности электростатического поля Ε внутри однородного диэлектрика меньше модуля напряженности поля E в вакууме, созданного теми же зарядами:

\(~\varepsilon = \frac{E_0}{E} .\)

Диэлектрик в однородном электрическом поле

Поместим диэлектрик в однородное электрическое поле. Мы уже знаем, что диполи — это молекулы полярных и неполярных диэлектриков, которые направлены в зависимости от внешнего поля. Их векторы упорядочены. Тогда сумма векторов не является нулевой, и диэлектрик имеет электрический момент. Внутри него имеются положительные и отрицательные заряды, которые взаимокомпенсирумы и находятся близко друг от друга. Поэтому диэлектрик и не получает заряд.

Противоположные поверхности имеют нескомпенсированные поляризационные заряды, которые равны, то есть диэлектрик поляризуется.

Если взять ионный диэлектрик и поместить в электрическое поле, то решетка кристаллов из ионов в нем слегка сместится. В результате диэлектрик ионного типа получит электрический момент.

Поляризационные заряды образуют свое электрическое поле, которое имеет противоположное направление с внешним. Поэтому напряженность электростатического поля, которое образуется зарядами, помещенными в диэлектрик, получается меньше, чем в вакууме.

Диэлектрики

Вещества без свободных электрических зарядов в стандартных условиях (то есть, когда температура не слишком высокая и не низкая) называются диэлектриками. Частицы в этом случае не могут передвигаться по телу и смещаются только чуть-чуть. Поэтому электрические заряды здесь связаны.

Диэлектрики подразделяются на группы в зависимости от молекулярного строения. Молекулы диэлектриков первой группы асимметричны. К ним относится и обычная вода, и нитробензол, и спирт. Их положительные и отрицательные заряды не совпадают. Они выступают в роли электрических диполей. Такие молекулы считаются полярными. Их электрический момент равен конечному значению при всех разных условиях.

Вторая группа состоит из диэлектриков, у которых молекулы имеют симметричное строение. Это парафин, кислород, азот. Положительные и отрицательные заряды у них имеют схожее значение. Если внешнего электрического поля нет, то и электрический момент тоже отсутствует. Это неполярные молекулы.

Разноименные заряды в молекулах во внешнем поле имеют смещенные центры, направленные в разные стороны. Они превращаются в диполи и получают еще один электрический момент.

Диэлектрики третьей группы имеют кристаллическое строение из ионов.

Интересно, как ведет себя диполь во внешнем однородном поле (ведь он является молекулой, состоящей из неполярных и полярных диэлектриков).

Любой заряд диполя наделен силой, каждая из которых имеет один и тот же модуль, но различное направление (противоположное). Образуются две силы, имеющие вращательный момент, под действием которого диполь стремится повернуться таким образом, чтобы направление векторов совпадало. В результате он получает направление внешнего поля.

В неполярном диэлектрике внешнего электрического поля нет. Поэтому молекулы лишены электрических моментов. В полярном диэлектрике тепловое движение образуется в полном беспорядке. Из-за этого электрические моменты имеют различное направление, а их векторная сумма — нулевая. То есть диэлектрик не имеет электрического момента.

Где применяются диэлектрики и проводники

Материалы применяются во всех сферах деятельности человека, где используется электрический ток: в промышленности, сельском хозяйстве, приборостроении, электрических сетях и бытовых электроприборах.

Выбор проводника обусловлен его техническими характеристиками. Наименьшим удельным сопротивлением обладают изделия из серебра, золота, платины. Использование их ограничено космическими и военными целями из-за высокой себестоимости. Медь и алюминий проводят ток несколько хуже, но сравнительная дешевизна привела к их повсеместному применению в качестве проводов и кабельной продукции.

Чистые металлы без примесей лучше проводят ток, но в ряде случаев требуется использовать проводники с высоким удельным сопротивлением — для производства реостатов, электрических печей, электронагревательных приборов. Для этих целей используются сплавы никеля, меди, марганца (манганин, константан). Электропроводность вольфрама и молибдена в 3 раза ниже, чем у меди, но их свойства широко используются в производстве электроламп и радиоприборов.

Твёрдые диэлектрики — материалы, обеспечивающие безопасность и бесперебойную работу токопроводящих элементов. Они используются в качестве электроизоляционного материала, не допуская утечки тока, изолируют проводники между собой, от корпуса прибора, от земли. Примером такого изделия являются диэлектрические перчатки, про которые написано в нашей статье.

Жидкие диэлектрики используют в конденсаторах, силовых кабелях, циркулирующих системах охлаждения турбогенераторов и высоковольтных масляных выключателей. Материалы применяют в качестве заливки и пропитки.

Газообразные изоляционные материалы. Воздух — естественный изолятор, одновременно обеспечивающий отвод тепла. Азот применяется в местах, где недопустимы окислительные процессы. Водород применяется в мощных генераторах с высокой теплоёмкостью.

Слаженная работа проводников и диэлектриков обеспечивает безопасную и стабильную работу оборудования и сетей электроснабжения. Выбор конкретного элемента для поставленной задачи зависит от физических свойств и технических параметров вещества.

Какая проводка лучше — сравнение медной и алюминиевой электропроводки

Что такое нихромовая проволока, её свойства и область применения

Что такое электролиз и где он применяется?

Что такое конденсатор, где применяется и для чего нужен

Как работает транзистор и где используется?

Что такое конденсатор, виды конденсаторов и их применение

Особенности поведения заряда

Заряд проводника скапливается на поверхности. Кроме того, он распределяется таким образом, что плотность заряда ориентируется на кривизну поверхности. Здесь она будет больше, чем в других местах.

Проводники и полупроводники имеют кривизну больше всего на остриях угла, кромках и закруглениях. Здесь же наблюдается и большая плотность заряда. Наряду с ее увеличением растет и напряженность рядом. Поэтому здесь создается сильное электрическое поле. Появляется коронный заряд, из-за чего стекаются заряды от проводника.

Если рассмотреть проводник в электростатическом поле, у которого изъята внутренняя часть, обнаружится полость. От этого ничего не изменится, потому что поля как не было, так и не будет. Ведь в полости оно отсутствует по определению.

Поведение проводника в электрическом поле

Деление на проводники, полупроводники и диэлектрики условное. Нет чёткой границы, градация ведётся по удельной проводимости веществ. Проводники хорошо проводят ток, диэлектрики практически лишены указанного качества.

Рассмотрим случай однородного поля с прямыми и параллельными друг другу силовыми линиями, как в большинстве учебников физики. Помещённый в постоянное поле металл начинает заряжаться статическим электричеством, как описано выше. Смысл: линии напряжённости идут в направлении, куда двигался бы положительный заряд – так решил Франклин. Но электроны отрицательны, плывут против течения.

В результате на образце проводника со стороны истока поля скапливается избыток носителей со знаком минус. А противоположный конец металла положителен. Процесс происходит так:

  1. Поле проникает внутрь металла.
  2. Проводник полон свободных носителей заряда, двигающихся вдоль силовых линий.
  3. Процесс перераспределения идёт, пока собственное поле электронов и свободных орбит атомов не уравновесит внешнее воздействие.
  4. На этом влияние постоянного электрического поля исчерпывается.

Электрофорус

Если поведение диэлектриков в электрическом поле долгое время оставалось неизученным, благодаря металлам Вольта узнал больше об электричестве и позже смог изобрести знаменитый гальванический источник питания. Речь идёт об электрофорусе. Прибор, не слишком известный в России, будоражил умы западных учёных, сегодня служит непременным элементом развлечения студентов. Прибор сейчас покажет (и докажет), как ведут себя проводники в электрическом поле.

Электрофорус – статический генератор с ручным взводом, металлическая печать солидного размера, лучший способ демонстрации статического электричества. Представим, что на круглую подложку из древесины наклеен тончайший лист резины. Вольта говорил, что толстый кусок проявляет худшие свойства. Но не сумел объяснить причину. В давнее время люди не знали, что диэлектрики обладают способностью запасать энергию электрического поля во внутренней структуре. Принцип теперь используется в большинстве конденсаторов.

Тонкий кусок меньше энергии поля поглощал и больше оставлял на поверхности в виде заряда. Трением быстрее доводился до кондиции. Указанный факт отметил Вольта. Требовалось резину натереть. Вольта делал это добрым куском шерсти в течение ряда минут.

Заключительным штрихом конструкции служил тонкий металлический диск, полностью покрывавший резиновый. Толщина выбиралась меньшей, чтобы свойства проводника в электрическом поле проявились ярче. Что происходило в электрофорусе:

  1. Оператор натирал резину до образования плотного статического заряда электронов.
  2. Убирал шерсть и опускал сверху металлический диск.
  3. Проводник электризовался влиянием. Из-за шероховатости поверхности точек соприкосновения оказывалось мало, низ диска заряжался положительно. Это вызвано оттоком электронов, вытолкнутых полем наверх (см. ниже).
  4. Потом оператор кратковременно заземлял верхнюю часть диска лёгким касанием и разрывал поверхности.
  5. На нижней стороне металлической «печати» оставался свободный статический положительный заряд.

Опыт повторялся десятки раз. Очевидцы заявляют о сотнях, а Вольта говорил, что «сложно избавить резину от флюида» и предлагал делать это солнечными лучами, пламенем свечи и прочими сильными средствами. Чтобы понять, как работает электрофорус, нужно иметь представление о поведении проводника в электрическом поле.

Поведение диэлектрика в электрическом поле

Стройной теории по поводу поведения диэлектриков в электрическом поле сегодня нет. Физики объясняют происходящее так: в толще вещества присутствуют диполи, образованные сложным строением полимера или аморфного вещества. Размер структур лежит в области нанотехнологий. Молекулы обладают упругими свойствами, проникающее внутрь поле ориентирует их соответствующим образом. Положительная часть смещается по направлению поля, а отрицательная – против.

Диэлектрик способен накапливать энергию поля. Это используется в конденсаторах. Показано, что ёмкость их увеличивается в количество раз, равное диэлектрической проницаемости материала, помещённого между обкладками (для воздуха и вакуума величина равняется 1). Опишем происходящее:

  1. Конденсатор способен зарядиться лишь до уровня приложенного напряжения.
  2. Между обкладками создаётся поле. Уровень его напряжённости вычисляется через разницу электрических потенциалов.
  3. Поле действует на диэлектрик. Диполи внутри начинают ориентироваться так, чтобы с лёгкостью ослабить напряжённость поля.
  4. Как результат, напряжение на обкладках понижается, процесс заряда возобновляется, до достижения лимита, определяемого типом диэлектрика. Речь идёт о проницаемости вещества.
Физика 8 класс (Урок№11 - Проводники и диэлектрики. Электризация тел. Электрический заряд.)Физика 8 класс (Урок№11 — Проводники и диэлектрики. Электризация тел. Электрический заряд.)

Диэлектрики в свободном состоянии не имеют выраженного заряда, описываемый эффект назван поляризацией – созданием поля. Вращение диполей считается лишь механизмом, проявляющимся при внешнем воздействии. Во вторую очередь, элементарные заряды начинают вдобавок отдаляться друг от друга. Диполь растягивается. Силы упругости вносят лепту в запасание диэлектриком энергии поля.

Статический заряд на материалы нельзя нанести влиянием. Они хорошо электризуются трением и прикосновением. О чем осведомлены инженеры из нефтяного бизнеса. Масса усилий уходит, чтобы не допустить электризации горючего, приводящей к взрывоопасной ситуации. Задача облегчается тем, что заряд стремится расположиться на поверхности вещества. И специальными гребёнками легко производится нейтрализации. Их ставят на пути потока нефти и снимают на заземлитель избыточный заряд.

Как самому открутить масляный фильтр, если он не откручивается?

Электрическая индукция и напряженность (лучше не читать).

До сих пор мы говорили об однородном изотропном диэлектрике.
Если вещество анизотропно, то связь между индукцией и напряженностью усложняется.
Они уже не обязательно должны быть сонаправлены друг с другом. Как известно,
связь между двумя произвольными векторами осуществляется с помощью тензора второго
ранга. Таким тензором и является диэлектрическая проницаемость.


    
, где i,j=x,y,z

Если еще электрические поля достаточно сильные, например, в лазерах, то связь еще более усложняется


, где i,j=x,y,z    (11.24)

Поясним, что суммирование идет по повторяющимся индексам. Линейная зависимость
нарушается и в некоторых веществах (см. лекцию №12).

Проводники в электростатическом поле

Проводниками являются металлы, электролиты (растворы, проводящие ток) плазма. В металлах носителями зарядов являются свободные электроны, в электролитах – положительные и отрицательные ионы, в плазме – свободные электроны и ионы.

У большинства металлов практически каждый атом теряет электрон и становится положительным ионом. Например, у меди в 1 м3 свободных электронов 1029. Свободные электроны в металлах находятся в непрерывном беспорядочном движении. Скорость такого движения примерно равна 105 м/с (100 км/с).

Не смотря на наличие внутри тела зарядов (свободных электронов и ионов), электрического поля внутри проводника нет. Отдельные заряженные частицы создают микроскопические поля. Но эти поля внутри проводника в среднем компенсируют друг друга (рис. 1).

Если бы это условие не выполнялось, то свободные заряды, под действием кулоновских сил, пришли бы в движение. Они двигались бы до тех пор, пока действующая на них сила не обратилась бы в нуль.

Рис. 1

Поместим незаряженный проводник, например, металл, в однородное электростатическое поле с напряженностью \(~\vec E_0\). На свободные электроны начинают действовать электрические силы \(\vec F\), под действием которых электроны приходят в движение (рис. 2). Продолжая беспорядочное движение, электроны начинают смещаться в сторону действия силы (скорость смещения порядка 0,1 мм/с).

Рис. 2

На одной поверхности проводника образуется область с недостатком электронов, на противоположной – с избытком электронов. Это приводит к появлению еще одного электрического поля с напряженностью \( \vec E_{np}\) (рис. 3).

Рис. 3

Общая напряженность \( \vec E\) электрического будет равна

\( \vec E = \vec E_0 + \vec E_{np}, \;\; E = E_0 — E_{np}.\)

Электрическая сила \(F\), действующая на свободные электроны с зарядом q:

\(F = q \cdot E.\)

По мере смещения электронов, заряд на поверхности увеличивается. Это приводит к увеличению напряженности \(E_{np}\) и уменьшению общей напряженности \(E\) (т.к. \(E = E_0 — E_{np}\)). И в какой-то момент напряженность \(E_{np}\) становится равной напряженности внешнего поля \(E_0\), т.е. \(E_{np} = E_0\), и общая напряженность поля внутри проводника становится равной нулю.

Электрическая сила \(F\) в этот момент также становится равной нулю, электроны перестают смещаться, но беспорядочное движение не прекращается. На поверхности проводника остаются электрические заряды.

Явление возникновения электрических зарядов на поверхности проводника под воздействием электрического поля называется электростатической индукцией, а возникшие заряды – индуцированными.

Доля электронов, которые оказались на поверхности, очень мала. Например, если к медной пластинке толщиной в 1 см приложить напряжение в 1000 В, то эта доля составляет 10–10 % от всех свободных электронов.

Каким бы способом ни был заряжен проводник, внутри него поле отсутствует. Это позволяет использовать заземленные полые проводники со сплошными или сетчатыми стенками для электростатической защиты от внешних электростатических полей. Так, например, для защиты военных складов, служащих для хранения взрывчатых веществ, от удара молнии их окружают заземленной проволочной сетью.

Впервые явление электростатической защиты было обнаружено М.Фарадеем в 1836 году. Он провел интересный опыт. Большая деревянная клетка была оклеена тонкими листами олова, изолирована от земли и сильно заряжена. В клетке находился сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что при приближении к клетке тел, соединенных с землей, проскакивали искры, внутри клетки электрическое поле не обнаруживалось.

Проводник

Иная картина сложится с проводниками. Если проводники электрического тока внести в электростатическое поле, в нем возникнет кратковременный ток, так как действующие на свободные заряды электрические силы будут способствовать возникновению движения. Но также всем известен закон термодинамической необратимости, когда любой макропроцесс в замкнутой системе и движение должны в итоге закончиться, а система уравновеситься.

Проводник в электростатическом поле — это тело из металла, где электроны начинают движение против силовых линий и начнут накапливаться слева. Проводник справа потеряет электроны и получит положительный заряд. При разделении зарядов он обретет свое электрическое поле. Это называется электростатической индукцией.

Внутри проводника напряженность электростатического поля нулевая, что легко доказать, двигаясь от обратного.

Некоторые дополнения.

Следует отметить, что название «электрическое смещение»
подходит только к поляризационной составляющей вектора электрической индукции,
связанной с присутствием вещества и его перестройкой (смещением зарядов) во
внешнем поле. В вакууме эта часть исчезает, но тем не менее индукция и там не равна нулю.

При изучении переменных полей мы увидим, что именно эта величин определяет так называемый ток смещения.

В заключении нужно подчеркнуть, что индукция и напряженность
представляют собой различные физические величины с различным физическим смыслом.
Однако в некоторых случаях, например для описания электрического поля в вакууме
достаточно только одного вектора напряженности электрического поля.

Граничные условия.

Рассмотрим границу двух диэлектриков, на которые наложено внешнее поле
. Под действием
внешнего поля оба диэлектрика поляризуются и вблизи границы в каждом из них
появятся поляризационные заряды (рис.11.11). Они создадут собственное поле

причем в обоих диэлектриках поле направлено в разные стороны. Если для определенности
считать, что |s1|>|s2|,
то поля направлены от поверхности. Так как электрическое поле заряженной поверхности
перпендикулярно ей, то касательные составляющие результирующего поля равны друг другу


    (11.26)

Нормальные же составляющие терпят разрыв

Если кроме поляризационных зарядов на границе имеются еще и свободные заряды
с поверхностной плотностью s, то


;   

или


     (11.30)

Формулы (11.26) и (11.30) называются граничными условиями для касательной составляющей напряженности
и нормальной составляющей индукции электрического поля.

Если на поверхности есть свободный заряд, то электрическая индукция терпит разрыв.
Если такого заряда нет, то индукция непрерывна.

Презентация на тему: » Проводники и диэлектрики в электростатическом поле в электростатическом поле Проводники и диэлектрики в электростатическом поле.» — Транскрипт:

1

Проводники и диэлектрики в электростатическом поле в электростатическом поле Проводники и диэлектрики в электростатическом поле

2

Проводники в электростатическом поле Проводники в электростатическом поле Диэлектрики в электростатическом поле Диэлектрики в электростатическом поле

3

— металлы; — жидкие растворы и расплавы электролитов; — плазма. Проводники – это вещества, в которых имеются свободные носители электрических зарядов. К проводникам относятся: Проводники в электростатическом поле Проводники в электростатическом поле

4

При внесении проводника в электростатическое поле свободные заряды в нем приходят в движение в направлении против силовых линий. В результате на одном конце проводника возникает избыток отрицательного заряда, на другом его недостаток, а значит избыток положительного заряда. В результате на одном конце проводника возникает избыток отрицательного заряда, на другом его недостаток, а значит избыток положительного заряда. Евнеш Проводники в электростатическом поле Проводники в электростатическом поле

5

Эти заряды создадут свое собственное электрическое поле, которое направлено против внешнего. Внутреннее поле ослабит внешнее. Свободные электроны будут продолжать двигаться и увеличивать внутреннее поле до тех пор, пока оно полностью не погасит внешнее. Е внеш Е внутр Проводники в электростатическом поле Проводники в электростатическом поле

6

Поле внутри проводника, помещенного в электростатическое поле, отсутствует. Поле внутри проводника, помещенного в электростатическое поле, отсутствует. Е внеш Е внутр Проводники в электростатическом поле Проводники в электростатическом поле

7

Проводники в электростатическом поле Проводники в электростатическом поле Электростатические свойства однородных металлических проводников. 1. При помещении проводника во внешнее электростатическое поле наблюдается явление электростатической индукции – появление на противоположных сторонах проводника электрических зарядов разных знаков. 2. Внутри проводника электрический заряд отсутствует; весь статический заряд проводника, полученный им при электризации, может располагаться только на его поверхности. 3. Электрические заряды распределяются по поверхности проводника так, что электростатическое поле оказывается сильнее на выступах проводника и слабее на его впадинах. 4. Если внутри проводника имеется полость, то в каждой точке этой полости напряженность электростатического поля равно нулю (теорема Фарадея). 5. Напряженность электростатического поля на внешней поверхности проводника направлена перпендикулярно к этой поверхности. 6. Во всех точках внутри проводника потенциал электростатического поля имеет одно и то же значение. 7. Если заряженный проводник имеет форму шара или сферы радиусом R, то напряженность и потенциал создаваемого им поля определяются выражениями:

8

Диэлектрики полярныенеполярные + + Диэлектрики – это материалы, в которых нет свободных электрических зарядов. К диэлектрикам относятся воздух, стекло, эбонит, слюда, фарфор, сухое дерево. Диэлектрики Диэлектрики в электростатическом поле Диэлектрики в электростатическом поле

9

полярныенеполярные Диэлектрики в электростатическом поле Диэлектрики в электростатическом поле

10

полярныенеполярные Диэлектрики в электростатическом поле Диэлектрики в электростатическом поле

11

Поляризация диэлектрика – это смещение в противоположные стороны разноименных зарядов, входящих в состав атомов и молекул вещества. Диэлектрическая проницаемость среды – это физическая величина, показывающая, во сколько раз модуль напряженности электрического поля внутри однородного диэлектрика меньше модуля напряженности поля в вакууме. Е0Е0 Е ε =ε =ε =ε = Диэлектрики в электростатическом поле Диэлектрики в электростатическом поле

Что такое проводники и диэлектрики

Проводники — вещества, со свободными электрическими зарядами, способными направленно перемещаться под воздействием внешнего электрического поля. Такими особенностями обладают:

  • металлы и их расплавы;
  • природный углерод (каменный уголь, графит);
  • электролиты — растворы солей, кислот и щелочей;
  • ионизированный газ (плазма).

Главное свойство материалов: свободные заряды — электроны у твёрдых проводников и ионы у растворов и расплавов, перемещаясь по всему объёму проводника проводят электрический ток. Под воздействием приложенного к проводнику электрического напряжения создаётся ток проводимости. Удельное сопротивление и электропроводимость — основные показатели материала.

Watch this video on YouTube

Свойства диэлектрических материалов противоположны проводникам электричества. Диэлектрики (изоляторы) — состоят из нейтральных атомов и молекул. Они не имеют способности к перемещению заряженных частиц под воздействием электрического поля. Диэлектрики в электрическом поле накапливают на поверхности нескомпенсированные заряды. Они образуют электрическое поле, направленное внутрь изолятора, происходит поляризация диэлектрика.

В результате поляризации, заряды на поверхности диэлектрика стремятся уменьшить электрическое поле. Это свойство электроизоляционных материалов называется диэлектрической проницаемостью диэлектрика.

В чем отличие проводника от диэлектрика

В отличие от диэлектрических веществ, материалы, которые способны проводить электричество, обладают высокой концентрацией свободных носителей заряда. Для металлов характерно присутствие свободных электронов, которые по сравнению со связанными электронами, перемещаются по всему объему вещества.

Образование свободных электронов связано с тем, что атомы металлических веществ обладают валентными электронами, слабо взаимодействующими с ядрами и достаточно просто теряющими связи с ними. Таким образом, металл является кристаллической решеткой, включающей узлы с положительными ионами, которые окружены отрицательным электронным газом.

 
Пример

В качестве примера можно поместить металлический предмет в электрическое поле, напряженность которого равна E0.

Вначале наблюдается образование поля с такой же напряженностью \(E_{0}\) внутри проводника. Данное поле будет воздействовать на свободные электроны. В результате заряды приходят в движение в противоположном направлении полю \(E_{0} \). В процессе распределения электронов образуется внутреннее поле $$E_{‘}$$. Его направление будет противоположно внешнему полю $$E_{0}$$. Перемещение электронов прекращается в том случае, когда суммарное поле внутри материала примет нулевое значение:

\(E=E_{0}-E_{‘}=0\)

Данное равенство подтверждено многочисленными практическими опытами. Известно, что с помощью замкнутой проводящей оболочки целиком экранируется находящаяся внутри нее область от внешних электрических полей. Таким образом, образуется электростатическая защита.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий