Что такое косинус фи в электрике

Электродвижущая сила

Электродвижущая сила Е (ЭДС) характеризует способность индуцированного поля вызывать электрический ток. Единица измерения – вольт (В). Источники энергии могут быть источниками ЭДС и тока. В данном пособии рассматриваются только источники ЭДС. Источник ЭДС характеризуется двумя параметрами: значениями ЭДС (Е) и внутреннего сопротивления (r). Источник ЭДС, внутренним сопротивлением которого можно пренебречь, называют идеальным источником. Реальный источник ЭДС имеет определенное значение внутреннего сопротивления. У источника ЭДС внутренне сопротивление значительно меньше сопротивления нагрузки (RН) и электрический ток в цепи зависит главным образом от величины ЭДС и сопротивления нагрузки. Источник ЭДС имеет следующие графические обозначения.

Вольтамперная характеристика источника ЭДС имеет вид:

Рис. 1

Зависимость между напряжением на зажимах источника и его ЭДС имеет вид:

U = E — r× I (для реального источника ЭДС)

U = E (для идеального источника).

Электрическое сопротивление R это величина, характеризующая противодействие проводящей среды движению свободных электрических зарядов (току). Единица измерения – Ом. Величина, обратная сопротивлению, называется электрической проводимостью G. Единица измерения – сименс (См).

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов .а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

(7)

Приводя к общему знаменателю подкоренное выражение, получим:

(8)

(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

Рисунок 6. Эквивалентная схема колебательного контура .

Формула полного сопротивления для этого случая будет:

(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

(14)

где L-индуктивность катушки в Гн;

С-емкость конденсатора в Ф;

R-активное сопротивление катушки в Ом.

Данный раздел основных формул ТОЭ предназначен для начинающих, как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:

Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях)

Поэтому определимся сразу с буквенным обозначением :

Особенности дальнейшего ухода

Треугольник мощностей

Коэффициент мощности (PF) – это отношение мощностей: активной полезной (P) к полной (S). Чтобы показать, каким образом сдвиг фаз влияет на PF, используем так называемый треугольник мощностей. И вот тут-то нам и потребуются минимальные знания школьной тригонометрии.

Из теории о прямоугольных треугольниках всем нам известно, что cos ϕ=P/S. То есть, косинус фи — это и есть коэффициент мощности (PF), который показывает, какая часть от полной мощности (S= U•I) фактически необходима для конкретной нагрузки. Чем больше реактивная составляющая Q, тем меньше полезная P. Чтобы вычислить активную мощность необходимо полную S умножить на косинус фи: P= S•cos ϕ.

На заметку! Считать косинус фи абсолютным аналогом коэффициента мощности можно только при том условии, что мы имеем в электрической сети идеальную синусоиду. Для более точного расчета необходимо учитывать нелинейные искажения, которые имеют переменные напряжение и ток. На практике, зачастую коэффициентом нелинейных искажений синусоиды пренебрегают, и значение косинуса фи принимают за приближенное значение коэффициента мощности.

Метод расчета по законам Ома и Кирхгофа

До изучения технологий вычислений необходимо уточнить особенности типовых элементов при подключении к разным источникам питания. При постоянном токе сопротивлением индуктивности можно пренебречь. Конденсатор эквивалентен разрыву цепи. Также следует учитывать следующие различия разных видов соединений резисторов:

  • последовательное – увеличивает общее сопротивление;
  • параллельное – распределяет токи по нескольким ветвям, что улучшает проводимость.

Закон Ома для участка цепи

Типовая аккумуляторная батарея легкового автомобиля вырабатывает напряжение U = 12 V. Бортовой или внешний амперметр покажет соответствующее значение при измерении. Соединение клемм проводом недопустимо, так как это провоцирует короткое замыкание. Если жила тонкая (< 1 мм), высокая плотность тока в соответствующем поперечном сечении быстро увеличит температуру вплоть до теплового разрушения материала с разрывом цепи. Этот пример демонстрирует функциональность обычного плавкого предохранителя.

Подключив нагрузку, можно мультиметром проверить напряжение. Значение этого параметра остается неизменным. Если известно сопротивление (пример – R = 50 Ом), применение закона Ома (I = UR) поможет рассчитать ток:

I = 12/ 50 = 0,24 А.

По вычисленному значению с использованием формулы быстро определяется мощность:

P = I2 *R = U2/ R = 0,0576 * 50 = 2,88 Вт.

К сведению. Результат показанного расчета пригодится для поиска подходящего резистора. Следует делать запас в сторону увеличения. По стандарту серийных изделий подойдет элемент с паспортной номинальной мощностью 5 Вт.

На практике приходится решать более сложные задачи. Так, при значительной длине линии нужно учесть влияние соединительных ветвей цепи. Через стальной проводник ток будет протекать хуже, по сравнению с медным аналогом. Следовательно, надо в расчете учитывать удельное сопротивление материала. Короткий провод можно исключить из расчета. Однако в нагрузке может быть два элемента. В любом случае общий показатель эквивалентен определенному сопротивлению цепи. При последовательном соединении Rэкв = R1 + R2 +…+ Rn. Данный метод пригоден, если применяется постоянный ток.

Закон Ома для полной цепи

Для вычисления такой схемы следует добавить внутреннее сопротивление (Rвн) источника. Как найти ток, показывает следующая формула:

I = U/ (Rэкв + Rвн).

Вместо напряжения (U) при расчетах часто используют типовое обозначение электродвижущей силы (ЭДС) – E.

Первый закон Кирхгофа

По классической формулировке этого постулата алгебраическая сумма токов, которые входят и выходят из одного узла, равна нулю:

I1 + I2 + … + In = 0.

Это правило действительно для любой точки соединения ветвей электрической схемы. Следует подчеркнуть, что в данном случае не учитывают характеристики отдельных элементов (пассивные, реактивные). Можно не обращать внимания на полярность источников питания, включенных в отдельные контуры.

Чтобы исключить путаницу при работе с крупными схемами, предполагается следующее использование знаков отдельных токов:

  • входящие – положительные (+I);
  • выходящие – отрицательные (-I).

Второй закон Кирхгофа

Этим правилом установлено суммарное равенство источников тока (ЭДС), которые включены в рассматриваемый контур. Для наглядности можно посмотреть, как происходит распределение контрольных параметров при последовательном подключении двух резисторов (R1 = 50 Ом, R2 = 10 Ом) к аккумуляторной батарее (Uакб = 12 V). Для проверки измеряют разницу потенциалов на выводах пассивных элементов:

  • UR1 = 10 V;
  • UR1 = 2 V;
  • Uакб = 12 V = UR1 + UR2 = 10 + 2;
  • ток в цепи определяют по закону Ома: I = 12/(50+10) = 0,2 А;
  • при необходимости вычисляют мощность: P = I2 *R = 0,04 * (50+10) = 2,4 Вт.

Второе правило Кирхгофа действительно для любых комбинаций пассивных компонентов в отдельных ветвях. Его часто применяют для итоговой проверки. Чтобы уточнить корректность выполненных действий, складывают падения напряжений на отдельных элементах. Следует не забывать о том, что дополнительные источники ЭДС делают результат отличным от нуля.

Проводниковые материалы

Проводниковые материалы (алюминий, медь, золото, серебро и др.) обладают высокой электропроводностью. Наиболее часто в проводах и кабелях используется алюминий, как наиболее дешевый. Медь имеет большую электропроводимость, но она дороже.

Из проводников следует выделить группу материалов с большим удельным сопротивлением. К ним относятся сплавы ( нихром, фехраль и др.) они используются для изготовления обмоток нагревательных приборов и реостатов. Вольфрам используется в лампах накаливания. Константан и манганин используются в качестве сопротивлений в образцовых приборах.

Аспекты программиста

Сбор и хранение урожая

Проводниковые материалы

Проводниковые материалы (алюминий, медь, золото, серебро и др.) обладают высокой электропроводностью. Наиболее часто в проводах и кабелях используется алюминий, как наиболее дешевый. Медь имеет большую электропроводимость, но она дороже.

Из проводников следует выделить группу материалов с большим удельным сопротивлением. К ним относятся сплавы ( нихром, фехраль и др.) они используются для изготовления обмоток нагревательных приборов и реостатов. Вольфрам используется в лампах накаливания. Константан и манганин используются в качестве сопротивлений в образцовых приборах.

Основные параметры цепей трехфазного переменного тока

Трехфазный переменный ток используют для питания большинства промышленных электроприемников. Частота трехфазного переменного тока 50 Гц.

В трехфазных системах обмотки генератора и электроприемника соединяют по схемам «звезда» или «треугольник». При соединении в звезду концы всех трех обмоток генератора (или электроприемника) объединяют в общую точку, называемую нулевой или нейтралью (рис. 5а).

При соединении в треугольник начало первой обмотки соединяют с концом второй, начало второй обмотки — с концом третьей и начало третьей — с концом первой обмотки (рис. 5б).

Если от генератора отходят только три провода, то такая система называется трехфазной трехпроводной; если от него отходит еще и четвертый нулевой провод, то систему называют трехфазной четырехпроводной.

Трехфазные трехпроводные сети используют для питания трехфазных силовых потребителей, а четырехпроводные сети – для питания преимущественно осветительных и бытовых нагрузок.

В трехфазных системах различают фазные и линейные токи и напряжения. При соединении фаз звездой линейный I и фазный Iφ токи равны:

а напряжение U =√3Uφ

При соединении треугольником

а напряжение U = Uφ.

Мощность переменного трехфазного тока:

генератора:

  • активная, Вт, Рг =√3IUcosφ ,
  • реактивная, вар, Q=√3IUsinφ
  • полная, ВА, S = √3IU.

где φ – угол сдвига фаз между фазным напряжением генератора и током в той же фазе приемника, который равен току в линии при соединении обмоток генератора звездой.

приемника:

  • активная, Вт, Рп =3UφIcosφп=√3 IUcosφп,
  • реактивная, вар, Q=√3 UφIsinφп=√3 UIsinφ
  • полная, ВА, S = √3UI.

где φ – угол сдвига фаз между фазным напряжением приемника и током в той же фазе приемника, который равен току линейному только при соединении звездой.

Подсчет количества теплоты, выделяемой при протекании электрического тока по проводнику.

Количество теплоты, Дж, выделяемой электрическим током в проводнике,

Q=I²Rt где t — время, с.

При определении теплового действия электрического тока учитывают, что 1 кВт·ч выделяет 864 ккал (3617 кДж).

Если у Вас остались вопросы – обращайтесь к нам, в авторизованный сервисный центр “Эл Ко-сервис” Мы всегда рады помочь Вам в решении возникших у Вас проблем.

1. Какими параметрами характеризуются синусоидальный ток или напряжение?

2. Каково соотношение между амплитудным и действующим значениями величин, изменяющихся во времени по синусоидальному закону?

3. С какими физическими процессами связаны понятия активного сопротивления, активной мощности? Построить векторную диаграмму напряжения и тока для участка цепи.

4. С какими физическими процессами связаны понятия реактивного сопротивления, реактивной мощности? Как величина индуктивного и емкостного реактивных сопротивлений зависит от частоты питающего напряжения?

5. Построить векторные диаграммы для участков цепи с идеальной индуктивностью и идеальной емкостью.

6. Как определяют активное, реактивное и полное сопротивления цепи, содержащей несколько последовательно включенных элементов?

7. Привести формулы для расчета активной, реактивной и полной мощностей цепи.

8. Построить треугольники напряжений, сопротивлений и мощностей для участка цепи с последовательным соединением R и L, с последовательны соединением R и C.

9. Построить векторную диаграмму для цепи, содержащей несколько последовательно включенных элементов.

Советы опытных огородников и отзывы о сорте Журавинка

Золотые подсвечники

Закон Ома и связь R, I и U

Для начала рассмотрим определения основных электрических величин, далее рассмотрим законы, связывающие эти величины между собой на основе формул и графических зависимостей. Так от простого к сложному и будет развиваться эта статья.

Первым делом следует отметить, что существуют цепи постоянного и переменного тока. Разница между ними в характере протекания электрических величин — в цепях переменного тока ток и напряжение с течением времени изменяются по определенному закону (например, синусоиде). В цепях же тока постоянного с течением времени значение остается константным.

И в первых и во вторых цепях основными величинами будут: ток, напряжение и сопротивление.

Электрический ток

— упорядоченное движение заряженных частиц (электронов) через проводник (проводящую среду) от точки с большим потенциалом, к точке с меньшим потенциалом. Принято говорить, что ток течет от плюса к минусу в цепях постоянного тока. Измеряется в амперах, обозначается “i”.

Электрическое сопротивление

характеризует способность ограничивать значение электрического тока. Измеряется в омах и обозначается r. Величина обратная сопротивлению — проводимость. В зависимости от величины сопротивления материалы классифицируются на: проводники, диэлектрики и изоляторы.

Электрическое напряжение

равняется разности потенциалов между двумя точками. U=f1-f2. Логично, что напряжение может быть и положительной и отрицательной величиной. Единица измерения вольт (В).

Связь между этими величинами описывается законом Ома:

Значение тока в электрической цепи прямо пропорционально величине напряжения и обратно пропорционально сопротивлению. I=U/R — данная формула применима для цепи постоянного тока. Зная две величины, всегда найдем третью.

Для переменного тока формула приобретет вид I=U/Z, где Z — полное сопротивление цепи, которое состоит из активной, емкостной и индуктивной составляющих:

  • R — активное сопротивление (омическое)
  • XL — индуктивное сопротивление (присуще катушкам, обмоткам, статору ТГ) — препятствует протеканию тока
  • XC — емкостное сопротивление (конденсаторное, встречается у кабеля) — препятствует протеканию напряжения
  • Z — реактивное сопротивление (импеданс, полное сопротивление) состоит из двух составляющих: активной (R) и реактивной (X). А реактивное (X) уже состоит из индуктивного (XL) и емкостного (XC)

Графически соотношение между сопротивлениями можно отобразить в форме прямоугольного треугольника (векторное представление).

В цепях переменного тока значения тока и напряжения изменяются с течением времени, согласно определенному закону. Например, по синусоиде:

I=Im*sin(wt+f)

В данной формуле I — это мгновенное значение тока, Im — амплитудное значение.

Амплитудное

— максимальное значение, амплитудное, которое принимает величина за период. В формулах выше это значения с индексом “m” — типа максимальное.

Мгновенное

— значение величины в данный момент времени. Максимальное из мгновенных значений является амплитудным.

Действующее

— такое значение переменного тока, при котором за период в резисторе выделилось бы столько тепла, сколько и в цепи постоянного тока. Именно эти значения показывают наши вольтметры, амперметры. Для синусоиды действующее равно 0,707 от амплитудного. 1/корень(2)=0,707.

В зависимости от преобладания определенного характера сопротивления, векторы тока и напряжения будут смещены относительно друг друга:

Чисто активное сопротивление — ток и напряжение совпадают по фазе.

Преобладает индуктивное — значит, как писалось выше, току пройти тяжелее и он отстает от напряжения.

Преобладает емкостная составляющая — ток уходит в отрыв, напряжение тормозится емкостью.

Также цепи переменного тока могут быть однофазными и трехфазными. В трехфазных цепях приняты обозначения фаз: фаза А (желтая, U), фаза B (зеленая, V) и фаза С (красная, W). Как недавно сказали на одном объекте железной дороги: фаза “А” идет на Минск.

Между собой фазы могут соединяться в различные схемы: звезда, треугольник, зигзаг и прочие более редкие.

Что такое напряжение смещения нейтрали?

Единицы измерения тока, напряжения, сопротивления и прочих электрических величин

Самое популярное


Единицы измерения физвеличин


Выбор ТТ


Опасность электротока


Схемы групп соединения обмоток трансформатора


Изолированная, эффективно заземленная и глухозаземленная нейтраль


Силовой трансформатор звезда треугольник


Как проверить кабель мегаомметром

Последовательное и параллельное включение элементов

Для элементов электрической цепи (участка цепи) характерным моментом является последовательное либо параллельное соединение.

Соответственно, каждый вид соединения сопровождается разным характером течения тока и подводкой напряжения. На этот счёт закон Ома также применяется по-разному, в зависимости от варианта включения элементов.

Цепь последовательно включенных резистивных элементов

Применительно к последовательному соединению (участку цепи с двумя компонентами) используется формулировка:

  • I = I1 = I2 ;
  • U = U1 + U2 ;
  • R = R1 + R2

Такая формулировка явно демонстрирует, что, независимо от числа последовательно соединенных резистивных компонентов, ток, текущий на участке цепи, не меняет значения.

Соединение резистивных элементов на участке схемы последовательно один с другим. Для этого варианта действует свой закон расчета. На схеме: I, I1, I2 – прохождение тока; R1, R2 – резистивные элементы; U, U1, U2 – приложенное напряжение

Величина напряжения, приложенного к действующим резистивным компонентам схемы, является суммой и составляет в целом значение источника ЭДС.

При этом напряжение на каждом отдельном компоненте равно: Ux = I * Rx.

Общее сопротивление следует рассматривать как сумму номиналов всех резистивных компонентов цепи.

Цепь параллельно включенных резистивных элементов

На случай, когда имеет место параллельное включение резистивных компонентов, справедливой относительно закона немецкого физика Ома считается формулировка:

  • I = I1 + I2 … ;
  • U = U1 = U2 … ;
  • 1 / R = 1 / R1 + 1 / R2 + …

Не исключаются варианты составления схемных участков «смешанного» вида, когда используется параллельное и последовательное соединение.

Соединение резистивных элементов на участке цепи параллельно один с другим. Для этого варианта применяется свой закон расчета. На схеме: I, I1, I2 – прохождение тока; R1, R2 – резистивные элементы; U – подведённое напряжение; А, В – точки входа/выхода

Для таких вариантов расчет обычно ведется изначальным расчетом резистивного номинала параллельного соединения. Затем к полученному результату добавляется номинал резистора, включенного последовательно.

Интегральная и дифференциальная формы закона

Все вышеизложенные моменты с расчетами применимы к условиям, когда в составе электрических схем используются проводники, так сказать, «однородной» структуры.

Между тем на практике нередко приходится сталкиваться с построением схематики, где на различных участках структура проводников меняется. К примеру, используются провода большего сечения или, напротив, меньшего, сделанные на основе разных материалов.

Для учёта таких различий существует вариация, так называемого, «дифференциально-интегрального закона Ома». Для бесконечно малого проводника рассчитывается уровень плотности тока в зависимости от напряженности и величины удельной проводимости.

Под дифференциальный расчет берется формула: J = ό * E

Для интегрального расчета, соответственно, формулировка: I * R = φ1 – φ2 + έ   

Однако эти примеры скорее уже ближе к школе высшей математики и в реальной практике простого электрика фактически не применяются.

Электродвижущая сила

Электродвижущая сила Е (ЭДС) характеризует способность индуцированного поля вызывать электрический ток. Единица измерения – вольт (В). Источники энергии могут быть источниками ЭДС и тока. В данном пособии рассматриваются только источники ЭДС. Источник ЭДС характеризуется двумя параметрами: значениями ЭДС (Е) и внутреннего сопротивления (r0). Источник ЭДС, внутренним сопротивлением которого можно пренебречь, называют идеальным источником. Реальный источник ЭДС имеет определенное значение внутреннего сопротивления. У источника ЭДС внутренне сопротивление значительно меньше сопротивления нагрузки (RН) и электрический ток в цепи зависит главным образом от величины ЭДС и сопротивления нагрузки. Источник ЭДС имеет следующие графические обозначения.

Вольтамперная характеристика источника ЭДС имеет вид:

Рис. 1

Зависимость между напряжением на зажимах источника и его ЭДС имеет вид:

U = E — r0× I (для реального источника ЭДС)

U = E (для идеального источника).

Электрическое сопротивление R это величина, характеризующая противодействие проводящей среды движению свободных электрических зарядов (току). Единица измерения – Ом. Величина, обратная сопротивлению, называется электрической проводимостью G. Единица измерения – сименс (См).

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:

Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Постоянный ток

Постоянный ток применяют для питания устройств связи, транзисторных приборов, стартеров автомобилей, электрокар, а также, для зарядки аккумуляторов.

В качестве источников постоянного тока используют гальванические элементы, солнечные батареи, термоэлектрогенераторы, генераторы постоянного тока.

При параллельном соединении нескольких проводников с током с равными напряжениями:

Iоб = I1+I2+…+In Uоб=U1=U2=…=Un

При последовательном соединении: Iоб = Imin; – где Imin, ток наименьшего по мощности источника тока (генератора, аккумуляторной батареи).

Uоб = U1+U2+…+Un

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий