Выбор сечения проводников по экономической плотности тока

Римские шторы

Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны[править]

 

УтвержденаГлавтехуправлениеми ГосэнергонадзоромМинэнерго СССР10 декабря 1979 года

 

Область примененияправить

1.3.1. Настоящая глава Правил распространяется на выбор сечений электрических проводников (неизолированные и изолированные провода, кабели и шины) по нагреву, экономической плотности тока и по условиям короны. Если сечение проводника, определенное по этим условиям, получается меньше сечения, требуемого по другим условиям (термическая и электродинамическая стойкость при токах КЗ, потери и отклонения напряжения, механическая прочность, защита от перегрузки), то должно приниматься наибольшее сечение, требуемое этими условиями.

Выбор сечений проводников по нагревуправить

1.3.2. Проводники любого назначения должны удовлетворять требованиям в отношении предельно допустимого нагрева с учетом не только нормальных, но и послеаварийных режимов, а также режимов в период ремонта и возможных неравномерностей распределения токов между линиями, секциями шин и т. п. При проверке на нагрев принимается получасовой максимум тока, наибольший из средних получасовых токов данного элемента сети.

1.3.3. При повторно-кратковременном и кратковременном режимах работы электроприемников (с общей длительностью цикла до 10 мин. и длительностью рабочего периода не более 4 мин.) в качестве расчетного тока для проверки сечения проводников по нагреву следует принимать ток, приведенный к длительному режиму. При этом:

1) для медных проводников сечением до 6 мм², а для алюминиевых проводников до 10 мм² ток принимается, как для установок с длительным режимом работы;

2) для медных проводников сечением более 6 мм², а для алюминиевых проводников более 10 мм² ток определяется умножением допустимого длительного тока на коэффициент 0,875 / TПВ, где TПВ — выраженная в относительных единицах длительность рабочего периода (продолжительность включения по отношению к продолжительности цикла).

1.3.4. Для кратковременного режима работы с длительностью включения не более 4 мин. и перерывами между включениями, достаточными для охлаждения проводников до температуры окружающей среды, наибольшие допустимые токи следует определять по нормам повторно-кратковременного режима (см. ). При длительности включения более 4 мин., а также при перерывах недостаточной длительности между включениями наибольшие допустимые токи следует определять, как для установок с длительным режимом работы.

3.1.16

Аппараты защиты должны устанавливаться
непосредственно в местах присоединения защищаемых проводников к питающей линии.
Допускается в случаях необходимости принимать длину участка между питающей
линией и аппаратом защиты ответвления до 6 м. Проводники на этом участке могут
иметь сечение меньше, чем сечение проводников питающей линии, но не менее
сечения проводников после аппарата защиты.

Для ответвлений, выполняемых в труднодоступных местах
(например, на большой высоте), аппараты защиты допускается устанавливать на
расстоянии до 30 м от точки ответвления в удобном для обслуживания месте
(например, на вводе в распределительный пункт, в пусковом устройстве электроприемника
и др.). При этом сечение проводников ответвления должно быть не менее сечения,
определяемого расчетным током, но должно обеспечивать не менее 10% пропускной
способности защищенного участка питающей линии. Прокладка проводников
ответвлений в указанных случаях (при длинах ответвлений до 6 и до 30 м) должна
производиться при горючих наружных оболочке или изоляции проводников — в
трубах, металлорукавах, или коробах, в остальных случаях, кроме кабельных
сооружений, пожароопасных и взрывоопасных зон, — открыто на конструкциях при
условии их защиты от возможных механических повреждений.

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

2.3.39

В кабельных сооружениях и производственных помещениях
при отсутствии опасности механических повреждений в эксплуатации рекомендуется
прокладывать небронированные кабели, а при наличии опасности механических
повреждений в эксплуатации должны применяться бронированные кабели или защита
их от механических повреждений.

Вне кабельных сооружений допускается прокладка
небронированных кабелей на недоступной высоте (не менее 2 м); на меньшей высоте
прокладка небронированных кабелей допускается при условии защиты их от
механических повреждений (коробами, угловой сталью, трубами и т. п.).

При смешанной прокладке (земля — кабельное сооружение или
производственное помещение) рекомендуется применение тех же марок кабелей, что
и для прокладки в земле (см. 2.3.37), но без горючих наружных защитных
покровов.

3.1.8

Электрические сети должны иметь защиту от токов
короткого замыкания, обеспечивающую по возможности наименьшее время отключения
и требования селективности.

Защита должна обеспечивать отключение поврежденного участка
при КЗ в конце защищаемой линии: одно-, двух- и трехфазных — в сетях с
глухозаземленной нейтралью; двух- и трехфазных — в сетях с изолированной нейтралью.

Надежное отключение поврежденного участка сети
обеспечивается, если отношение наименьшего расчетного тока КЗ к номинальному
току плавкой вставки предохранителя или расцепителя автоматического выключателя
будет не менее значений, приведенных в 1.7.79 и 7.3.139.

Технические характеристики кабеля

Номинальное напряжение провода СИП зависит от толщины изоляции и составляет от 0.22 до 32 кВ. Токовая нагрузка определяется площадью сечения токоведущих жил.

Основные технические характеристики:

  • Диапазон температур эксплуатации от -60°С до +50°С;
  • Допустимая температура монтажа без предварительного прогрева -20°С;
  • Сеченье жил 16 – 150 мм2
  • Минимальный радиус изгиба при монтаже и эксплуатации 10 Ø;
  • Допустимая длительная температура жил: при эксплуатации 70-90°С, при коротком замыкании 135-250°С;
  • Гарантийный срок эксплуатации 5 лет;
  • Технический срок службы, не менее 45 лет.

Допустимая токовая нагрузка при температуре окружающей среды +25°С, скорости ветра 0.6 м/с и уровне солнечной радиации 1000 Вт/м2, а также ток короткого замыкания, действующий в течении 1-й секунды, приведены в таблице ниже.

Вам это будет интересно Описание кабеля АСБ

Сечение токоведущих жил, мм2 Допустимый длительный ток нагрузки, А Ток короткого замыкания, А
16 76 870
35 160 3200
50 195 4500
70 240 6500
95 300 8800
120 340 10900

Изоляция каждой жилы имеет отличную цветовую маркировку цветной полосой на черном фоне. Вместо цвета могут быть рельефные полосы.


Рельефная маркировка

Жилы кабеля выполнены многопроволочными, из алюминия. Как правило, в несущей жиле одна из проволок (центральная), выполнена из стали. Эта жила воспринимает на себя нагрузку при подвесе провода между опорами. Жилы в процессе изготовления уплотняются и имеют круглое сечение.


Кабель в разрезе

В некоторых случаях вместо чистого алюминия используется его сплав с другими металлами для увеличения механической прочности.

Основные преимущества проводов СИП следующие:

  • Принципиальная невозможность схлестывания фаз с последующим замыканием;
  • Меньшая величина полосы отчуждения (ширина просеки);
  • Снижение потерь за счет уменьшения реактивного сопротивления;
  • Уменьшение нагрузки на опоры линий электропередач (особенно в гололедный период);
  • Отсутствие необходимости применения изоляторов;
  • Затруднение незаконных подключений;
  • Снижение эксплуатационных расходов.


Крепежная арматура Основные требования, которые предъявляются к изолирующему покрытию, это стойкость к ультрафиолетовому излучению и возможность работы в широком диапазоне температур. Этим требованиям удовлетворяет светостабилизированный полиэтилен низкой плотности (LDPE) или светостабилизированный сшитый полиэтилен (XLPE).

Для крепления проводов к несущим поверхностям или опорам используют специальные анкерные и поддерживающие зажимы и крюки. Для соединения или монтирования отводов не требуется разделка и зачистка от изоляции, поскольку используются прокалывающие зажимы.

Обратите внимание! Использование специализированной крепежной арматуры увеличивает затраты на монтаж, но повышает качество работы и снижает стоимость текущей эксплуатации электрической сети

Расчёт по формуле

Зная необходимую формулу, даже начинающий мастер без соответствующего опыта работы сможет определить необходимое сечение кабеля. Именно это значение нужно высчитывать, поскольку существуют кабели с одной жилой, двумя и более. То есть если изделие двужильное, то нужно учитывать общую площадь сечения двух жил. Преимуществом многожильных кабелей является то, что они более стойкие, гибкие. Они не «боятся» изломов при выполнении монтажных работ. В основном производители для изготовления такого варианта используют медь.

Для определения допустимого тока для медных проводов или алюминиевых одножильного типа можно применять такую формулу: S = число пи * d 2 / 4 = 0.785 d 2 . При этом S — это площадь в квадратных миллиметрах, а d — диаметр.

Для того чтобы рассчитать допустимый ток для алюминиевых проводов или с использованием любого другого материала, применяется формула: S = 0.785 * n * d 2 . S — площадь, d — диаметр, n — число жил.

Что представляют собой таблицы Правил Устройства Электроустановок

Показатели, отображённые в таблице, относятся к устройствам с обеспечением нулевого потенциала как через заземляющую жилу, так и без нее. Диаметры приняты из расчета предельного нагрева сердечников до 60 градусов. Определяя количество проводов, которые прокладываются в одной трубе или в едином лотке, следует учесть, что заземляющий или нулевой рабочие проводники не рассчитываются.

ПУЭ

Электротоковые нагрузки на провода, проложенные в лотках, должны быть такими же, как и для проводящих элементов цепи, проложенных в открытом исполнении, то есть, по воздуху.

Если в трубах, лотках или коробах показатель нагрузки единый, так как все элементы связаны единой цепью, то диаметр проводника следует подбирать по аналогичному с открытой прокладкой алгоритму. Однако, здесь необходимо вводить специальные коэффициенты, обеспечивающие запасы численных показателей в зависимости от геометрических характеристик и количества жил: 0,68 при 5–6 проводниках, 0,63 при 7–9 проводниковых элементах или 0,6 при 10–12 кабелях в едином лотке или канале.

Обратите внимание! Чтобы правильно рассчитать сечение и облегчить выбор проводников, отталкиваясь от показателя длительно допустимого тока и добавочных условий, следует использовать специальную онлайн-форму расчета. Токовые значения для малых диаметров проводников из меди, представленные в таблице, получены по правилам экстраполяции, и их всегда можно откорректировать

Таблица токовых нагрузок к сечению медных кабелей

В целом, кабельный диаметр принимается по току, в зависимости от достаточной площади сердечника, падения напряжения и площади поперечного среза металлического сердечника кабеля. Это необходимо для максимального обеспечения механической прочности и общей надежности проводки. Допустимый кабельный ток по ПУЭ равен от 11 до 645 ампер.

https://youtube.com/watch?v=OXITtzsNyfw

Какой длительно допустимый электроток проводника в соответствии с Правилами Устройства Электроустановок

Для надёжности и безопасности эксплуатации электроустановок к их монтажу предъявляются высокие требования. Любой профессионал знает, что все работы по кабельной прокладке, выбору проводников по длительно допустимому току и сбору цепей, должны быть строго регламентированы правилами устройства электроустановок, сокращённо – ПУЭ.

Предельный длительно допустимый электроток проводника в поливинилхлоридной или резиновой оболочке в соответствии с таблицей ПУЭ равен 11–830 ампер, на что пропорционально влияет габарит сечения сердечника. Предельная величина длительного тока у проводника, проложенного в кабельном канале при однорядном расположении (без наложений элементов друг на друга), следует определять, как для проводящих элементов цепи, которые проложены открыто.

Длительный электроток в коробе необходимо считать с применением понижающих коэффициентов, как для одиночных проводников, которые проложены открыто. Выбирая понижающие коэффициенты, контрольные и резервные провода считать нецелесообразно.

Предельно допустимый токовый показатель

Выполнение и защита осветительных сетей

6.1.30. Осветительные сети должны быть выполнены в соответствии с требованиями гл. 2.1, 2.2, 2.3, 2.4, а также дополнительными требованиями, приведенными в гл. 6.2, 6.3, 6.4 и 7.1, 7.2, 7.3, 7.4.

6.1.31. Сечение нулевых рабочих проводников трехфазных питающих и групповых линий с лампами люминесцентными, ДРЛ, ДРИ, ДРИЗ, ДНаТ при одновременном отключении всех фазных проводов линии должно выбираться:

1. Для участков сети, по которым протекает ток от ламп с компенсированными пускорегулирующими аппаратами, равным фазному независимо от сечения.

2. Для участков сети, по которым протекает ток от ламп с некомпенсированными пускорегулирующими аппаратами, равным фазному при сечении фазных проводников менее или равном 16 мм2 для медных и 25 мм2 для алюминиевых проводов и не менее 50% сечения фазных проводников при больших сечениях, но не менее 16 мм2 для медных и 25 мм2 для алюминиевых проводов.

6.1.32. При защите трехфазных осветительных питающих и групповых линий предохранителями или однополюсными автоматическими выключателями при любых источниках света сечение нулевых рабочих проводников следует принимать равным сечению фазных проводников.

6.1.33. Защита осветительных сетей должна выполняться в соответствии с требованиями гл. 3.1 с дополнениями, приведенными в пп. 6.1.34 — 6.1.35, 6.2.9 — 6.2.11, 6.3.40, 6.4.10.

При выборе токов аппаратов защиты должны учитываться пусковые токи при включении мощных ламп накаливания и ламп ДРЛ, ДРИ, ДРИЗ, ДНаТ.

Аппараты защиты следует располагать по возможности группами в доступных для обслуживания местах. Рассредоточенная установка аппаратов защиты допускается при питании освещения от шинопроводов (п. 6.2.7).

6.1.34. Аппараты защиты независимо от требований пп. 6.2.7 и 6.2.8 в питающей осветительной сети следует устанавливать на вводах в здания.

6.1.35. Трансформаторы, используемые для питания светильников до 50 В, должны быть защищены со стороны высшего напряжения. Защита должна быть предусмотрена также на отходящих линиях низшего напряжения.

Если трансформаторы питаются отдельными группами от щитков и аппарат защиты на щитке обслуживает не более трех трансформаторов, то установка дополнительных аппаратов защиты со стороны высшего напряжения каждого трансформатора необязательна.

6.1.36. Установка предохранителей, автоматических и неавтоматических однополюсных выключателей в нулевых рабочих проводах в сетях с заземленной нейтралью запрещается.

Расчет длительно допустимого тока кабеля

Избежать слишком большого повышения температуры можно только при грамотном выборе кабеля. Нужный рабочий режим обеспечивает оптимальное сечение проводника.

Для выполнения данного условия особую важность имеют два критерия – потеря в пределах нормы напряжения и допускаемая величина нагревания. Первый параметр сказывается на состоянии воздушных коммуникаций, а второй – на магистралях под землей

Важно учитывать, сила тока Ip была сопоставима с аналогичной величиной по нагреву Iд. Таким образом обеспечивается соответствие конкретного показателя температуры проводника, протекающему в нем определенное время, любому току

Последний параметр представляет собой рассматриваемую нами величину.

В ходе расчета длительно допустимого тока кабеля принимается во внимание наибольшая положительная температура наружной среды. Базовое значение характеристики последнего значения в таблицах ПУЭ для установок в помещениях и на улице берется в пределах 250°С, и для подземной прокладки не менее 70-80 см – 150 градусов

Расчет сечения кабеля по мощности и длине

От длины кабеля зависит такая величина, как потеря напряжения. Одна из потенциальных неприятных ситуаций: на конце выбранного провода напряжение уменьшилось до минимума, чего недостаточно для обеспечения функциональности оборудования. В бытовых электрических сетях потери будут невелики, поэтому ими можно пренебречь. Достаточно использовать кабель с запасом 100-150 мм, что необходимо для упрощения коммутации. Если края провода подключаются к электрощитку, то запас должен быть выше, поскольку требуется монтаж автоматов.

Размещая кабель на более протяженных участках, нужно учитывать падение напряжения, которое рассчитывается по формуле, указанной выше. Любой проводник имеет определенное электрическое сопротивление, которое зависит от ряда характеристик:

  1. Длина провода, м. Чем больше длина, тем выше потери.
  2. Площадь поперечного сечения, кв. мм. Чем выше параметр, тем ниже падение напряжения.
  3. Удельное сопротивление материала (ищите в справочниках).

Максимальная длина кабеля для различных токовых нагрузок

Для расчета падения напряжения в обычных случаях достаточно перемножить сопротивление и допустимый ток. Фактическая величина может быть больше, но не более чем на 5%. Если она не вписывается в заданные рамки, придется использовать кабель с большим сечением.

Для расчета сечения кабеля по мощности и длине нужно действовать следующим образом:

  1. Рассчитайте ток по формуле I=P/(U*cosф), где P — мощность, U — напряжение, cosф — коэффициент. В бытовых электросетях данный коэффициент равняется 1, поэтому формула упрощается до I=P/U. В промышленности cosф представляет собой соотношение активной и полной мощностей (активная и реактивная).
  2. В таблице ПУЭ найдите подходящий кабель по сечению в зависимости от тока.
  3. Подсчитайте сопротивление проводника, используя формулу: R=ρ*l/S, где ρ — удельное сопротивление материала, из которого изготовлены жилы, l — длина кабеля, S — площадь поперечного сечения. Помните, что электрический ток движется в обе стороны, поэтому суммарное сопротивление равняется удвоенному значению, полученному из формулы выше.
  4. Для падения напряжения воспользуйтесь формулой ΔU=I*R
  5. Чтобы получить падение напряжения в процентах, разделите ΔU/U.

Таким образом, если итоговое значение не превышает 5%, можете оставить кабель с выбранным сечением. В противном случае его придется заменить на проводник с увеличенным сечением.

Длительно допустимые токи

Данная величина отличается в зависимости от выбранного кабеля и используемых токоведущих жил. Любой провод имеет определенную длительную температуру Tд, которая указывается в его паспорте. При такой температуре допустима продолжительная эксплуатация жил проводника, исключаются любые повреждения.

Для расчета длительно допустимого тока воспользуйтесь формулой:

Iд = √((Тд*S*Кт)/R),

где:

  • Ктп — коэффициент теплопередачи;
  • R — сопротивление;
  • S — сечение жилы.

На практике можно воспользоваться таблицами ПУЭ.

Длительно допустимые токи для медных проводов и кабелей

Традиции праздника

Таблица для определения допустимого тока

Расчеты, выполняемые вручную, не всегда позволяют определить длительно допустимые токовые нагрузки для кабелей и проводов. В ПУЭ содержится множество разных таблиц, в том числе и таблица токовых нагрузок, содержащая готовые значения, применительно к различным условиям эксплуатации.

Характеристики проводов и кабелей, приведенные в таблицах, дают возможность нормальной передачи и распределения электроэнергии в сетях с постоянным и переменным напряжением. Технические параметры кабельно-проводниковой продукции находятся в очень широком диапазоне. Они различаются собственной маркировкой, количеством жил и другими показателями.

Таким образом, перегрев проводников при постоянной нагрузке можно исключить путем правильного подбора длительно допустимого тока и расчетов отведения тепла в окружающую среду.

Формулы для расчета сечения кабеля и проводаФормулы для расчета сечения кабеля и провода

Расчет сечения провода по нагрузке

Допустимый ток для медных проводов

Расшифровка маркировки проводов и кабелей

Как определить сечение провода

Сопротивление медного провода

Калькулятор расчёта сечения кабеля

1.3.27

Увеличение количества линий или цепей сверх
необходимого по условиям надежности электроснабжения в целях удовлетворения
экономической плотности тока производится на основе технико-экономического
расчета. При этом во избежание увеличения количество линий или цепей
допускается двукратное превышение нормированных значений, приведенных в табл.
1.3.36.

Таблица 1.3.36. Экономическая плотность тока

Проводники Экономическая плотность тока, А/мм2, при числе часов использования
максимума нагрузки в год
более 1000 до 3000 более 3000 до 5000 более 5000
Неизолированные провода и шины:
медные 2,5 2,1 1,8
алюминиевые 1,3 1,1 1,0
Кабели с бумажной и провода с
резиновой и поливинилхлоридной изоляцией с жилами:
медными 3,0 2,5 2,0
алюминиевыми 1,6 1,4 1,2
Кабели с резиновой и
пластмассовой изоляцией с жилами:
медными 3,5 3,1 2,7
алюминиевыми 1,9 1,7 1,6

В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.

Данными указаниями следует руководствоваться также при
замене существующих проводов проводами большего сечения или при прокладке
дополнительных линий для обеспечения экономической плотности тока при росте
нагрузки. В этих случаях должна учитываться также полная стоимость всех работ
по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и
материалов.

Область применения. Определения

6.1.1. Настоящий раздел Правил распространяется на установки электрического освещения зданий, помещений и сооружений наружного освещения городов, поселков и сельских населенных пунктов, территорий предприятий и учреждений, на установки оздоровительного ультрафиолетового облучения длительного действия, установки световой рекламы, световые знаки и иллюминационные установки.

6.1.2. Электрическое освещение специальных установок (жилых и общественных зданий, зрелищных предприятий, клубных учреждений, спортивных сооружений, взрывоопасных и пожароопасных зон) кроме требований настоящего раздела должно удовлетворять также требованиям соответствующих глав разд. 7.

6.1.3. Питающая осветительная сеть — сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ.

6.1.4. Распределительная сеть — сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов, щитков и пунктов питания наружного освещения.

6.1.5. Групповая сеть — сеть от щитков до светильников, штепсельных розеток и других электроприемников.

6.1.6. Пункт питания наружного освещения — электрическое распределительное устройство для присоединения групповой сети наружного освещения к источнику питания.

6.1.7. Фаза ночного режима — фаза питающей или распределительной сети наружного освещения, не отключаемая в ночные часы.

6.1.8. Каскадная система управления наружным освещением — система, осуществляющая последовательное включение (отключение) участков групповой сети наружного освещения.

6.1.9. Провода зарядки светильника — провода, прокладываемые внутри светильника от установленных в нем контактных зажимов или штепсельных разъемов для присоединения к сети (для светильника, не имеющего внутри контактных зажимов или штепсельного разъема, — провода или кабели от места присоединения светильника к сети) до установленных в светильнике аппаратов и ламповых патронов.

Читайте также

6.1.13

Для питания осветительных приборов общего
внутреннего и наружного освещения, как правило, должно применяться напряжение
не выше 220 В переменного или постоянного тока. В помещениях без повышенной
опасности напряжение 220 В может применяться для всех стационарно установленных
осветительных приборов вне зависимости от высоты их установки.

Напряжение 380 В для питания осветительных приборов общего
внутреннего и наружного освещения может использоваться при соблюдении следующих
условий:

1. Ввод в осветительный прибор и независимый, не встроенный
в прибор, пускорегулирующий аппарат выполняется проводами или кабелем с изоляцией
на напряжение не менее 660 В.

2. Ввод в осветительный прибор двух или трех проводов
разных фаз системы 660/380 В не допускается.

1.3.28

Проверке по экономической плотности тока не
подлежат:

сети промышленных предприятий и сооружений напряжением до 1
кВ при числе часов использования максимума нагрузки предприятий до 4000-5000;

ответвления к отдельным электроприемникам напряжением до 1
кВ, а также осветительные сети промышленных предприятий, жилых и общественных
зданий;

сборные шины электроустановок и ошиновка в пределах
открытых и закрытых распределительных устройств всех напряжений;

проводники, идущие к резисторам, пусковым реостатам и т.
п.;

сети временных сооружений, а также устройства со сроком
службы 3-5 лет.

6.1.16

Для питания светильников местного стационарного
освещения с лампами накаливания должны применяться напряжения: в помещениях без
повышенной опасности — не выше 220 В и в помещениях с повышенной опасностью и
особо опасных — не выше 50 В. В помещениях с повышенной опасностью и особо
опасных допускается напряжение до 220 В для светильников, в этом случае должно
быть предусмотрено или защитное отключение линии при токе утечки до 30 мА, или
питание каждого светильника через разделяющий трансформатор (разделяющий
трансформатор может иметь несколько электрически не связанных вторичных
обмоток).

Для питания светильников местного освещения с
люминесцентными лампами может применяться напряжение не выше 220 В. При этом в
помещениях сырых, особо сырых, жарких и с химически активной средой применение
люминесцентных ламп для местного освещения допускается только в арматуре
специальной конструкции.

Лампы ДРЛ, ДРИ, ДРИЗ и ДНаТ могут применяться для местного
освещения при напряжении не выше 220 В в арматуре, специально предназначенной
для местного освещения.

30 сентября 2021 года

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий