Конденсаторы. классификация. обозначения. параметры

Свойства конденсатора

Реактивное сопротивление

Конденсатор не может проводить постоянный ток, что видно из его конструкции. В такой цепи он может только заряжаться. Зато в цепях переменного тока он прекрасно работает, постоянно перезаряжаясь. Если не ограничения, исходящие из свойств диэлектрика (его можно пробить при превышении предела напряжения), этот элемент заряжался бы бесконечно (т. н. идеальный конденсатор, что-то вроде абсолютно черного тела и идеального газа) в цепи постоянного тока, а ток через него проходить не будет. Проще говоря, сопротивление конденсатора в цепи постоянного тока бесконечно.

При переменном токе ситуация иная: чем выше частота в цепи, тем меньше сопротивление элемента. Такое сопротивление называется реактивным, и оно обратно пропорционально частоте и емкости:

Обзор конденсаторовОбзор конденсаторов

Z=1/2πfC

где f частота в герцах.

Накопитель энергии

Энергия, запасенная заряженным конденсатором, может быть выражена формулой:

E=(CU^2)/2=(q^2)/2C

где U напряжение между обкладками, а q накопленный заряд.

Конденсатор в колебательном контуре

В замкнутом контуре, содержащем катушку и конденсатор, может быть сгенерирован переменный ток.

После зарядки конденсатора он начнет саморазряжаться, давая возрастающий по силе ток. Энергия разряженного конденсатора станет равной нулю, зато магнитная энергия катушки — максимальной. Изменение величины тока вызывает ЭДС самоиндукции катушки, и она по инерции пропустит ток в сторону второй обкладки, пока та полностью не зарядится. В идеальном случае такие колебания бесконечны, а в реальности они быстро затухают. Частота колебаний зависит от параметров как катушки, так и конденсатора:

Как проверить конденсатор мультиметром. На ёмкость, обрыв, короткое замыканиеКак проверить конденсатор мультиметром. На ёмкость, обрыв, короткое замыкание

где L индуктивность катушки.

Паразитная индуктивность

Конденсатор может обладать собственной индуктивностью, что можно наблюдать при повышении частоты тока в цепи. В идеальном случае эта величина незначительна, и ей можно пренебречь, но в реальности, когда обкладки представляют собой свернутые пластинки, не считаться с этим параметром нельзя, особенно если речь идет о высоких частотах. В таких случаях конденсатор совмещает в себе две функции, и представляет собой своеобразный колебательный контур с собственной резонансной частотой.

Чтобы добиться корректной работы схемы, рекомендуется применять конденсаторы, у которых резонансная f больше собственной частоты в цепи.

Потенциал тонких проводников.

Рассмотрим два бесконечно тонких бесконечно длинных проводника разноименно заряженных
с линейной плотностью t, находящихся на расстоянии
друг от друга (рис.15.4). Проводники перпендикулярны плоскости рисунка. Потенциал
в произвольной точке в соответствии с (7.22) вычисляется как

тогда эквипотенциальные линии описываются уравнением


, m>0  (15.16)

Заметим, что для такого же по модулю, но противоположного
по знаку потенциала получается обратная величина. В декартовых координатах


,   (15.17)

Мы это уже получали в . Разрешая (15.17),
получаем уравнение


,   (15.18)

С осью ОХ (y=0) эта кривая пересекается в точках

и находится между ними. Легко показать, что уравнение (15.18) описывает окружность с центром в точке


,   (15.20)

и радиусом


,   (15.21)

Таким образом, все эквипотенциальные поверхности такой системы — это цилиндры.
Сечения двух таких цилиндров одинакового по модулю, но разного по знаку потенциала
показаны на рис.15.5 для m=3 (справа) и m=1/3 (слева).
Расстояние между центрами цилиндров равно d=|2x|.

Маркировка конденсаторов

Каким бы ни был конденсатор, есть два обязательным параметра, которые должны быть отражены в маркировке — это его емкость и номинальное напряжение.

Помимо этого, на большинстве из них существует цифро-буквенное обозначение его характеристик. В соответствии с российскими стандартами конденсаторы маркируются четырьмя знаками.

Первая буква К означает «конденсатор», следующая цифра — вид диэлектрика, далее следует указатель назначения в виде буквы, последний значок может означать как тип конструкции, так и номер разработки, это уже зависит от завода-изготовителя. Третий пункт часто пропускается. Используется такая маркировка на достаточно крупных изделиях, где ее можно разместить. По ГОСТ расшифровка будет выглядеть так:

Первые буквы:

  1. К — конденсатор постоянной емкости.
  2. КТ — подстроечник.
  3. КП — конденсатор переменной емкости.

Вторая группа — тип диэлектрика:

  • 1, 61 вакуум,
  • 2, 60 воздух,
  • 3 газ,
  • 4 твердый,
  • 10, 15 керамика,
  • 20 кварц,
  • 21 стекло,
  • 22 стеклокерамика,
  • 23 стеклоэмаль,
  • 31, 32 слюда,
  • 40, 41, 42 бумага,
  • 50 алюминиевый электролитический,
  • 51 танталовый,
  • 52 объемно-пористый,
  • 53, 54 оксидные,
  • 71 полистирол,
  • 72 фторопласт,
  • 73 ПЭТ,
  • 75 комбинированный,
  • 76 лак и пленка,
  • 77 поликарбонат.

На маленьких конденсаторах всего этого не разместить, поэтому там применяется сокращенная маркировка, которая с непривычки может даже потребовать калькулятора, а иногда — лупу. В этой маркировке зашифрованы емкость, номинал напряжения и отклонения от основного параметра. Остальные параметры наносить нет смысла: это, как правило, керамические конденсаторы.

Маркировка керамических конденсаторов

Иногда с ними все просто — емкость отмечена числом и единицами: pF — пикофарад, nF — нанофарад, μF микрофарад, mF — миллифарад. То есть, надпись 100nF можно читать прямо. Номинал, соответственно, числом и буквой V. Но иногда не умещается и это, потому применяют сокращения. Так, часто емкость умещается в трех цифрах (103, 109 и т. д.), где последняя означает число нулей, а первые две — емкость в пикофарадах. Если в конце стоит цифра 9, значит, нулей нет, а между первыми двумя ставят запятую. При цифре 8 на конце запятую переносят еще на один знак назад.

Например, обозначение 109 расшифровывается как 1 пикофарад, а 100–10 пикофарад, 681–680 пикофарад, или 0,68 нанофарад, а 104- 100 тыс. пФ или 100нФ

Часто можно встретить первую букву единицы измерения в качестве запятой: p50–0,5 пФ, 1n5–1,5 нФ, 15μ – 15 мкФ, 15m – 15 мФ. Иногда вместо p пишется R.

После трех цифр может стоять буква, означающая разброс параметра емкости:

  1. B +/-0,1 пФ.
  2. C +/-0,25 пФ.
  3. D- +/-0,5 пФ.
  4. F +/-1%.
  5. G +/-2%.
  6. J +/-5%.
  7. K +/-10%.
  8. M +/-20%.
  9. Z до 80% отклонение.

Если вы высчитываете характеристику цепи в единицах СИ, то для того, чтобы найти емкость в фарадах, необходимо помнить показатели степеней числа 10:

  1. -3 миллифарады,
  2. -6 микрофарады,
  3. -9 нанофарады,
  4. -12 пикофарады.

Таким образом, 01 пФ — это 0,1 *10^-12 Ф.

На устройствах SMD емкость в пикофарадах обозначает буква, а цифра после нее — степень 10, на которую надо умножить это значение.

буква C буква C буква C буква C
A 1 J 2,2 S 4,7 a 2,5
B 1,1 K 2,4 T 5,1 b 3,5
C 1,2 L 2,7 U 5,6 d 4
D 1,3 M 3 V 6,2 e 4,5
E 1,5 N 3,3 W 6,8 f 5
F 1,6 P 3,6 X 7,5 m 6
G 1,8 Q 3,9 Y 8,2 n 7
Y 2 R 4,3 Z 9,1 t 8

Номинальное рабочее напряжение таким же образом может маркироваться буквой, если полностью его написать проблематично. В России принят следующий стандарт буквенного обозначения номинала:

буква V буква V
I 1 K 63
R 1,6 L 80
M 2,5 N 100
A 3,2 P 125
C 4 Q 160
B 6,3 Z 200
D 10 W 250
E 16 X 315
F 20 T 350
G 25 Y 400
H 32 U 450
S 40 V 500
J 50

Несмотря на списки и таблицы, лучше все-таки изучить кодировку конкретного производителя — в разных странах они могут отличаться.

К некоторым конденсаторам прилагается более развернутое описание их характеристик.

ЗАЧЕМ НУЖЕН КОНДЕНСАТОР. ПОСТОЯННЫЕ И ПЕРЕМЕННЫЕ КОНДЕНСАТОРЫ [РадиолюбительTV 32]ЗАЧЕМ НУЖЕН КОНДЕНСАТОР. ПОСТОЯННЫЕ И ПЕРЕМЕННЫЕ КОНДЕНСАТОРЫ [РадиолюбительTV 32]

Емкость конденсатора

Дешевый способ утепления сарая

Чтобы утеплить хозпостройку для домашней птицы, свиней и другого скота, не обязательно быть профессиональным строителем.

Все работы могут быть легко выполнены своими руками.

Монтаж стеновой конструкции

Сначала нужно возвести вторую стену по всему периметру постройки. Для этого две доски прибиваются параллельно друг другу, а сверху на месте шва — третья доска.

Закладка утеплителя

В образовавшееся пространство между стеновыми поверхностями необходимо поместить утепляющий материал. Это могут быть осенние листья, сосновые иголки или опилки. Чтобы в сарайчике не завелись мелкие грызуны, то теплоизолятор нужно перемешать с гашеной известью в пропорции 25:1.

Слой утеплителя должен быть минимум 20 см. При этом его нужно размещать везде – на стенах, потолке и полу. Его хорошенько утрамбовывают, а после дают постоять еще 2-3 недели. При необходимости материал добавляют и «запечатывают» пространство.

Изоляция пола

Чем можно утеплить пол в сарае? Подойдет даже обычная глина. Для этого сначала насыпают грунт по всему периметру постройки на 10-15 см выше основного, а после укладывают утрамбованную глину.

При этом очень важно не допустить проникновение влаги от нее к опилкам, иначе они начнут быстро гнить

Теплозащита дверей

Дверь в хозпостройке можно утеплить обычными досками и рубероидом. Для этого доски прибиваются по диагонали, а между ними вставляется лист рубероида.

Изолировав таким образом сарай своими руками, можно обеспечить тепло круглый год для кур, свиней и любой другой живности.

Техническое исполнение конденсаторов

Классифицировать конденсаторы можно по нескольким группам. Так, в зависимости от возможности регулировать емкость их разделяют на постоянные, переменные и подстроечные. По своей форме они могут быть цилиндрическими, сферическими и плоскими. Можно делить их по назначению. Но самой распространенной классификацией является таковая по типу диэлектрика.

Бумажные конденсаторы

В качестве диэлектрика используется бумага, очень часто промасленная. Как правило, такие конденсаторы отличает большой размер, но были варианты и в небольшом исполнении, без промасливания. Используются в качестве стабилизирующих и накопительных устройств, а из бытовой электроники постепенно вытесняются более современными пленочными моделями.

При отсутствии промасливания имеют существенный недостаток — реагируют на влажность воздуха даже при герметичной упаковке. Промокшая бумага увеличивает энергопотери.

Диэлектрик в виде органических пленок

Пленки могут быть выполнены из органических полимеров, таких как:

  • полиэтилентерифталат,
  • полиамид,
  • поликарбонат,
  • полисульфон,
  • полипропилен,
  • полистирол,
  • фторопласт (политетрафторэтилен).

По сравнению с предыдущими, такие конденсаторы имеют более компактные размеры, не увеличивают диэлектрические потери при увеличении влажности, но многие из них подвергаются риску выхода из строя при перегреве, а те, что этого недостатка лишены, отличаются более высокой стоимостью.

Конденсаторы. Часть 2. ЕмкостьКонденсаторы. Часть 2. Емкость

Твердый неорганический диэлектрик

Это может быть слюда, стекло и керамика.

Преимуществом этих конденсаторов считается их стабильность и линейность зависимости емкости от температуры, приложенного напряжения, а у некоторых — даже от радиации. Но иногда сама такая зависимость становится проблемой, и чем она менее выражена, тем дороже изделие.

Оксидный диэлектрик

С ним выпускаются алюминиевые, твердотельные и танталовые конденсаторы. Они имеют полярность, поэтому выходят из строя при неправильном подключении и превышении номинала напряжения. Но при этом они обладают хорошей емкостью, компактны и стабильны в работе. При правильной эксплуатации могут работать около 50 тыс. часов.

Вакуум

Такие устройства представляют собой стеклянную или керамическую колбу с двумя электродами, откуда выкачан воздух. В них практически отсутствуют потери, но малая емкость и хрупкость ограничивают сферу их применения радиостанциями, где величина емкости не так важна, а вот устойчивость к нагреву имеет принципиальное значение.

Двойной электрический слой

Если посмотреть, для чего нужен конденсатор, то можно понять, что этот тип — не совсем он. Скорее, это дополнительный или резервный источник питания, в качестве чего они и используются. Одни категория таких устройств — ионисторы — содержат в себе активированный уголь и слой электролита, другие работают на ионах лития. Емкость этих приборов может составлять до сотен фарад. К их недостаткам можно отнести высокую стоимость и активное сопротивление с токами утечки.

Примеры решения задач по теме «Емкость конденсатора»

ПРИМЕР 1

Задание Какова электрическая емкость плоского двуслойного конденсатора? Один из слоев диэлектрика — фарфор с толщиной =2мм; второй слой — эбонит ( мм). Площадь пластин конденсатора равна 0,01 м 2 .
Решение Для решения этой задачи проще всего применить формулу для расчета емкости слоистого плоского конденсатора, учитывая, что мы имеем всего два слоя:

Конденсатор

это элемент электрической цепи, способный, при небольшом размере, накапливать электрические заряды достаточно большой величины . Самой простой моделью конденсатора является два электрода, между которыми находится любой диэлектрик. Роль диэлектрика в нем выполняют бумага, воздух, слюда и другие изолирующие материалы, задача которых не допустить соприкосновения обкладок.

Эксплуатационные характеристики

Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:

  • номинальное напряжение,
  • полярность,
  • ток утечки,
  • сопротивление материала обкладок,
  • диэлектрические потери,
  • зависимость емкости от температуры.

Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:

Как определить емкость конденсатора по маркировке .Как определить емкость конденсатора по маркировке .

Q=UIsin 90

В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения — параллельной или последовательной.

Определение тангенса угла диэлектрических потерь

При параллельном соединении величина потерь определяется отношением токов:

tgδ = Ir/Ic = 1/(ωCR)

В случае последовательного соединения угол вычисляется соотношением напряжений:

tgδ = Ur/Uc = ωCR

В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.

Урок №5. Конденсатор.Урок №5. Конденсатор.

Номинальное напряжение

Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.

Полярность

Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.

Температурный коэффициент емкости

Он выражается отношением ΔC/CΔT где ΔT изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.

Разрушение конденсатора

Выход конденсатора из строя обусловлен двумя основными причинами — пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению.

Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых — к пробою и химической реакции между танталом и оксидом марганца.

Как измерить ёмкость конденсатора 2 частьКак измерить ёмкость конденсатора 2 часть

Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.

Постоянные конденсаторы

Основной  параметр  постоянного  конденсатора  –  номинальная  ёмкость, может  меняться  во  время  эксплуатации,  как  и  у  резистора,  под  воздействием различных  факторов.  Разница  заключается  в  том,  что  скрупулёзно  следить  за такими изменениями обычно не требуется: требования к точности конденсаторов  не  высоки. 

Так,  например,  используемые  в  качестве  фильтров  питания электролитические и керамические конденсаторы могут иметь допуск номинала ± 30% и более.

С максимальной точностью ± 1% изготавливаются некоторые  керамические  конденсаторы,  ёмкость  которых  ограничена  значением  100  нФ.  Они  используются  в  качестве  времязадающих  компонентов  при  создании  активных электрических фильтров или генераторов. Другие важные их отличия – высокая температурная стабильность и большая цена.

Следует  иметь  в  виду,  что  ёмкость  электролитических  конденсаторов может существенно меняться с изменением температуры и с течением времени они сильно деградируют (высыхают).

Конденсаторы выпускаются в соответствии с рядом  Е24, но часто  имеют более ограниченный набор номиналов, который задаётся в технических описаниях. 

Цветовая  маркировка  конденсаторов  похожа  на  аналогичную  для  резисторов,  однако  в  отличие  от  чип-резисторов,  чип-конденсаторы  обычно  не имеют маркировки!

Типовые расчётные соотношения

  1. Выражение для накопленного в конденсаторе заряда

Q = C*U      (1.8)

  1. Последовательное соединение конденсаторов:

Cэ = C1*C2/(C1+C2)     (1.9)

  1. Параллельное соединение конденсаторов:

Cэ = C1+C2   (1.10)

  1. Переходный процесс в RC-цепочке:

Эксплуатационные характеристики

Помимо указанных выше емкости, собственной индуктивности и энергоемкости, реальные конденсаторы (а не идеальные) обладают еще рядом свойств, которые нужно учитывать при выборе этого элемента для цепи. К ним относятся:

  • номинальное напряжение;
  • полярность;
  • ток утечки;
  • сопротивление материала обкладок;
  • диэлектрические потери;
  • зависимость емкости от температуры.

Чтобы понять, откуда берутся потери, необходимо разъяснить, что представляют собой графики синусоидальных тока и напряжения в этом элементе. Когда конденсатор заряжен максимально, ток в его обкладках равен нулю. Соответственно, когда ток максимален, напряжение отсутствует. То есть напряжение и ток сдвинуты по фазе на угол 90 градусов. В идеале конденсатор обладает только реактивной мощностью:

Как определить емкость конденсатора по маркировке .Как определить емкость конденсатора по маркировке .

Q=UIsin 90

В реальности же обкладки конденсатора обладают собственным сопротивлением, а часть энергии расходуется на нагрев диэлектрика, что обуславливает ее потери. Чаще всего они незначительны, но иногда ими пренебрегать нельзя. Основной характеристикой этого явления служит тангенс угла диэлектрических потерь, представляющий собой отношение активной мощности (даваемой малыми потерями в диэлектрике) и реактивной. Измерить эту величину можно теоретически, представив реальную емкость в виде эквивалентной схемы замещения — параллельной или последовательной.

Определение тангенса угла диэлектрических потерь

При параллельном соединении величина потерь определяется отношением токов:

tgδ = Ir/Ic = 1/(ωCR)

В случае последовательного соединения угол вычисляется соотношением напряжений:

tgδ = Ur/Uc = ωCR

В реальности для замеров tgδ пользуются прибором, собранным по мостовой схеме. Его применяют для диагностики потерь в изоляции у высоковольтного оборудования. С помощью измерительных мостов можно измерять и другие параметры сетей.

Урок №5. Конденсатор.Урок №5. Конденсатор.

Номинальное напряжение

Этот параметр указывается на маркировке. Он показывает предельную величину напряжения, которое может быть подано на обкладки. Превышение номинала может привести к пробою конденсатора и выходу его из строя. Зависит этот параметр от свойств диэлектрика и его толщины.

Полярность

Некоторые конденсаторы имеют полярность, то есть в схему его необходимо подключать строго определенным образом. Связано это с тем, что в качестве одной из обкладок используется какой-либо электролит, а диэлектриком служит оксидная пленка на другом электроде. При изменении полярности электролит просто разрушает пленку и конденсатор перестает работать.

Температурный коэффициент емкости

Он выражается отношением ΔC/CΔT где ΔT — изменение температуры окружающей среды. Чаще всего эта зависимость линейна и незначительна, но для конденсаторов, работающих в агрессивных условиях, ТКЕ указывается в виде графика.

Разрушение конденсатора


Выход конденсатора из строя обусловлен двумя основными причинами — пробоем и перегревом. И если в случае пробоя некоторые их виды способны к самовосстановлению, то перегрев со временем приводит к разрушению. Перегрев обусловлен как внешними причинами (нагреванием соседних элементов схемы), так и внутренними, в частности, последовательным эквивалентным сопротивлением обкладок. В электролитических конденсаторах он приводит к испарению электролита, а в оксиднополупроводниковых — к пробою и химической реакции между танталом и оксидом марганца.

Как измерить ёмкость конденсатора 2 частьКак измерить ёмкость конденсатора 2 часть

Опасность разрушения в том, что часто оно происходит с вероятностью взрыва корпуса.

Меры предосторожности

Выше был приведен пример с банкой воды. Там говорилось, что если воды налить больше, то воды выльется. А теперь подумайте, куда могут «вылиться» электроны в конденсаторе? Ведь он запечатан полностью!

Если вы подадите в цепи больше тока, чем тот, на который рассчитан конденсатор, то как только он зарядится, его излишек попытается выйти куда-то. А пространства свободного нет. Результатом будет взрыв. В случае незначительного превышения заряда хлопок будет небольшой. Но если подать колоссальное количество электронов на конденсатор, его просто разорвет, и диэлектрик вытечет.

Будьте аккуратны!

Конденсатор. Электроемкость плоского конденсатора.

Рассмотренная система проводников является основой для устройств, которые называют конденсаторами. Конденсаторы широко используют в радиотехнике как устройства для накопления и удержания электрического заряда.

Самый простой конденсатор состоит из двух или более разноименно заряженных и разделенных диэлектриком проводников, которые называют обкладками конденсатора. Последние имеют одинаковые по абсолютному значению разноименные заряды и размещены относительно друг друга так, что поле в этой системе сконцентрировано в ограниченном пространстве между обкладками. Диэлектрик между обкладками играет двойную роль: во-первых, он увеличивает электроемкость, во-вторых — не дает зарядам нейтрализоваться. Поэтому диэлектрическая проницаемость и электрическая прочность на пробой (пробой диэлектрика означает, что он становится проводником) должны быть достаточно большими. Чтобы защитить конденсатор от механических внешних воздействий, его помещают в корпус.

Накопление зарядов на обкладках конденсатора называют его зарядкой. Чтобы зарядить конденсатор, его обкладки присоединяют к полюсам источника напряжения, например, к полюсам батареи аккумуляторов. Можно также соединить одну обкладку с полюсом батареи, второй полюс которой заземлен, а вторую обкладку конденсатора тоже заземлить. Тогда на заземленной обкладке останется заряд, противоположный по знаку, а по модулю он будет равен заряду другой обкладки. Такой же по модулю заряд уйдет в землю.

Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок. Он прямо пропорционален разности потенциалов (напряжению) между обкладками конденсатора. В таком случае емкость конденсатора (в отличие от отдельного проводника) определяется по формуле

По форме обкладок конденсаторы бывают плоские, цилиндрические и сферические. Как диэлектрик в них используют парафиновый бумагу, слюду, воздух, пластмассы, керамику и тому подобное. Типичный плоский конденсатор состоит из двух металлических пластин площадью S, пространство между которыми разделено диэлектриком толщиной d.

Выведем формулу для емкости плоского конденсатора. Учитывая, что

подставим в эту формулу выражение U = Ed, где Е — напряженность поля, создаваемого двумя пластинами,

В результате получим:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади перекрытия пластин и относительной диэлектрической проницаемости диэлектрика и обратно пропорциональна расстоянию между пластинами. Из формулы следует, что, уменьшая толщину диэлектрика между пластинами или увеличивая площадь перекрытия пластин, можно получить конденсатор большей емкости.

Соответственно можно вывести формулы для емкости конденсаторов других форм. Так, емкость сферического конденсатора вычисляется по формуле

где r и R- радиус внутренней и внешней сфер (в случае обособленной шара, когда R = ∞, имеем: C = 4пε  εr).

Недостатки встраивания холодильника

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий