Сила тока: определение, как найти, расчет в проводнике

Содержание

Как можно, не разматывая, определить длину медного провода?

Измеряй сечение провода, внутренний и внешний радиусы катушки и ширину намотки в катушке. Потом делятся на диаметр провода разница между внешним и внутренним радиусами (количество витков по толщине намотки) и ширина намотки (количество витков по ширине) . После этого вычисляется общее число витков умножением количества витков по толщине намотки на количество витков по ширине. После этого вычисляется средняя длина отного витка. Для этого вычисляем средний радиус витка (складываем длину большего и меньшего радиуса и делим на два) и по формуле L= пи * 2 * r средний расчитываем длину витка. После этого количество витков намотки умножаем на среднюю длину витка и получаем примерную длину провода.

Сечение и масса.

подав напряжение и измерив ток — вычисляем сопротивление, зная общее сопротивление и толщину провода — выясняем длину. .
еще можно длинную ниточку приложить к проводу и потом померять ниточку, если кольцами свернуто одинаовыми — можно посчитать количество колец, если это витая пара — глянуть на оплетку, там метраж должен быть написан… .
сечение и масса +1

представь, что это большое кол-во окружностей. посчитай их и умножь получившееся число на длину одной
длина = Х х 2 х 3,14 х радиус окружности или на полдиаметра

Теплофизические свойства меди: КТР и удельная теплоемкость меди

Теги

Акушерство
Антиноцицептивное действие
Бруцеллез
Гурты
Денежная оценка земель
Земельный кадастр
КЛЕЩЕЙ
Киста
Нарисна геометрія
Пастереллез
Половой цикл
Реалізація зерна
Сальмонеллез
Случка
Туберкулез
Туберкулин
Устройство территории
аборт
актиномикоз
блохи
бонитировка почв
виробництво зерна
гінекологія
документ
дрожжи
ефективності виробництва
жеребец
животноводство
заплідненость
землепользование
клещ
косячная случка
мтп
оценка земель
паратиф
почва
противоэрозионных
ринок зерна
самосогревания
спермії
столовые вина
сухие вина
тесты по химии
шейка матки
эндометрит

Матовый слайм

В чем измеряется реактивное сопротивление

Само по себе, явление реактанса характерно только для цепей с электрическим током переменного типа. Обозначается оно латинской буквой «X» и измеряется в Омах. В отличие от активностного варианта, реактанс может иметь как положительное, так и отрицательное значение. Знак «+» или «-» соответствует знаку, по которому сдвигается фаза электротока и напряжения. Знак положительный, когда ток отстает от напряжения и отрицателен, когда кот опережает напряжение.

Важно! Абсолютно чистое реактивное электросопротивление имеет сдвиг фазы на ± 180/2. То есть, фаза «двигается» на π/2

Примером активной сопротивляемости — линия электропередач

Электрический ток

Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите — ионы. Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-). Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному.

Понос у коровы: причины диареи, что делать и чем лечить

Измерение сечения проводников по диаметру

Существует несколько способов, как определить сечение кабеля или провода. Разница при определении площади сечения проводов и кабелей будет заключаться в том, что в кабельной продукции требуется производить замеры каждой жилы в отдельности и суммировать показатели.

Для информации. Измеряя рассматриваемый параметр контрольно-измерительными приборами, необходимо изначально произвести замеры диаметров токопроводящих элементов, желательно сняв изоляционный слой.

Приборы и процесс измерения

Приборами для замеров могут выступать штангенциркуль или микрометр. Используют обычно механические приспособления, но могут применяться и электронные аналоги с цифровым экраном.

Внешний вид механического микрометра

В основном, замеряют диаметр проводов и кабелей посредством штангенциркуля, так как он найдется в почти каждом домашнем хозяйстве. Им также можно замерять диаметр проводов в работающей сети, например, розетке или щитовом устройстве.

Замер диаметра механическим штангенциркулем

Определение сечения провода по диаметру совершается по следующей формуле:

S = (3,14/4)*D2, где D – диаметр провода.

Если кабель в своем составе имеет больше одной жилы, то необходимо произвести замеры диаметра и расчет сечения по вышеприведенной формуле для каждой из них, после объединить полученный результат, воспользовавшись формулой:

Sобщ= S1 + S2 +…+Sn, где:

  • Sобщ – общая площадь поперечного сечения;
  • S1, S2, …, Sn – поперечные сечения каждой жилы.

На заметку. Для точности полученного результата рекомендуется производить измерения не менее трех раз, поворачивая проводник в разные стороны. Результатом будет являться средний показатель.

Определение диаметра жилки цифровым штангенциркулем

При отсутствии штангенциркуля или микрометра диаметр проводника можно определить посредством обычной линейки. Для этого необходимо выполнить следующие манипуляции:

  1. Очистить изоляционный слой жилы;
  2. Накрутить плотно друг другу витки вокруг карандаша (их должно быть не менее 15-17 шт.);
  3. Произвести замер длины намотки;
  4. Разделить полученную величину на количество витков.

Важно! Если витки не будут уложены на карандаш равномерно с зазорами, то точность полученных результатов измерения сечения кабеля по диаметру будет под сомнением. Для повышения точности замеров рекомендуется производить замеры с разных сторон. Толстые жилы навить на простой карандаш будет сложно, поэтому лучше прибегнуть к штангенциркулю

Толстые жилы навить на простой карандаш будет сложно, поэтому лучше прибегнуть к штангенциркулю.

После измерения диаметра площадь сечения провода рассчитывается по вышеописанной формуле или определяется по специальной таблице, где каждому диаметру соответствует величина площади сечения.

Измерение диметра проводникового изделия посредством линейки

Диаметр провода, имеющего в своем составе сверхтонкие жилы, лучше замерять микрометром, так как штангенциркуль может с легкостью проломить ее.

Определить сечение кабеля по диаметру проще всего посредством таблицы, которая приведена ниже.

Таблица соответствия диаметра провода сечению провода

Диаметр проводникового элемента, мм Площадь сечения проводникового элемента, мм2
0,8 0,5
0,9 0,63
1 0,75
1,1 0,95
1,2 1,13
1,3 1,33
1,4 1,53
1,5 1,77
1,6 2
1,8 2,54
2 3,14
2,2 3,8
2,3 4,15
2,5 4,91
2,6 5,31
2,8 6,15
3 7,06
3,2 7,99
3,4 9,02
3,6 10,11
4 12,48
4,5 15,79

Это интересно: Как сделать проектор своими руками в домашних условиях: излагаем обстоятельно

Фото реле времени

Баклажан «Алмаз»: характеристика и особенности сорта

Формула сопротивления

Многочисленные эксперименты показали, что во многом сопротивление зависит от структуры вещества и его линейных размеров. Опытные результаты отлично подтверждаются теоретическим анализом.

Пусть имеется проводник, имеющий длину L. На его концах есть напряжение U, а ток, который протекает через него, равен I. В соответствии с законом Ома сопротивление, оказываемое веществом протеканию зарядов, можно найти, разделив напряжение на силу электротока: R = U / I. Теперь пусть есть ещё один такой же проводник с равным первому поперечным сечением, но при этом его длиннее в два раза 2L. Через него будет пропускаться ток, по силе совпадающий с I.

Можно представить, что во втором случае ток будет протекать сначала через первую его половину, длина которой равняется L, а затем через вторую. Чтобы электрон прошёл через проводник, ему нужно сначала пройти через его первую половину, а затем — вторую. Значит, суммарная работа по сравнению с первым проводником должна быть выполнена в два раза больше — 2U. Отсюда сопротивление равняется: R’ = 2U / I = 2 R.

Исходя из рассмотренного, можно сделать вывод, что сопротивление проводника прямо пропорционально его длине: R ~ L. Аналогичные рассуждения можно сделать и для площади поперечного сечения. В результате получится, что R ~ 1 / S. Значит, значение параметра зависит от линейных размеров вещества. Причём эта зависимость приблизительно выглядит так: R ~ L / S. Коэффициент пропорциональности, который нужно вести в формулу для её точной записи, будет зависеть от свойств материала. Обозначают его буквой греческого алфавита ρ и называют удельным сопротивлением материала. Таким образом, чтобы найти R, нужно знать три характеристики проводника:

  • длину (L);
  • площадь поперечного сечения (S);
  • удельное сопротивление (ρ).
Урок 247. Закон Ома. Вычисление сопротивления проводникаУрок 247. Закон Ома. Вычисление сопротивления проводника

Выбор сечения кабелей

Для крупных расчетов можно использовать специализированный калькулятор на справочном сайте либо соответствующее программное обеспечение. Следующий алгоритм применяют для последовательного вычисления рабочих параметров по формулам:

  • при передаче в подключенную нагрузку мощности P = 1 600 Вт в линии с напряжением U = 220 V постоянный ток (I) определяют следующим образом: I = P/U ≈ 7,27А;
  • сопротивление медного проводника (в обе стороны) длиной 800 м и сечением 2,5 мм кв.: R = (2*I*p)/S = (2*800*0,0175)/2,5 = 11,2 Ом;
  • потери по напряжению в этой трассе: ΔU = (2*L*I)/((1/p)*S) = (2*800*7,27)/((1/0,0175)*2,5) = 11 520/ 142,86 = 80,63 V.

При необходимости последнее выражение несложно математически преобразовать для выбора площади поперечного сечения проводника по суммарному значению подключаемой нагрузки:

S = (2*I*L)/((1/p)*ΔU.

В рассмотренном примере потери напряжения составляют более 36%. Этот результат свидетельствует о необходимости корректировки расчета сопротивления проводника. По действующим нормативам допустимо уменьшение контрольного параметра не более, чем на 5 %. Увеличив диаметр провода, можно получить необходимый результат. При сечении 19 мм кв. напряжение уменьшится до 209,41 V (4,81%).

С учетом увеличенного сопротивления алюминиевого провода предполагаются пропорциональные изменения потерь. Выполнив аналогичный расчет, можно получить рекомендованное сечение 31 мм кв. Использование такого проводника в аналогичных условиях снизит напряжение до 209,2 V, что позволит обеспечить соответствие нормативам – 4,92%.

К сведению. Для проверки расчетных данных можно использовать мультиметр. Измерения выполняют в соответствующем диапазоне с учетом амплитуды сигнала, переменного (постоянного) тока.

Измерение сопротивления кабеля мультиметром

При подключении источника питания переменного тока алгоритм вычислений усложняется. Для таких исходных условий пользуются формулой:

ΔU = ((Pа * Rа + Pр * Rи) *L)/ U,

где:

  • Pа (Pр) – активная (реактивная) мощность;
  • Rа (Rи) – относительное активное (индуктивное) сопротивление линии в Ом на километр.

Для определенных материалов проводников исходные данные берут из справочника. По аналогии с упомянутыми нормативами уменьшение напряжения не должно быть в общем случае более 5%. Дополнительные ограничения применяют с учетом особенностей электрических сетей и подключаемых потребителей (от 1% до 12%). Действующие правила уточняют по тексту последней редакции ПУЭ.

Приведенные итоги расчетов убедительно подтверждают преимущества меньшего удельного сопротивления медного провода. При использовании алюминиевого аналога значительно увеличивается количество материала для передачи электроэнергии с нормативными потерями. Для комплексного анализа следует учитывать лучшие показатели меди по прочности, гибкости.

Алюминий отличается меньшей стоимостью, легкостью. Но при работе с этим материалом следует исключить вибрационные воздействия и перемещения в процессе эксплуатации. Особо тщательно проектируют изгибы, чтобы сохранить целостность проводника. Электрический контакт нарушается образованием окислов на поверхности изделий, изготовленных из этого металла.

К сведению. В определенных ситуациях многое будет значить свободное место для прокладки трассы. По экономии пространства преимущественными параметрами обладает медь.

Выбор сечения проводника по допустимому нагреву

По мере увеличения силы тока повышается температура проводящего металла. На определенном уровне повреждается слой защитной изоляции, созданный из полимеров. Это провоцирует короткие замыкания и образование пламени. Опасные ситуации предотвращают корректным расчетом площади поперечного сечения. Определенное значение имеет способ прокладки (совместный/ раздельный).

Выбор сечения по потерям напряжения

Как показано в расчетах, при большой длине трасы нужно учитывать снижение напряжения и соответствующие энергетические потери. В крупных проектах рассматривают всю цепь тока с распределительными устройствами и подключаемыми нагрузками.

Для точного определения подходящей кабельной продукции рассматривают особенности процесса эксплуатации. Делают необходимый запас, чтобы предотвратить аварийные ситуации при подключении новых потребителей и бросках напряжения в сети питания.

Расчет поперечного сечения и площади трубы по формуле

Чтобы грамотно выполнить монтаж трубопровода и избежать ненужных расходов энергии, необходимо произвести расчет площади трубы. Интернет в настоящее время предлагает различные сервисы для расчета площади и поперечного сечения трубы. Но в некоторых случаях приходится проводить индивидуальные вычисления по формулам.

  • Расчет параметра трубы
  • Рекомендации

Для того чтобы правильно произвести монтаж трубопровода и избежать излишнего расхода энергии и потери тепла, необходимо рассчитать площадь трубы. Этот параметр — обязательное условие, которое позволяет определить габариты элементов трубопровода и подобрать нужный размер изделий. При расчетах включают следующие факторы:

  • толщину стенок;
  • внутренний диаметр;
  • диаметр фитингов и фасонных изделий.

Чтобы провести правильный расчет, учитываются и такие факторы, как давление в трубопроводе, состав изделий, качество теплоносителей. Обычно дома измерения проводятся рулеткой.

Стоит отметить, что при стандартной высоте потолков 2,5 м на 1 м² должно потребляться не менее 100 ватт мощности генератора тепла.

Расчет параметра трубы

Для того чтобы рассчитать площадь сечения трубы можно воспользоваться различными сервисами, которые предоставляет интернет.

Как произвести расчет

Сечение трубы вычисляют по формуле, которую изучали на уроках геометрии: S = π • R2.

Величина R равна радиусу окружности (то есть, половине диаметра изделия), а величина π — это постоянная 3,14. Чтобы найти истинную величину, следует из полученного значения вычесть толщину стенок. Поэтому расчет ведется по такой формуле:

S = π • (D/2 — N)2, где D приравнивается к внешнему диаметру, а значение N равно толщине стенки.

D = 0,2 м; N = 0,002 м, π = 3,14.

Подставляем значения в данную формулу и получаем результат.

S = 3,14×(0,2/2 — 0,002)2 = 0,030 м².

Получаем сечение изделия равное 0,030 м².

Рекомендации

Следует знать, что сечение трубы важно рассчитать, так как от этой величины зависит, с какой скоростью будет проходить жидкость или газ по трубопроводу. Поэтому при монтаже системы выбирают оптимальный размер изделий. При расчетах учитывают также используемый материал для трубопровода, характер среды, ее температуру и давление

При расчетах учитывают также используемый материал для трубопровода, характер среды, ее температуру и давление.

Если частный дом планируют подсоединить к городской тепловой магистрали, то в расчет берется неизменная величина диаметра (30-40 мм).

При наличии в доме собственного котла, следует обратиться к специалистам, чтобы правильно смонтировать систему отопления.

Для разных материалов используют различные системы измерений. Стальные и чугунные трубы маркируют по внутреннему сечению, а вот элементы отопления из пластика или меди маркируются по наружному. Эту особенность следует учитывать, если трубопровод будет иметь комбинацию элементов из разных материалов.

В некоторых сферах могут применяться редкие формы: квадратные, полукруглые треугольные, трапециевидные. Их форма упрощает сборку водопровода и делает конструкцию более долговечной. Чаще всего их применяют для очистительных сооружений.

Поперечное сечение трубы необычной конфигурации высчитывают по определенным формулам. Рекомендуется пользоваться специальными таблицами, которые есть в интернете. В них указаны все характеристики приборов, необходимые параметры и схемы разводки.

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.

Общий вид элементов

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

От чего зависит сопротивление металла

Электрический ток по классическому определению – это направленное движение заряженных частиц. В металлах перемещаются электроны, если создать между двумя точками подключения источника питания разницу потенциалов. Этому процессу препятствуют примеси, поэтому проводимость лучше в однородном материале.

К сведению. Качественные проводники тока выпускают из электротехнической меди, которая содержит не более 0,01% сторонних примесей. Незначительная добавка алюминия (0,02-0,03%) уменьшает проводимость на 10-11%. При большой длине трассы существенно увеличиваются потери на передачу энергии.

Отрицательное влияние оказывают колебательные процессы атомов кристаллической решетки. При повышении температуры увеличивается амплитуда этих движений, что создает дополнительные препятствия перемещению зарядов. Для компенсации этого явления резисторы создают из специальных сплавов. Правильно подобранные пропорции материалов обеспечивают стабильность электрического сопротивления в расчетном температурном диапазоне.

Определение сечения проводника на вводе


Уточнить номинальные показатели можно в компании Энергосбыта или документации к товару. К примеру, номинал автомата на вводе составляет 25 А, мощность потребления – 5 кВт, сеть однофазная, на 220 В.

Подбор сечения осуществляется так, чтобы допустимый ток жил за длительный период был больше номинала автомата. Например, в доме на ввод пущен медный трехжильный проводник ВВГнг, уложенный открытым способом. Оптимальное сечение – 4 мм2, поэтому понадобится материал ВВГнг 3х4.

После этого высчитывается показатель условного тока отключения для автомата с номиналом 25 А: 1,45х25=36,25 А. У кабеля с площадью сечения 4 мм2 параметры длительно допустимого тока 35 А, условного – 36,25 А. В данном случае лучше взять вводный проводник из меди сечением 6 мм2 и допустимым предельным током 42 А.

Как определить на глаз

Опытные электрики могут определять сечение кабеля на глаз. Каждый проводник ими может быть легко идентифицирован по своему виду и соответствующим этому виду характеристикам. Понятно, что, например, ВВГ провода могут быть только определенных сечений, которые отличаются друг от друга с некоторым шагом. Это регламентируется техническими условиями изготовления или государственным стандартом.

Если же опыта и подобных знаний у человека нет, то определить сечение на глаз помогут точный и развитый глазомер и память. Если мастер хоть раз видел кабель с площадью сечения 1 мм², то, запомнив его размеры, он может мысленно или физически сравнивать другие проводники с ним и делать выводы о том, насколько сильно он отличается в большую или меньшую сторону. Помогает это тогда, когда провода приблизительно одинаковы.

Обратите внимание! Если имеется проводник с сечением 0,5 мм² и толстый кабель размерами площади 5 мм², то определить размеры будет тяжело. Кроме того, профессионалы так не работают

Это опасно и чревато негативными последствиями, связанными с неправильным выбором.

Измерять сечение на глаз — не самая лучшая затея

В материале было рассмотрено, как проверить сечение кабеля штангенциркулем и некоторыми другими способами. Мерить эту величину с помощью специальных приборов — одно из самых правильных решений, так как только они дают возможность определять показатель максимально точно.

Как определить сечение жилы провода?Как определить сечение жилы провода?

Соотношение диаметра кабеля с площадью его сечения

Определение посредством формулы площади поперечного сечения проводников занимает длительное время. В некоторых случаях уместно использовать данные из таблицы. Поскольку для организации современной проводки применяется медный кабель, в таблицу вносятся параметры:

  • диаметр;
  • сечение в соответствии с показателем диаметра;
  • предельная мощность нагрузки проводников в сетях с напряжением 220 и 380 В.
Диаметр жилы, мм Параметры сечения, мм2 Сила тока, А Мощность медного проводника, кВт
Сеть 220 В Сеть 380 В
1,12 1 14 3 5,3
1,38 1,5 15 3,3 5,7
1,59 2 19 4,1 7,2
1,78 2,5 21 4,6 7,9
2,26 4 27 5,9 10
2,76 6 34 7,7 12
3,57 10 50 11 19

Посмотрев данные в соответствующих колонках, можно узнать нужные параметры для электролинии жилого здания или производственного объекта.

Зависимость от свойств напряжения

Напряжение – это главная движущая сила электричества. Напряжение первично. Фактически это среда, в которой протекают разнообразные процессы, связанные с электрическим током. Важнейшей является связь электрического тока с электромагнитным полем. А его параметры, в свою очередь, определяются не только напряжением, но и пространственно-геометрическими характеристиками проводника.

Даже в том случае, когда проводник – это прямой отрезок проволоки в составе электрической цепи, его положение в пространстве при достаточно высоких частотах напряжения будет заметно влиять на величину его сопротивления. Это связано с тем, что в этих условиях проявляются его индуктивность и емкость, существующие лишь при переменном напряжении. Эти параметры проводника именуются реактивным сопротивлением, и также приводят к потерям электроэнергии.

Следовательно, если проводник находится под воздействием переменного напряжения, его сопротивление также зависит как от частоты этого напряжения, так и от его индуктивно-емкостных параметров.

Активное СП при этом остается в силе. А сопротивление проводника в целом именуется импедансом. Его принято обозначать буквой Z и рассчитывать с использованием комплексных чисел. Это довольно-таки специфические расчеты, которыми не стоит утомлять читателя нашей статьи. Но чтобы читатель в этом утверждении не усомнился, далее приведем формулу, по которой в общем случае рассчитывается импеданс:

Основные пункты

Характеристики параллельной цепи

Основные характеристики параллельной цепи перечислены ниже:

Сила тока в параллельной цепи

Согласно закону Ома, I = U / R. Это подразумевает, что каждый резистор в этой цепи будет потреблять ток от источника. Следовательно, общий ток, потребляемый от источника, равен сумме токов ветвления, и ток, протекающий в каждом тракте, зависит от сопротивления ветви. Тем не менее, напряжение остается неизменным и создает разность потенциалов на его клеммах.

Общий ток (It) может быть рассчитан с использованием уравнения,

Давайте рассмотрим, что параллельная цепь построена с двумя резисторами (R1 и R2) с разными значениями (10 Ом и 5 Ом) соответственно. Напряжение 10V подается через резисторы , в результате тока 1А , проведенной от батареи через R1 и R2, который получен из уравнения I = U / R.

Следовательно, два тока ветвления в цепи составляют 1А и 2А, которые суммируют до 3А.

Сопротивления в параллельной цепи

Общее сопротивление любого количества резисторов рассчитывается по уравнению,

Взаимное значение R1 = 1/R1 = 1/10 = 0,1

Взаимное от R2 = 1/R2 = 1/5 = 0,2

Сумма обратных выше = 0,3

R t = 1 / 0,3 = 3,33 Ом

Мощность в параллельной цепи

Как только общий ток и приложенные значения напряжения известны, мощность может быть рассчитана с использованием уравнения P = UI . В приведенном выше примере, приложенное напряжение U = 10В и I = 3A, P = 10×3 = 30 Вт

Расчет с помощью удельного сопротивления

Расчет сопротивления проводника можно произвести без измерения величин напряжения и тока. Но для этого необходимо знать дополнительную информацию о проводнике.

Рис. 3. Проводник с поперечным сечением S и длиной L, через который течет ток I.

Георг Ом и другие исследователи опытным путем определили, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S. Эту закономерность можно описать формулой расчета сопротивления проводника:

$ R = ρ *{ L\over S} $ (2)

Коэффициент ρ был назван удельным сопротивлением. Эта физическая величина отражает особенности конкретного вещества, которые зависят от плотности вещества, кристаллической структуры, строения атомов и других внутренних параметров. Расчет удельного сопротивления проводника производить каждый раз необязательно, так как для большинства веществ удельные сопротивления измерены и сведены в справочные таблицы, которые можно найти в бумажных справочниках или в их интернет-версиях.

Но если такая необходимость возникнет, то из формулы (2) можно получить следующую формулу (3), и по ней рассчитать ρ:

$ ρ = R*{ S\over L } $ (3)

Серебро имеет одно из самых низких значений ρ, равное $ 0,016 {Ом*мм^2\over м} $. Этим объясняется использование такого довольно дорогого металла для пайки особенно важных радиодеталей (микросхем, микропроцессоров, электронных плат), которые должны как можно меньше нагреваться в процессе работы.

Что мы узнали?

Итак, мы узнали, что расчет сопротивления проводника можно произвести двумя способами. Первый расчет проводится с помощью формулы закона Ома после измерения величин напряжения и тока. Для второго расчета необходима информация о геометрических размерах проводника и его удельном сопротивлении.

  1. Вопрос 1 из 5

Начать тест(новая вкладка)

Модель электрической цепи

Лучше понять физический смысл рассматриваемой величины можно на примере механической модели электрической цепи. В качестве ее возьмем водопроводную сеть частного дома.

Для того, чтобы вода начала поступать в водопровод из скважины или колодца необходим насос. Поэтому его можно рассматривать в качестве аналога батареи или иного источника тока. Он создает в системе давление, которое и приводит воду в движение. Соответственно трубы выступают роли проводников, молекулы воды —  электронов, а краны — электрических переключателей.

Чем сильнее напор в водопроводной системе, тем большее количество воды, а вернее ее молекул, протекает через поперечное сечение трубы за каждую секунду. Отсюда можно сделать вывод, что чем больше сила тока, тем сильнее и его действие.

Примечание

Воздействие тока силой до 0,5 мА (частота 50 Гц) человек не ощущает. При силе от 2 до 10 мА возникают болезненные сокращения мышц. А удар током силой свыше 100 мА грозит развитием фибрилляции желудочков и остановкой сердечной деятельности.

Единица измерения

Так как сила тока — это количественная величина, то в физике есть и единица ее измерения. Она позволяет проводить сравнительный анализ различных токов и их действий.

В чем измеряется

Формула силы тока записывается так:

\(I=\frac{\triangle q}{\triangle t}\)

где \(\triangle t\) — это единица времени, а \(\triangle q\) — количества электрического заряда, протекшего за указанный промежуток времени через поперечное сечение проводника.

В Интернациональной системе (СИ) заряд измеряется в Кулонах, а время — в секундах. В соответствии с этим единица измерения силы тока — Кулон/секунду. По международному соглашению ее стали называть Ампером.

Примечание

В 1948 году было предложено определять силу тока по взаимодействию двух проводников, расположенных в вакууме на расстоянии одного метра друг от друга и длиной в один метр.

За силу тока в 1 A принимают такой ток, при котором два проводника притягиваются друг к другу (ток течет в одном направлении) или отталкиваются (ток течет в разных направлениях) с силой 0,0000002 H.

На практике очень часто применяются кратные единицы силы тока:

1 кА = 103 А, 1 мкА = 10-6 А, 1 мА = 10-3 А

В честь кого названа единица измерения

Единица измерения силы тока была названа в честь французского ученого Андрэ-Мари Ампер. Его называют «отцом» учения о электромагнетизме. Именно он ввел в науку такие термины как электрический ток, электростатика и электродинамика, гальванометр, напряжение, электродвижущая сила, соленоид. Амперу удалось найти доказательство теоремы «О циркуляции магнитного поля» и описать математически силу взаимодействия между токами.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий