Использование относительных единиц при расчете систем электроприводов

Электроизоляционные материалы (диэлектрики)

Электроизоляционные материалы (диэлектрики) имеют очень малую удельную электрическую проводимость. Они бывают газообразные, жидкие и твердые. Особенно большим разнообразием отличаются твердые диэлектрики. К ним относятся резина, сухое дерево, керамические материалы, пластмассы, картон, пряжа и др. материалы. В качестве конструкционных материалов применяются текстолит и гетинакс. Текстолит это диэлектрический материал основой которого является ткань, пропитанная феноло-формальдегидной смолой. Гетинакс это бумага, пропитанная феноло-формальдегидной смолой.

1 кВт сколько Вт: понятие физических величин

Все бытовые приборы в качестве источника питания используют электроэнергию. В техническом паспорте каждого девайса указывается номинальная мощность без учета условий и режимов его работы. Для маломощных устройств данный параметр указывается в ваттах, а для более мощных применяется величина киловатт. Мощность устройства указывает на скорость преобразования или потребления энергии. Это отношение работы ко времени, в течение которого она выполнялась. Единица измерения мощности получила свое название благодаря ирландскому изобретателю Джеймсу Уатту, который является создателем первой паровой машины.

Потребление электроэнергии приборами в режиме ожидания (кВт.ч/год).

Использование ватта не ограничивается сферой электротехники. Данная единица применяется для определения крутящего момента силовых установок, потока акустической и тепловой энергии, интенсивности ионизирующих излучений. Чтобы понимать, 1 Вт — это много или мало, можно рассмотреть такие примеры. Передатчики мобильных телефонов имеют мощность 1 Вт. Для ламп накаливания данный параметр равен 25-100 Вт, для холодильника или телевизора 50-55 Вт, пылесоса – 1000 Вт, а для стиральной машины – 2500 Вт.

Чтобы не использовать множество нулей, следует знать, сколько Ватт в 1 кВт. Приставка «кило» является кратной тысяче. Она предусматривает умножение величины на одну тысячу. Таким образом, 1 кВт в Вт равен 1000.

Существует также понятие виловатт-час (кВт*ч). Это величина, которая указывает на количество электрической энергии, которую прибор потребляет за единицу времени. Другими словами можно сказать, что кВт-час — это количество работы, которую выполняет прибор за один час. Для понимания зависимости этих величин, рассмотрим пример. Потребляемая мощность телевизора равна 200 Вт. Если он будет работать на протяжении 1 часа, прибор израсходует 200 Вт*1 час = 200 Вт*ч. Если он будет работать 3 часа, то за это время он потратит 200 Вт*3 часа=600 Вт*ч.

Активные элементы схемы замещения

Любой источник энергии можно представить в виде источника ЭДС или источника тока. Источник ЭДС — это источник, характеризующийся электродвижущей силой и внутренним сопротивлением.Идеальным называется источник ЭДС, внутреннее сопротивление которого равно нулю.

На рис. 1.3 изображен источник ЭДС, к зажимам которого подключено сопротивление R.
Ri — внутреннее сопротивление источника ЭДС.
Стрелка ЭДС направлена от точки низшего потенциала к точке высшего потенциала, стрелка напряжения на зажимах источника U12 направлена в противоположную сторону от точки с большим потенциалом к точке с меньшим потенциалом.

Рис. 1.3

Ток     

   (1.2)

     (1.3)

У идеального источника ЭДС внутреннее сопротивление Ri = 0, U12 = E.
Из формулы (1.3) видно, что напряжение на зажимах реального источника ЭДС уменьшается с увеличением тока. У идеального источника напряжение на зажимах не зависит от тока и равно электродвижущей силе.
Возможен другой путь идеализации источника: представление его в виде источника тока. Источником тока называется источник энергии, характеризующийся практически постоянной величиной тока и низкой внутренней проводимостью.

Идеальным называется источник тока, внутренняя проводимость которого равна нулю, а сопротивление — бесконечности.

Поделим левую и правую части уравнения (1.2) на Ri и получим

,

где    — ток источника тока;
               — внутренняя проводимость.

У идеального источника тока gi = 0 и J = I.

Ток идеального источника не зависит от сопротивления внешней части цепи. Он остается постоянным независимо от сопротивления нагрузки. Условное изображение источника тока показано на рис. 1.4.

Любой реальный источник ЭДС можно преобразовать в источник тока и наоборот. Источник энергии, внутреннее сопротивление которого мало по сравнению с сопротивлением нагрузки, приближается по своим свойствам к идеальному источнику ЭДС.

Рис. 1.4

Если внутреннее сопротивление источника велико по сравнению с сопротивлением внешней цепи, он приближается по своим свойствам к идеальному источнику тока.

1.4.Основные определения, относящиеся к схемам

Различают разветвленные и неразветвленные схемы.
На рис. 1.5 изображена неразветвленная схема.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Разветвленная схема — это сложная комбинация соединений пассивных и активных элементов.
На рис. 1.6 показана разветвленная схема, содержащая два источника ЭДС и 5 сопротивлений.
Сопротивления соединительных проводов принимают равными нулю.

Рис. 1.5


Ветвь

это участок электрической цепи, по которому проходит один и тот же ток.


узел

это место соединения трех и более ветвей электрической цепи.

Узел, в котором сходятся две ветви, называется устранимым, то есть топологически это не узел. Топологическим, настоящим или неустранимым узлом является такой, в котором соединены три и большее число ветвей. Узел в схеме обозначается точкой.

  Последовательным называют такое соединение участков цепи, при котором через все участки проходит одинаковый ток. При параллельном соединении все участки цепи присоединяются к одной паре узлов, находятся под одним и тем же напряжением.
Любой замкнутый путь, включающий в себя несколько ветвей, называется контуром.

Рис. 1.6

Мгновенная электрическая мощность

В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q =  U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:

PF1-F2 = U * I.

Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:

P(t) = U(t) * I(t).

Аналогичные выводы делают с учетом соответствующей величины сопротивления:

P (t) = (I (t))2 * R = (U(t))2/ R.

Химические свойства

Электрический ток

Электрический ток (I) это направленное движение свободных носителей электрического заряда. В металлах свободными носителями заряда являются электроны, в плазме, электролите — ионы.

Единица измерения силы тока – ампер (А). Условно за положительное направление тока во внешней цепи принимают направление от положительно заряженного электрода (+) к отрицательно заряженному (-). Если направление тока в ветви неизвестно, то его выбирают произвольно. Если в результате расчета режима цепи, ток будет иметь отрицательное значение, то действительное направление тока противоположно произвольно выбранному.

История

Основы для развития электротехники заложили обширные экспериментальные исследования и создание теорий электричества и магнетизма. Широкое практическое применение электричества стало возможно только в XIX веке с появлением вольтова столба, что позволило как найти приложение открытым законам, так и углубить исследования. В этот период вся электротехника базировалась на постоянном токе.

В конце XIX века, с преодолением проблемы передачи электроэнергии на большие расстояния за счёт использования переменного тока и созданием трёхфазного электродвигателя, электричество повсеместно внедряется в промышленность, а электротехника приобретает современный вид, включающий множество разделов, и оказывает влияние на смежные отрасли науки и техники.

Примечания

  1. M. Planck: «Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum», Verhandlungen der Deutschen physikalischen Gesellschaft 2 (1900) Nr. 17, S. 237—245, Berlin (vorgetragen am 14. Dezember 1900)
  2. Возможно, что буква S употребляется для обозначения как первая буква имени Сади Карно, которого Рудольф Клаузиус, первый кто употребил обозначение, считал важнейшим исследователем теории теплоты. См.: Clausius, Rudolf (1850). On the Motive Power of Heat, and on the Laws which can be deduced from it for the Theory of Heat. Poggendorff’s Annalen der Physick, LXXIX (Dover Reprint). ISBN 0-486-59065-8.

Работа электрического тока

Проходя по цепи, ток совершает работу. Как например, водный поток направить течь, на лопасти генератора, то пон будет совершать работу, вращая лопасти. Так же и ток совершает работу, двигаясь по проводнику. И эта работа тем выше, чем больше величина сила тока и напряжения. Работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока, напряжению и времени действия тока. Работа электрического тока обозначается латинским символом A. Так как, произведение I×U есть мощность, то формулу работы электрического тока можно записать: A = P×t

Единицей измерения работы электрического тока, является ватт в секундах или в джоулях. Поэтому, если мы хотим вычислить, какую работу осуществил ток, идя по цепи в течение временного интервала, мы должны умножить мощность на время Рассмотрим практический пример, через реостат с сопротивлением 5 Ом идет ток силой 0,5 А. Нужно вычислить, какую работу совершит ток в течение четырех часов. Работа в течение одной секунды будет: P=I2R = 0,52×5= 0,25×5 =1,25 Вт,

Тогда за 4 часа t=14400 секунд. Следовательно: А = Р×t= 1,25×14 400= 18 000 вт-сек. Ватт-секунда или один джоуль считаетсяя слишком малой велечиной для измерения работы. Поэтому на практике применяют единицу, называемую ватт-час (втч). Один ватт-час это эквивалентно 3 600 Дж. В электротехнике используются и еще большие единицы, гектоваттчас (гвтч) и киловаттчас (квтч): 1 квтч =10 гвтч =1000 втч = 3600000 Дж, 1 гвтч =100 втч = 360 000 Дж, 1 втч = 3 600 Дж.

Мощность электрического тока

Как рассчитать сопротивление и мощность

Допустим, требуется подобрать токоограничивающий резистор для блока питания схемы освещения. Нам известно напряжение питания бортовой сети «U», равное 24 вольта и ток потребления «I» в 0,5 ампера, который нельзя превышать. По выражению (9) закона Ома вычислим сопротивление «R». R=24/0,5=48 Ом. На первый взгляд номинал резистора определен. Однако, этого недостаточно. Для надежной работы семы требуется выполнить расчет мощности по току потребления.

Согласно действию закона Джоуля — Ленца активная мощность «Р» прямо пропорционально зависит от тока «I», проходящего через проводник, и приложенного напряжения «U». Эта взаимосвязь описана формулой Р=24х0,5=12 Вт.

Проведенный расчет мощности резистора по току его потребления показывает, что в выбираемой схеме надо использовать сопротивление величиной 48 Ом и 12 Вт. Резистор меньшей мощности не выдержит приложенных нагрузок, будет греться и со временем сгорит. Этим примером показана зависимость того, как на мощность потребителя влияют ток нагрузки и напряжение в сети.

ОСНОВНЫЕ ФОРМУЛЫ ЭЛЕКТРОТЕХНИКИ

Математическая зависимость основных величин для закона Ома приведена в табл.1

Таблица 1. закон Ома для участка цепи

Закон Ома для замкнутой цепи (рис. 1) , где Е – эдс источника тока; — внутреннее сопротивление источника тока; Z – суммарное сопротивление внешней цепи.

Первый закон Кирхгофа: алгебраическая сумма токов в узловой точке электрической цепи рана нулю: (рис. 2,а).

Рис.1 замкнутая цепь(по закону Ома)
Рис.2 схемы к закону Кирхгофа: а — узловая точка (к I закону Кирхгофа), б – замкнутый контур (ко II закону Кирхгофа)

Таблица 2. формулы для определения сопротивлений, индуктивностей и емкостей

Таблица 9. переходные процессы при включении резисторов R и конденсаторов С

Второй закон Кирхгофа: алгебраическая сумма всех эдс в замкнутом контуре равна алгебраической сумме падений напряжений на всех элементах, составляющих цепь: (рис. 2,б)

Закон сложения сопротивлений и проводимостей: при последовательном соединении суммируются сопротивления, при параллельном соединении – проводимости. Расчетные формулы для определения сопротивления R, индуктивностей L и емкостей С приведены в таблице 2.

Переходные процессы возникают в электрической цепи, содержащей индуктивности L и емкости С в период перехода от одного установившегося режима к другому за счет постепенного изменения энергий электрического и магнитного полей.

Первый закон коммутации: в начальный момент после коммута­ции ток в индуктивности остается таким же, каким он был непосред­ственно перед коммутацией, а затем плавно изменяется.

Второй закон коммутации:в начальный момент после коммута­ции напряжение на емкости остается таким же, каким было непо­средственно перед коммутацией, а затем плавно изменяется. Расчет­ные формулы напряжения и тока при замыкании цепи приведены втабл. 3.

ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Рис. 3. синусоидальное колебание

Мгновенные значения электрических колебаний переменного тока и напряжения математически записываются в виде ; где , где , -амплитуда колебаний; — круговая частота; t – время; — начальная фаза. Графическое колебание показано на рис. 3. Основные зависимости параметров синусоидальных колебаний приведены в табл. 4.

Таблица 4. основные зависимости параметров синусоидальных колебаний

Параметр Зависимость
Круговая частота, рад/с
Частота колебаний, Гц
Период колебаний, с

Действующие значения синусоидальных тока и напряжения определят по формулам или по показаниям прибора

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Электрическая цепь состоит из источника электрической энергии, соединительных проводов и приемников электрической энергии.

Электрический ток, протекающий в электрической цепи, представляет собой направленный поток электронов, возникающий под действием электрического поля.

Силу тока измеряют в амперах (а). Один ампер — это сила то­ка, при которой через поперечное сечение проводника каждую секунду проходит один кулон электричества. В одном кулоне содержится 6,3·1018 зарядов электрона.

Электродвижущая сила (э. д. с.) источника электрической энергии включенного в цепь, определяется работой, совершаемой им при перемещении электрических зарядов по всей цепи.

Напряжение— часть электродвижущей силы, определяемая работой источника электрической энергии, которая совершается им при перемещении электрических зарядов на участке цепи. Мощность тока определяется работой, производимой (или потребляемой) в одну секунду, и измеряется в ваттах (вт).

Основные и производные формулы для расчета электрических цепей приведены в табл. 5 и 6.

Таблица 5

Основные формулы



infopedia.su

Что такое мощность постоянного тока

Приведенные выше формулы без корректирующих коэффициентов применяют для расчета схем с подключением к источнику постоянного тока. С помощью обычного мультиметра при соответствующем положении переключателя определяют сопротивление подключенной нагрузки. Последовательным подключением измерительного прибора проверяют силу тока, параллельным – напряжение. Чтобы выяснить, сколько будет потреблять такая схема, пользуются формулами:

P = I * U или P = U2/ R = I2 * R.

Так можно измерять постоянный ток мультиметром

К сведению. При подключении АКБ в режиме зарядки направления тока в источнике и нагрузке совпадают. Мощность электрическая в этом случае потребляется нагрузкой. При противоположном направлении токов энергия поглощается источником ЭДС.

1.2. Пассивные элементы схемы замещения

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.
В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

Сопротивление проводника определяется по формуле

      (1.1)

где l — длина проводника;
S — сечение;
ρ — удельное сопротивление.


Проводимость

это величина, обратная сопротивлению.

Сопротивление измеряется в омах (Ом), а проводимость — в сименсах (См).

Сопротивление пассивного участка цепи в общем случае определяется по формуле

где P — потребляемая мощность;
I — ток.
Сопротивление в схеме замещения изображается следующим образом:


Индуктивность

это идеальный элемент схемы замещения, характеризующий способность цепи накапливать магнитное поле. Полагают, что индуктивностью обладают только индуктивные катушки. Индуктивностью других элементов электрической цепи пренебрегают.

Индуктивность катушки, измеряемая в генри , определяется по формуле

где W — число витков катушки;
Ф — магнитный поток катушки, возбуждаемый током i.

На рисунке показано изображение индуктивности в схеме замещения.


Емкость

это идеальный элемент схемы замещения, характеризующий способность участка электрической цепи накапливать электрическое поле. Полагают, что емкостью обладают только конденсаторы. Емкостью остальных элементов цепи пренебрегают.

Емкость конденсатора, измеряемая в фарадах (Ф), определяется по формуле:

где q — заряд на обкладках конденсатора;
Uс — напряжение на конденсаторе.

На рисунке показано изображение емкости в схеме замещения

Автоматические откатные ворота консольного типа

Такие ворота устанавливают там, где необходимо проведение проверки или досмотра транспортных средств и людей, когда въезд или вход на охраняемую территорию ограничен. Такие устройства применяются для охраны частных или производственных территорий. Принцип работы автоматических откатных ворот консольного типа заключается в том, что в процессе открытия они двигаются в правую или левую сторону, направляясь вдоль существующего ограждения. Движение происходит по укреплённым в фундаменте рельсовым опорам, по которым перекатываются прикреплённые внизу полотна ролики. Когда ворота закрыты, то между нижней кромкой полотна и поверхностью земли образуется небольшой просвет, размеры которого достигают 100 мм. Для предохранения роликов от атмосферных осадков, пыли, грязи используют специальный профиль. Когда ворота открыты, то они удерживаются в этом положении направляющими, которые крепятся к самому ограждению либо непосредственно к наружной поверхности здания. Автоматические откатные консольные ворота изготавливаются разных размеров. Если возникает необходимость, то ширина проёма, который необходимо перекрыть, может достигать 12 метров. Этот размер можно увеличить в 2 раза, если сделать так, что две створки ворот будут открываться в противоположные стороны. Как правило, для управления такими воротами используется электропривод, но при необходимости ворота достаточно легко открываются вручную. Подобный тип ворот хорошо себя зарекомендовал, особенно в климатических условиях России и Украины.

Реактивное сопротивление конденсатора

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U, мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt).
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2).
Тогда для синусоидального напряжения u = Uampsin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = UampωCsin(ωt+π/2).

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора называют ёмкостным.

Предлагаем Вам рассмотреть непосредственно связанные с данным материалом статьи:Что такое коэффициент мощности — Cos(φ)?

Необходимость проверки маркировки

Обозначение LO, L, N в электрике при монтаже электрических сетей – важная деталь. Как проверить правильность цветовой маркировки? Для этого нужно использовать индикаторную отвертку.

Чтобы определить, какой из проводников является фазным, а какой нулевым при помощи индикаторной отвертки, необходимо прикоснуться ее жалом к неизолированной части провода. Если светодиод засветится, значит произошло касание к фазному проводнику. После прикасания отверткой к нулевому проводу светящегося эффекта не будет.

Важность цветовой маркировки проводников и четкое соблюдение правил ее использования позволит значительно сократить время проведения монтажных работ и поиск неисправностей электрооборудования, в то время как игнорирование этих элементарных требований оборачивается риском для здоровья

Расчёт цепи

При последовательном соединенииI=constв любой точке и, согласно закону Ома, его можно рассчитать по формуле: где Z – электрический импеданс.

Напряжение на устройствах рассчитывается следующим образом:

UR = I · R, UL = I · XL, UC = I · XC.

Вектор индуктивной составляющей напряжения направлен в противоположную сторону от вектора емкостной составляющей, поэтому:

следовательно, согласно расчётам:

Внимание!

Для вычисления значения импеданса можно воспользоваться «треугольником сопротивлений», в котором гипотенузой является значение Z, а катетами – значения X и R.

Если в цепь подключены и конденсатор, и катушка индуктивности, то, согласно теореме Пифагора, гипотенуза (Z) будет равна:Так какX=XLXC, то: При решении электротехнических задач часто импеданс записывают в виде комплексного числа, в котором действительная часть соответствует значению активной составляющей, а мнимая – реактивной. Таким образом, выражение для импеданса в общем виде имеет вид:

где i – мнимая единица.

Для онлайн расчёта реактивного сопротивления можно использовать программу – калькулятор, которую можно найти в сети Интернет. Подобных сервисов достаточно много, поэтому вам не составит труда подобрать удобный для вас калькулятор.

Благодаря таким Интернет сервисам, можно быстро выполнить нужный расчёт.

Особенности дальнейшего ухода

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом – законом Ома. В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой, и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий