Обзор линейки драйверов затвора компании infineon

Режимы короткого замыкания

Основной вспомогательной функцией драйверов является защита от перегрузки по току. Для лучшего понимания работы схемы защиты необходимо проанализировать поведение силовых транзисторов в режиме короткого замыкания (или КЗ — привычная для разработчиков аббревиатура).

Причины возникновения токовых перегрузок разнообразны. Чаще всего это аварийные случаи, такие как пробой на корпус или замыкание нагрузки.

Перегрузка может быть вызвана и особенностями схемы, например переходным процессом или током обратного восстановления диода оппозитного плеча. Такие перегрузки должны быть устранены схемотехническими методами: применением цепей формирования траектории (снабберов), выбором резистора затвора, изоляцией цепей управления от силовых шин и др.

Включение транзистора при коротком замыкании в цепи нагрузки

Принципиальная схема и эпюры напряжения, соответствующие этому режиму, приведены на рис. 1 а и 2. Все графики получены при анализе схем с помощью программы PSpice. Для анализа были использованы усовершенствованные модели транзисторов MOSFET фирмы International Rectifier и макромодели IGBT и драйверов, разработанные автором статьи.

Рис. 1. Режимы короткого замыкания

Максимальный ток в цепи коллектора транзистора ограничен напряжением на затворе и крутизной транзистора. Из-за наличия емкости в цепи питания внутреннее сопротивление источника питания не влияет на ток КЗ. В момент включения ток в транзисторе нарастает плавно из-за паразитной индуктивности LS в цепи коллектора (средний график на рис. 2). По этой же причине напряжение имеет провал (нижний график). После окончания переходного процесса к транзистору приложено полное напряжение питания, что приводит к рассеянию огромной мощности в кристалле. Режим КЗ необходимо прервать через некоторое время, необходимое для исключения ложного срабатывания. Это время обычно составляет 1–10 мкс. Естественно, что транзистор должен выдерживать перегрузку в течение этого времени.


Рис. 2

Короткое замыкание нагрузки у включенного транзистора

Принципиальная схема и эпюры напряжения, соответствующие этому режиму, приведены на рис. 1 б и 3. Как видно из графиков, процессы в этом случае происходят несколько иначе. Ток, как и в предыдущем случае, ограниченный параметрами транзистора, нарастает со скоростью, определяемой паразитной индуктивностью Ls (средний график на рис. 3). Прежде чем ток достигнет установившегося значения, начинается рост напряжения Vce (нижний график). Напряжение на затворе возрастает за счет эффекта Миллера (верхний график). Соответственно возрастает и ток коллектора, который может превысить установившееся значение. В этом режиме кроме отключения транзистора необходимо предусмотреть и ограничение напряжения на затворе.


Рис. 3

Как было отмечено, установившееся значение тока КЗ определяется напряжением на затворе. Однако уменьшение этого напряжения приводит к повышению напряжения насыщения и, следовательно, к увеличению потерь проводимости. Устойчивость к КЗ тесно связана и с крутизной транзистора. Транзисторы IGBT с высоким коэффициентом усиления по току имеют низкое напряжение насыщения, но небольшое допустимое время перегрузки. Как правило, транзисторы, наиболее устойчивые к КЗ, имеют высокое напряжение насыщения и, следовательно, высокие потери.

Допустимый ток КЗ у IGBT гораздо выше, чем у биполярного транзистора. Обычно он равен 10-кратному номинальному току при допустимых напряжениях на затворе. Ведущие фирмы, такие как International Rectifier, Siemens, Fuji, выпускают транзисторы, выдерживающие без повреждения подобные перегрузки. Этот параметр оговаривается в справочных данных на транзисторы и называется Short Circuit Ration, а допустимое время перегрузки — tsc —Short Circuit Withstand Time.

Быстрая реакция схемы защиты вообще полезна для большинства применений. Использование таких схем в сочетании с высокоэкономичными IGBT повышают эффективность работы схемы без снижения надежности.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

В современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Возможно, вам также будет интересно

Драйверы International Rectifier Фирма International Rectifier (IR) давно и хорошо известна в России как производитель силовых транзисторов и интегральных микросхем управления. Выпускаемые IR драйверы предназначены для работы в любых конфигурациях силовых каскадов в диапазоне мощности до 3–5 кВт. Технология производства микросхем управления HVIC вобрала в себя все достижения высоковольтных технологий, поэтому будет логично начать обзор

Одним из методов цифрового управления двухфазным асинхронным двигателем является частотный. Сущность метода заключается в формировании разнополярных импульсов постоянной длительности, угловая частота следования которых зависит от кода управления и подключения обмоток фаз статора двигателя к системе управления. На рис. 1 приведена одна из возможных структурных схем устройства, реализующего частотный метод управления двухфазным асинхронным двигателем. Схема обеспечивает

Как это покажется странным, но некоторым разработчикам такие микросхемы неизвестны. На вопрос, заданный знакомым инженерам: «А что значит» токовое»? — самым внятным был совет почитать datasheet.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.
  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

Устройство и принцип работы полевого моп (mosfet) транзистора

Устройство и принцип работы полевого моп (mosfet) транзистора

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

  • исток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы (Транзистор- это просто 16)

Полевые транзисторы (Транзистор- это просто 16)

Семейство IR2560xSPBF

Новое семейство бюджетных двухканальных драйверов IR2560xS на 600 В выпускается в привычном корпусе SOIC8. Сейчас оно насчитывает шесть представителей (рисунок 1, таблица 1).

Рис. 1. Новые драйверы семейства IR2560xS и типовые схемы их включения

Таблица 1. Параметры драйверов семейства IR2560xS

Наименование Конфигурация Напряжение смещения, В Iвых+/Iвых-, А Tвкл/выкл (тип.), нс DeadTime, нс Особенности Корпус
IR25600SPBF Сдвоенный драйвер нижнего плеча 1,5/1,5 85/65 SOIC8
IR25601SPBF Полумостовой драйвер 600 0,06/0,13 220/220 100 UVLO SOIC8
IR25602SPBF Полумостовой драйвер 600 0,13/0,27 680/150 520 ShutDown, UVLO SOIC8
IR25603SPBF Автоколебательный полумостовой драйвер 600 0,18/0,26 1200 улучшенная ESD защита SOIC8
IR25604SPBF Драйвер верхнего и нижнего плечей 600 0,2/0,35 220/200 UVLO SOIC8
IR25606SPBF Полумостовой драйвер 600 0,2/0,35 220/200 540 UVLO SOIC8
IR25607SPBF Драйвер верхнего и нижнего плечей 600 2,0/2,0 120/94 ShutDown, UVLO SOIC16

IR25600SPBF – сдвоенный драйвер нижнего плеча. Имеет наибольшее значение выходных токов и наименьшую задержку включения по сравнению с другими представителями семейства.

IR25601SPBF – полумостовой драйвер. Имеет наименьшее значение выходных токов и достаточно большие задержки включения. В драйвер интегрирована логика защиты от одновременного включения силовых транзисторов и DeadTime 100 нс. Одним из основных преимуществ данного изделия является его низкая цена.

IR25602SPBF – полумостовой драйвер. Имеет один вход для управления двумя выходными каналами. Выходной канал верхнего плеча работает в фазе со входным сигналом, в то время как канал нижнего плеча работает в противофазе с дополнительной задержкой DeadTime 520 нс. Особенностью данной микросхемы является наличие входа SD (ShutDown). При его активном низком уровне работа обоих выходных каналов запрещена. IR25603SPBF – автоколебательный полумостовой драйвер, предназначенный для автономного управления полумостовой схемой. Частота коммутаций задается внешней R-C-цепочкой, а типовое значение DeadTime составляет 1,2 мкс.

IR25604SPBF – драйвер верхнего и нижнего плечей. Схема включения данной микросхемы совпадает со схемами включения перечисленных выше полумостовых драйверов

Однако имеется важное отличие в логике работы: микросхема предназначена для работы с независимыми силовыми транзисторами. По этой причине внутренний модуль, запрещающий одновременное включение, в микросхеме отсутствует

Транзисторы могут работать как в фазе, так и в противофазе.

IR25606SPBF – полумостовой драйвер. По сравнению с IR25601SPBF, данный драйвер может работать с более мощными транзисторами. Для этого были увеличены значения выходных токов и значение DeadTime.

IR25607SPBF – драйвер верхнего и нижнего плечей, который можно с успехом применять в связке с мощными транзисторами – выходной ток этого драйвера составляет 2 А, что позволяет эффективно переключать транзисторы, имеющие высокие емкости затвора.

Микросхемы не требуют дополнительного источника питания – питающее напряжение 15,8 В задается интегрированным стабилитроном. Ток через стабилитрон ограничивается внешним последовательным резистором, подключенным к общей положительной шине питания с напряжением до 600 В.

Доработка схемы

Если вход схемы подключен к push-pull выходу, то особой доработки не
требуется. Рассмотрим случай, когда вход — это просто выключатель,
который либо подтягивает базу к питанию, либо оставляет её «висеть в
воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё
один резистор, выравнивающий напряжение между базой и эмиттером.

Кроме того, нужно помнить, что если нагрузка индуктивная, то
обязательно нужен защитный диод. Дело в том, что энергия, запасённая
магнитным полем, не даёт мгновенно уменьшить ток до нуля при
отключении ключа. А значит, на контактах нагрузки возникнет напряжение
обратной полярности, которое легко может нарушить работу схемы или
даже повредить её.

Совет касательно защитного диода универсальный и в равной степени
относится и к другим видам ключей.

Если нагрузка резистивная, то диод не нужен.

В итоге усовершенствованная схема принимает следующий вид.

Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем
сопротивление R1, чтобы образованный этими резисторами делитель не
понижал слишком сильно напряжение между базой и эмиттером.

Для нагрузки в виде реле можно добавить ещё несколько
усовершенствований. Оно обычно кратковременно потребляет большой ток
только в момент переключения, когда тратится энергия на замыкание
контакта. В остальное время ток через него можно (и нужно) ограничить
резистором, так как удержание контакта требует меньше энергии.

Для этого можно применить схему, приведённую ниже.

В момент включения реле, пока конденсатор C1 не заряжен, через него
идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле
перейдёт в режим удержания контакта), ток будет идти через резистор
R2. Через него же будет разряжаться конденсатор после отключения реле.

Ёмкость C1 зависит от времени переключения реле. Можно взять,
например, 10 мкФ.

С другой стороны, ёмкость будет ограничивать частоту переключения
реле, хоть и на незначительную для практических целей величину.

Датчики тока

Allegro MicroSystemsACS71XACS75X

Кроме обычного измерения уровня тока микроконтроллером, разумно создать схему аппаратной защиты от превышения критического уровня тока. Для измерения уровня тока микроконтроллер тратит некоторое время. Кроме того, ток измеряют периодически через некоторое время. Такие задержки, а также возможные программные ошибки могут создать ситуацию, когда критический ток успевает вывести из строя устройство еще до того, как придет момент следующего измерения. Схема должна отключать силовые ключи когда ток превышает критическое значение, независимо от работы микроконтроллера. Для реализации такой схемы обычно используют компаратор, на вход которого подают сигнал с датчика тока и опорный сигнал. При превышении допустимого тока компаратор срабатывает. Выход компаратора используют как дискретный сигнал в логических схемах, аварийно отключают ключи. Такая реализация имеет наименьшую задержку.

Некоторые драйверы имеют дополнительный вход для аварийного отключения ключей, что значительно упрощает создание безопасной схемы регулятора (ESC) безколесторного двигателя (BLDC).

Успехов!

P.S. Этой публикацией я завершаю цикла статей о трехфазные бесколлекторных двигателях, которого начал год назад. Это не означает, что больше не будет ни слова о бесколлекторных двигателях. Статьи об электродвигателях еще будут, но это будут отдельные материалы, конкретные реализации и т.д. Надеюсь, что моя работа не была напрасной.

Статьи по бесколлекторным моторам:

  • Что такое Бесколлекторный мотор?
  • Устройство бесколлекторного мотора
  • Как управлять бесколлекторным мотором с датчиками Холла (Sensored brushless motors)
  • Как управлять бесколлекторным мотором без датчиков (Sensorless BLDC)
  • Запуск бездатчикового бесколлекторного мотора (Sensorless BLDC)
  • Определение положения ротора бесколлекторника в остановленном состоянии
  • Контроллер бесколлекторного мотора. Структура ESC
  • Схема контроллера бесколлекторного мотора (ESC)
  • Силовая часть контроллера бесколлекторного мотора
  • Литература по бесколлекторнм моторам
  • Примеры на С для управления бесколлекторными моторами
  • Схема контроллера бесколлекторного мотора BLDC, PMSM на микроконтроллере STM32
  • STM32. Управление бесколлекторным мотором (BLDC)
  • STM32. Пример регулятора для бесколлекторного PMSM
  • Видео о бесколлекторных моторах. BLDC, PMSM, векторное управление

Порядок действий

Установка счетчика – это полдела, а вот его пломбирование должно быть обязательным. Только после всех этих действий расчет за воду будет начисляться не по тарифу, а согласно показаниям счетчика. Чтобы передать показания, необходимо звонить в соответствующие органы (водоканал).

Самостоятельно заниматься всеми этими процедурами не стоит, все действия можно доверить юридическим лицам, которые смогут предоставить разрешение на выполнение работ. Если такого акта нет, все действия будут считаться незаконными.

Пломбирует счетчик специалист, которого можно вызвать, позвонив в компанию, занимающуюся соответствующими работами. Чтобы запломбировать прибор правильно, нужно соблюдать основной порядок действий.

Грамотная схема пломбировки:

  • Первым делом нужно подать заявку в управляющую компанию или водоканал на опломбирование;
  • После подачи заявления необходимо посетить инспектора в назначенный им час и день;
  • Дождаться прихода специалиста;
  • Инспектор проводит осмотр прибора на его исправность, правильность установки и наличие всех соответствующих документов;
  • Проводится опломбировка счетчика;
  • Инспектор выдает уже заполненный акт приема, который допускает прибор к эксплуатации.

Акт приема необходимо делать в двух экземплярах. Оригинал остается у владельца квартиры, а копия передается в водоканал, где счетчик ставится на учет.

Семейство высоковольтных драйверов полумостовой схемы L639x

На первый взгляд, микросхемы этого семейства можно считать развитием микросхемы L6384E. Однако анализируя функциональные возможности драйверов семейства L639x, признать L6384E в качестве прототипа весьма сложно (разве что за отсутствием других драйверов полумоста в линейке STMicroelectronics). В таблице 2 приводятся состав и параметры микросхем семейства L639x.

Таблица 2. Параметры драйверов семейства L639x

Наименование

Voffcet, В

Io+, мА

Io-, мА

Ton, нс

Toff, нс

Tdt, мкс

Тип

Smart SD

ОУ

Комп.

Управление

L6390

600

270

430

125

125

0,15…2,7

HB

есть

есть

есть

HIN/-LIN/-SD

L6392

600

270

430

125

125

0,15…2,7

HB

есть

HIN/-LIN/-SD

L3693

600

270

430

125

125

0,15…2,7

HB

есть

PH/-BR/-SD

Основная особенность микросхем данного семейства — наличие дополнительных встроенных элементов: операционного усилителя или компаратора (для L6390 —
и того, и другого). На рис. 4 показана структура и схема включения микросхемы L6390.

Рис. 4.

Какие преимущества дают дополнительные элементы в практических приложениях? Операционные усилители (в L6390 и L6392
) предназначены для измерения тока, протекающего через нагрузку. Причем, поскольку доступны оба вывода (OP+ и OP-), возникает возможность формировать на соответствующем выходе микросхемы и абсолютное значение, и отклонение от некоторого опорного напряжения (соответствующего, например, максимально допустимому значению). В драйвере L6390 компаратор выполняет вполне конкретную функцию «интеллектуального отключения» (Smart Shutdown
) — т.е. при превышении максимально допустимого тока в нагрузке компаратор начинает влиять на логику работы драйвера и обеспечивает плавное отключение нагрузки. Скорость отключения задается RC-цепью, подключенной к выводу SD/OD. Причем, поскольку данный вывод является двунаправленным, то он может являться как выходом индикации ошибки для управляющего микроконтроллера, так и входом для принудительного отключения.

Все микросхемы содержат логику защиты от одновременного открытия транзисторов верхнего и нижнего плеча и, соответственно, формирования паузы при изменении состояния выхода. Время паузы T DT для всех микросхем семейства программируемое и определяется номиналом резистора, подключенного к выводу DT.

Логика управления в микросхемах L6390 и L6392
однотипная — сигналы HIN, LIN и SD.

Отличие микросхемы L6393
от L6390 и L6392 заключается не только в отсутствии операционного усилителя. Компаратор в L6393 независим от остальных элементов схемы и, в принципе, может быть использован в произвольных целях. Однако наиболее разумное применение — контроль тока и формирование признака превышения (по аналогии с выводом DIAG в микросхеме L6386E, рассмотренной выше). Основное отличие заключается в логике управления — комбинация управляющих сигналов PHASE, BRAKE и SD является достаточно редкой (если не уникальной) для микросхем данного класса. Циклограмма управления представлена на рис. 5.

Рис. 5.

Циклограмма ориентирована на управление непосредственно от сигналов двигателя, например, постоянного тока и реализует т.н. механизм отложенного останова. Предположим, что BRAKE — это сигнал на исполнительный механизм, т.е. его низкий уровень включает двигатель независимо от состояния сигнала PHASE. Опять же предположим, что PHASE — это сигнал с датчика обратной связи, например, с частотного датчика, установленного на валу двигателя, или концевого датчика, обозначающего точку останова. Тогда высокий уровень сигнала BRAKE остановит двигатель не немедленно, а только по положительному перепаду сигнала PHASE. Скажем, если речь идет о приводе каретки, то сигнал останова (высокий уровень BRAKE) может быть подан заблаговременно, но останов произойдет только в конкретной точке (при срабатывании датчика PHASE).

На рис. 6 показана структура и схема включения микросхемы L6393.

Рис. 6.

О параметрах.
Значения выходных токов I O+ (I O-), равные 270/430 мА, уступают микросхемам компании International Rectifier (у которых, как отмечалось выше, типичными являются 290/600 мА). Тем не менее, динамические параметры T ON /T OFF (125/125 нс) превосходят (и часто существенно) все микросхемы семейства IRS.

Выводы по семейству L639x.
При достаточно высоких количественных характеристиках, что само по себе позволяет отнести семейство L639x к группе лидеров отрасли, дополнительные функции придают качественный скачок, поскольку позволяют реализовать в одной микросхеме те функции, которые ранее реализовывались с использованием ряда дополнительных компонентов.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий