Электрическое торможение двигателей постоянного тока

Динамическое торможение.

Осуществляется путем отключения якорной обмотки от сети и замыканием ее на тормозной резистор (реостат) сопротивлением гт. При этом механическая энергия вращающихся масс преобразуется в электрическую, которая расходуется на нагрев тормозного резистора и других элементов цепи якоря.
Обмотка возбуждения двигателя параллельного возбуждения остается включенной в сеть той же полярности и, следовательно, ток возбуждения и магнитный поток остаются неизменными. Так как якорная обмотка отключена от сети, то ток, потребляемый двигателем из сети, равен нулю, но якорь двигателя по инерции продолжает вращаться, вследствие чего в нем наводится ЭДС Е = сепФ. Тормозной ток якоря(1) Изменение знака тока приводит к изменению знака момента, который из вращающего становится тормозным:(2) Из выражения (2) видно, что при постоянном магнитном потоке Ф тормозной момент зависит от частоты вращения /г, которая вследствие торможения убывает, и от сопротивления тормозного резистора гт.
Для поддержания тормозного момента относительно постоянным тормозной резистор выполняют секционированным. По мере уменьшения частоты вращения якоря выводят секции тормозного резистора, уменьшая его сопротивление, и тем самым поддерживают ток и тормозной момент постоянными. У двигателя последовательного возбуждения при динамическом торможении необходимо переключить выводы
обмотки возбуждения с тем, чтобы направление тока в ней  а значит, и магнитного потока осталось неизменным.

Асинхронный двигатель и его работа

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Торможение двигателей постоянного тока

Виды электрического торможения. Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока: 1) рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть; 2) динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря; 3) электромагнитное торможение — торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном и, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным в озбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения и выше п0 = U/ceФ. В этом случае ЭДС машины становится больше напряжения сети и ток согласно (8.80) изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением (рис. 8.71, а) механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов.

Рис. 8.71. Схема и механические характеристики машины постоянного тока в двигательном и генераторном режимах.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rдо6 (рис. 8.72, а) При этом машина работает как генератор, создает тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока Ia = Е/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб, подключенного к обмотке якоря.

Рис. 8.72. Схема и механические характеристики двигателя с параллельным возбуждением в режиме динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путем переключения проводов, подводящих ток к обмотке якоря (рис. 8.76, а) или к обмотке возбуждения. Чтобы ограничить значение тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление Rдоб. Регулирование тока Ia = (U + Е)/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб или ЭДС Е (тока возбуждения Iв). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. 8.76, б и в.

Рис.8.76. схема и механические характеристики двигателей в режиме электромагнитного торможения.

21.Универсальные коллекторные двигатели — это электродвигатели малой мощности последовательного возбуждения с секционированной обмоткой возбуждения, благодаря чему они могут работать как на постоянном, так и на переменном стандартных напряжениях примерно с одинаковыми свойствами и характеристиками. Такие электродвигатели используют для привода маломощных быстроходных устройств и многих бытовых приборов. Они допускают простое, широкое и плавное регулирование скорости.

По своему устройству эти двигатели отличаются от двигателей постоянного тока общего применения конструкцией статора, магнитную систему которого собирают из топких изолированных друг от друга листов электротехнической стали с выступающими полюсами, на которых размещают по две секции обмотки возбуждения. Эти секции соединяют последовательно с якорем и располагают по обе стороны от его выводов, что снижает радиопомехи от ценообразования на коллекторе под щетками, которое при питании двигателя от сети переменного напряжения особенно усиливается из-за существенного ухудшения условий коммутации.

Источник

Динамическое торможение двигателя параллельного возбуждения

В
схеме динамического торможения ( рис.
9.8, а ) используются контакт КТ тор­мозного
контактора контакт КЛ линейного. Эти
контакты всегда находятся в противоположном
состоянии: если замкнут контакт КЛ,
разомкнут контакт КТ, и наоборот.

Рис.
13.3 Схема (а) и механические характеристики
(б) при динамическом торможении двигателя
постоянного тока

До
начала торможения, при работе двигателя,
контакт КЛ замкнут, контакт КТ
разомкнут. Двигатель подключен к сети
и вращается со скоростью ω.

Ток
в обмотке якоря

I=
(U
– E)
/ R,

где:
Е = k
ωФ
– противоЭДС обмотки якоря, прямо
пропорциональна скорости двигателя
ω.

Этот
ток протекает через якорь в направлении
слева направо (в соответствии с полярностью
напряжения питающей сети).

Для
торможения размыкают контакт КЛ и
замыкают КТ. При
размыкании контакта КЛ двигатель
отключается от сети, поэтому напряжение
на обмотке якоря U
= 0.

При
замыкании контакта КТ к обмотке якоря
двигателя подключается тор­мозной
токоограничивающий резистор
R,
причём обмотка якоря и резистор соединены
последовательно.

Ток
в такой цепи определяется по закону Ома

I=
(U – E) / (R+
R)
= (0–Е)/
(R+
R)
= –
Е/(
R+
R).

В
этой формуле ток
якоря имеет знак «минус», значит,
направление тока в обмотке якоря
изменилось на обратное

– справа налево.

Изменение
направления тока приводит к изменению
знака электромагнитно­го
момента двигателя М = k(–
I)Ф
<0, этот
момент
становится тормозным
.

Двигатель
переходит на искусственную тормозную
характеристику во 2–м
квадранте и постепенно
уменьшает скорость
.
По мере уменьшения скорости уменьшается
противо «ЭДС»

Е = k
ωФ, ток якоря и электромагнитный момент.

В
момент остановки якоря (точка 0 на
механической характеристики) ско­рость
ω
= 0, противо
«ЭДС»

Е = 0, ток якоря I=
0 и электромагнитный момент двигателя
М = 0.

При
реактивном
статическом моменте

(насос, вентилятор) процесс
тормо­жения закончится в точке

0
(Рис.
13.3).

При
активном
статическом моменте

процесс может иметь продолжение, а
именно: если в точке 0 двигатель не
затормозить, он под
действием груза реверсирует и станет
разгоняться в обратном направлении до
скорости

ω
.

Полярность
противоЭДС изменится на обратную

Е
= k(–
ω)Ф
< 0

и
на
обратное изменится направление тока
якоря
I

I=
– ( –Е)
/(
R+
R)
= Е
/(
R+
R)
> 0.

Поэтому
знак
электромагнитного момента изменится
на обратный
,
т.е. он
вновь направлен на подъём
.
При
этом двигатель работает в режиме
тормозного спуска, притормаживая
груз и ограничивая
скорость спуска груза значением скорости
ω(точка А).

Особенности
торможения:

1.
простота торможения, т.к. для его получения
нужен тормозной контактор КТ и тормозной
резистор;

2.
торможение позволяет полностью остановить
якорь ( т. «0» на рис. 9.8, б );

3.
торможение широко применяется в
электроприводах грузоподъемных
механизмов для предварительного сброса
скорости перед срабатыванием основного,
электромагнитного тормоза, обеспечивающего
полную остановку груза.

Что такое динамическое торможение?

На этом месте может возникнуть закономерный вопрос: зачем что-то придумывать, если можно отключить двигатель от электросети, и он сам остановится? Это бесспорно так, но учитывая высокую частоту вращения и массо-центровочные характеристики, пройдет некоторое время до того момента, когда ротор полностью остановится. Этот период называется свободным выбегом и каждый в детстве его наблюдал, запуская простую юлу. Тем не менее, если работа оборудования предполагает частое использование пускателей, то такой режим приводит к очевидной потере времени.

Динамическое торможение АДДинамическое торможение АД

Для быстрой остановки используются режимы торможения, которые предполагают трансформацию механической (в данном случае – кинетической) энергии искусственным путем. Все выделяют два основных вида торможения, которые подразделяются затем на подвиды:

  1. Механическое. Вал двигателя сообщается физически с тормозными колодками, вследствие чего возникает трение, быстрая остановка и выделение теплоты,
  2. Электрическое. Асинхронный двигатель останавливается за счет преобразования цепи подключения, вследствие чего механическая энергия трансформируется сперва в электрическую. Далее возможны два варианта ее израсходования, зависящие от схемы: либо избыток электричества выбрасывается в резервную цепь сети, либо трансформируется в тепло, за счет нагрева обмоток и сопротивления.

Динамическое торможение асинхронного двигателя относится к электрическому типу, так как в процессе обмотка статора отключается от сети с переменным током (две из трех фаз) и переводится в замкнутую цепь постоянного тока. При этом магнитное поле в статоре преобразуется из вращающегося в неподвижное. В роторе по-прежнему будет наводиться ЭДС, но момент будет направлен в обратную сторону, что приводит к торможению.

Динамическое торможение двигателяДинамическое торможение двигателя

Главным преимуществом такого способа торможения является возможность плавно контролировать тормозящий момент (за счет изменения напряжения или сопротивления) и осуществлять точную остановку.

3.3. Рекуперативное торможение двигателя постоянного тока

Известно,
что
э
лектрические
машины обратимы, т.е. одна и та же
электрическая машина может работать
как генератор, так и электродвигатель.

При
рекуперативном торможении электродвигатель
переходит в генераторный ре-жим. При
этом двигатель преобразует механическую
энергии, полученную от движущихся частей
привода, в электрическую, которую
двигатель возвращает в судовую
электриче-скую сеть.

Рекуперативное
торможение наступает в следующих
случаях:

  1. при
    движении электровоза под уклон ( что
    невозможно в судовых условиях );

  2. при
    переходе двигателя с большей скорости
    на меньшую ( происходит каждый раз
    автоматически );

  3. при
    опускании тяжелых грузов.

В
любом из этих случаев выполняется одно
и то же условие рекуперативного
торможения:
противоЭДС
обмотки якоря двигателя Е = сωФ должна
cтать
больше напряжения питающей сети
U.

Положительная
роль рекуперативного торможения при
спуске тяжелых грузов состоит в том,
что тормозной электромагнитный момент
двигателя стабилизирует скорость спуска
груза, не позволяя ему разгоняться свыше
определенной скорости.

3.1. Основные сведения

В
электроприводах различают механическое
и электрическое торможение.

Под
механическим понимают торможение
электропривода при помощи тормозных
устройств, принцип действия которых
основан на использовании трения.

Механическое
торможение обеспечивает полную остановку
электропривода и его фиксацию в
заторможенном состоянии. Этот вид
торможения применяется в судовых
электроприводах, работа которых связана
с преодолением действия силы тяжести
– грузоподъёмных и якорно-швартовных.

Под
электрическим торможением понимают
создание на валу электродвигателя
электромагнитного момента, направленного
навстречу вращению якоря (ротора). Для
электрического торможения применяют
специальные узлы в схемах управления
электроприводами.

Как
правило, электрическое торможение
применяют не для полной остановки
электропривода, а для предварительного
уменьшения скорости до такой, при которой
можно начинать механическое торможение.

Например,
существующие электромагнитные
тормоза серий ДПМ постоянного тока и
ТМТ переменного можно
отключать при начальной скорости не
более

750 об /мин.

Значит,
в электроприводе 3-скоростной лебёдки
со скоростями 3000, 1500 и 750 об / мин нельзя
начинать торможение со скоростей 3000 и
1500 об / мин, иначе на валу двигателя
возникнут
большие динамические усилия, которые
могут повредить двигатель, передачу и
механизм. Кроме того, из-за увеличенного
трения тормоз будет перегреваться и
быстро изнашиваться.

Электрическое
торможение применяют в электроприводах
судовых грузоподъемных механизмов,
работающих с частыми пусками и остановками.

Различают
4 вида электрического торможения:

  1. динамическое;

  2. рекуперативное;

  3. торможение
    противовключением при активном
    статическом моменте;

  4. торможение
    противовключением при реактивном
    статическом моменте.

На
судах из перечисленных видов торможения,
в основном, применяется динамическое
и рекуперативное.

Режим рекуперации в асинхронных электрических машинах

Режим рекуперации применяется не только в двигателях постоянного тока. Его можно применять и в асинхронных двигателях.

При этом такой режим возможен в следующих случаях:

  1. Если изменить частоту питающего напряжения при помощи частотного преобразователя. Что возможно при условии питания асинхронного электродвигателя от устройства с возможностью регулирования частоты питающей сети. Эффект торможения наступает при уменьшении частоты питающего напряжения. При этом переход в генераторный режим происходит, когда скорость вращения ротора становится больше номинальной (синхронной).
  2. Асинхронные машины, которые конструктивно имеют возможность переключения обмоток, для изменения скорости.
  3. В грузоподъёмных механизмах, где применяется силовой спуск. В них монтируется электромотор с фазным ротором. В этом случае скорость регулируется с помощью изменения величины резистора, подсоединяемого к обмоткам ротора. Магнитный поток начинает обгонять поле статора, а скольжение становится больше 1. Электромотор переходит в режим генератора, вырабатываемая электроэнергия возвращается в сеть, возникает тормозной эффект.

Торможение противовключением.

Допустим, что двигатель работает в основном (двигательном) режиме с номинальной нагрузкой. При отключении двигатели от сети вращающий момент М = 0, но якорь двигателя за счет кинетической энергии вращающихся масс электропривода некоторое время будет продолжать вращение, т.е. произойдет выбег двигателя.

Чтобы уменьшить время выбега двигателя, применяют торможение противовключением. С этой целью изменяют полярность напряжения на клеммах обмотки якоря (полярность клемм обмотки возбуждения должна остаться прежней) и напряжение питания обмотки якоря становится отрицательным (- U). Но якорь двигателя под действием кинетической энергии вращающихся масс электропривода сохраняет прежнее (положительное) направление вращения, и так как направление магнитного потока не изменилось, то ЭДС якоря Еа также не меняет своего направления и действует согласно напряжению (-U), при этом ток якоря создается суммой напряжения сети U и ЭДС якоря Еа (рис. 13.15, в):

где rт, — сопротивление резистора в цепи якоря двигателя.

В этих условиях электромагнитный момент станет отрицательным.

Под действием тормозящего момента — Mт, частота вращения якоря уменьшается, достигнув нулевого значения.Если в этот момент цепь якоря не отключить от сети, то произойдет реверсирование двигателя и его якорь под действием момента, который прежде был тормозным, начнет вращение в противоположную сторону. При этом двигатель перейдет в двигательный (основной) режим с отрицательными значениями частоты вращения и вращающего момента. Во избежание нежелательного реверсирования операцию торможения противовключением автоматизируют, чтобы при нулевом значении частоты вращения цепь якоря отключалась от сети.

Источник

Способы и схемы торможения электродвигателей

Торможение электродвигателя применяют, если необходимо сократить время свободного выбега и фиксацию механизма в конкретном положении. Существует несколько видов принудительной остановки устройства. Это механическое, электрическое и комбинированное. Механическое устройство представляет собой тормозной шкив, закрепленный на валу, с колодками. После отключения устройства колодки прижимаются к шкиву. За счет трения кинетическая энергия преобразуется в тепловую, т.е. происходит процесс торможения. Остальные способы и схемы торможения электрического двигателя будут рассмотрены далее в статье.

Динамическое торможение асинхронного двигателя

Динамическое торможение АД (торможение постоянным током) осуществляется путем подключения к двум любым обмоткам статора источника постоянного тока. При этом с помощью группы контактов К1 асинхронный двигатель сначала отключают от питания трехфазным переменным током, и только после этого, замыкают группу контактов К2 и подают постоянный ток. Величину постоянного тока регулируют сопротивлением rт (рисунок 1).

Рисунок 1 — Схема динамического торможения асинхронного двигателя

Само динамическое торможение асинхронного двигателя сопровождается следующими процессами и изменениями:

При отключении переменного тока, вращающееся магнитное поле перестает существовать. Далее подключают источник постоянного тока, который создает постоянное магнитное поле. Ротор по инерции продолжает крутиться теперь уже в постоянном магнитном поле, в обмотке ротора наводится ЭДС, ее частота прямо пропорциональна скорости вращения вала. Появление тока в обмотке ротора вызвано наличием вышеупомянутой ЭДС. Ток создает магнитный поток, который неподвижнен относительно статора. Взаимодействие результирующего магнитного поля АД и тока ротора создает тормозной момент. При этом асинхронный двигатель становится генератором; преобразовует кинетическую энергию вращающегося вала в электрическую, которая на обмотке ротора рассеивается в виде тепловой энергии. При переходе в режим динамического торможения частота и угловая скорость равны: f=0 w=0. Кривая динамического торможения должна проходить через начало координат и торможение происходит до полной остановки (рисунок 2).

Эффективность динамического торможения зависит от параметров:

— Величина постоянного тока, который протекает по статорной обмотке двигателя (чем больше ток, тем больше тормозной эффект);

— Величина сопротивления, введенного в цепь ротора. Эффективность торможения повышается путем комбинирования динамического торможения и торможения с введением сопротивлений в обмотку ротора (рисунок 2):

Рисунок 2 – Механическая характеристика динамического торможения асинхронного двигателя

Чем больше сопротивление введено в цепь ротора, тем выше эффективность торможения, то есть на кривой а1 изображена самая быстрая остановка двигателя при наибольшем сопротивлении — R1>R2>R3.

— Схема соединения обмоток статора.

Величина магнитодвижущей силы (F) напрямую связана с понятием эффективность торможения, чем больше значение силы – тем эффективней происходит торможение,

F=I·W.

На рисунках, которые изображены ниже, стрелками показаны направления протекания постоянного тока по обмоткам, IW– ампер витки (так как количество витков в обмотках одинаково, то зависит значение только от величины тока). Векторные диаграммы иллюстрируют направления магнитодвижущих сил (F), сложив по правилам суммирования векторы, мы получим результирующий вектор, который обозначен жирной стрелкой.

Обмотка статора может быть соединена:

а) Схема соединения обмотки статора в звезду:

б) Схема соединения статорной обмотки в треугольник:

в) Соединение обмотки статора в звезду с закороченными двумя фазами:

г) Подключение звезда с разорванным нулем:

д) Подключение треугольник с закороченными фазами:

Схемы соединения а) и б) имеют наибольшее распространение, потому что не требуют переключения при торможении самих обмоток.

Необходимо подметить, что напряжение (U) источника постоянного тока должно быть малой величиной, потому что сопротивление обмотки статора мало. Ток выбирается из условия необходимого начального тормозного момента, обычно выбирают ~2Mном.

Преимущества режима динамического торможения:

— Относительная простота осуществления способа;

— Возможность торможения до полной остановки вала ротора;

— Высокая эффективность торможения, особенно при использовании комбинированного метода.

Основным недостатком является необходимость наличия источника постоянного тока.

Расчет величины тормозного сопротивления:

RT = 2·rф.ст + rт,

rт=RT — 2rф.ст,

где RT — полное сопротивление цепи источника постоянного тока,

rф.ст — сопротивление фазы статора.

Вышеприведенные формулы являются частным случаем (для понимания отношений величин сопротивления), когда постоянный ток протекает только по двум обмоткам статора, если же ток будет протекать по трем обмоткам, то коэффициент (количество фаз) перед сопротивлением фазы статора нужно соответственно изменить.

Советую вам прочесть статью про торможение противовключением, в которой подробно расписан данный вид остановки двигателя.

Недостаточно прав для комментирования

Способы и схемы торможения электродвигателей

Торможение электродвигателя применяют, если необходимо сократить время свободного выбега и фиксацию механизма в конкретном положении. Существует несколько видов принудительной остановки устройства. Это механическое, электрическое и комбинированное. Механическое устройство представляет собой тормозной шкив, закрепленный на валу, с колодками. После отключения устройства колодки прижимаются к шкиву. За счет трения кинетическая энергия преобразуется в тепловую, т.е. происходит процесс торможения. Остальные способы и схемы торможения электрического двигателя будут рассмотрены далее в статье.

Схемы конденсаторного торможения электродвигателей

Конденсаторное торможение асинхронных двигателей

На рисунке приведена схема включения двигателя при конденсаторном торможении. Параллельно обмотке статора включают конденсаторы, обычно соединенные по схеме треугольника.

При отключении двигателя от сети токи разряда конденсаторов создают магнитное поле, вращающееся с низкой угловой скоростью. Машина переходит в режим генераторного торможения, частота вращения снижается до значения, соответствующего частоте вращения возбужденного поля. Во время разряда конденсаторов появляется большой тормозной момент, который с уменьшением частоты вращения падает.

В начале торможения происходит быстрое поглощение запасенной ротором кинетической энергии при малом тормозном пути. Торможение резкое, ударные моменты достигают 7 Мном. Значение пика тормозного тока при самых больших значениях емкости не превышает пускового тока.

С ростом емкости конденсаторов тормозной момент увеличивается и торможение длится до более низкой частоты вращения. Исследования показали, что оптимальное значение емкости лежит в пределах 4 — 6 Сном. Конденсаторное торможение прекращается при частоте вращения 30 — 40% номинальной, когда частота вращения ротора становится равной частоте вращения поля статора от возникающих в статоре свободных токов. При этом в процессе торможения поглощается более 3/4 кинетической энергии, запасенной приводом.

Для полной остановки двигателя по схеме на рисунке 1,а необходимо наличие на валу момента сопротивления. Описанная схема выгодно отличается отсутствием переключающих аппаратов, простотой обслуживания, надежностью и экономичностью.

При глухом подключении конденсаторов параллельно двигателю можно применять только такие типы конденсаторов, которые рассчитаны на длительную работу в цепи переменного тока.

Если торможение осуществляется по схеме рисунке 1 с подключением конденсаторов после отключения двигателя от сети, возможно применение более дешевых и малогабаритных металлобумажных конденсаторов типов МБГП и МБГО, предназначенных для работы в цепях постоянного и пульсирующего тока, а также сухих полярных электролитических конденсаторов (КЭ, КЭГ и др.).

Конденсаторное торможение с глухо подключенными по схеме треугольника конденсаторами целесообразно применять для быстрой и точной остановки электроприводов, на валу которых действует момент нагрузки не менее 25% номинального момента двигателя.

Для конденсаторного торможения может быть применена и упрощенная схема: однофазное включение конденсаторов (рис. 1,6). Для получения такого же тормозного эффекта, как при трехфазном включении емкости, необходимо, чтобы емкость конденсатора в однофазной схеме была в 2,1 раза больше емкости в каждой фазе в схеме на рис. 1,а. При этом, однако, емкость в однофазной схеме составляет лишь 70% суммарной емкости конденсаторов при их трехфазном включении.

Потери энергии в двигателе при конденсаторном торможении наименьшие по сравнению с другими видами торможения, поэтому оно рекомендуется для электроприводов с большим числом включений.

При выборе аппаратуры следует учесть, что контакторы в цепи статора должны быть рассчитаны на ток, протекающий по конденсаторам. Для устранения недостатка конденсаторного торможения — прекращения действия до полной остановки электродвигателя — используют его сочетания с динамическим имагнитным торможением.

Комбинированный режим

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий