Применение электрического трансформатора, его понятие и виды

Выбор электроприбора

Как правило, выбирают 1 или 2 трансформатора. Использование одного силового трансформатора допускается для питания потребителей III категории, и когда потребитель электроэнергии любой категории подключен через замкнутые сети или через незамкнутые, но соединенные резервными линиями.

В свою очередь, два силовых трансформатора выбирают для электроснабжения потребителей I и II категорий, когда по стороне НН у них нет связи с другими подстанциями. При взаимном резервировании мощность силовых трансформаторов выбирают идентичной (например, два трансформатора по 1000кВА). Двухтрансформаторные ТП применяют, когда преобладают потребители I категории и при высокой удельной плотности нагрузок более 0,5-0,7 кВА/м2. В видеоролике ниже подробнее рассказано о том, как выбирают силовые трансформаторы.

Силовые трансформаторы СВЭЛСиловые трансформаторы СВЭЛ

Принцип действия трансформатора

Электромагнитная
схема однофазного двухобмоточного
трансформатора состоит из двух обмоток
(рис. 2.1), разме­щенных на замкнутом
магнитопроводе, который выполнен из
ферромагнитного материала. Применение
ферромагнитного магнитопровода позволяет
усилить электромагнитную связь между
обмотками, т. е. уменьшить магнитное
сопротивление контура, по которому
проходит магнитный поток машины.
Первичную обмотку 1 подключают к источнику
переменного тока — электрической сети
с напряжением u1.Ко
вторичной обмотке 2 присоединяют
сопротивление нагрузки ZH.

Обмотку
более высокого напряжения называют обмоткой
высшего напряжения(ВН),
а низкого напряжения — обмоткой
низшего напряжения(НН).
Начала и концы обмотки ВН обозначают
буквами Аи X;обмотки
НН — буквами аи х.

При
подключении к сети в первичной обмотке
возникает переменный ток i1,который
создает переменный магнитный поток Ф,
замыкающийся по магнитопроводу. Поток
Ф индуцирует в обеих обмотках переменные
ЭДС — е1и е2,пропорциональные,
согласно закону Максвелла, числам витков
w1 и w2 соответствующей
обмотки и скорости изменения потока dФ/dt.

Рис.
2.1. Электромагнитная система  
однофазного   трансфор­матора
: 1,2
—первичная
и вторичная обмот­ки; 3
—магнитопровод

Таким образом,
мгновенные значения ЭДС, индуцированные
в каждой обмотке,

е1=
— w1 dФ/dt;     
е2= -w2dФ/dt.

Следовательно,
отношение мгновенных и действующих ЭДС
в обмотках определяется выражением

E1/E2= e1/e2= w1/w2.

                                            
(2.1)

Если
пренебречь падениями напряжения в
обмотках тран­сформатора, которые
обычно не превышают 3 — 5% от номи­нальных
значений напряжений U1 и U2
считать E1≈U l и Е2≈U2,
то получим

U1/U2≈w1/w2.

                                            
(2.2)

Следовательно,
подбирая соответствующим образом числа
витков обмоток, при заданном напряжении
U1можно
получить желаемое напряжение U2.Если
необходимо повысить вторичное напряжение,
то число витков w2 берут
больше числа w1;
такой трансформатор называют повышающим.Если
требуется уменьшить напряжение U2,то
число витков w2 берут
мень­шим w1;
такой трансформатор называют понижающим,

Отношение
ЭДС ЕВН обмотки
высшего напряжения к ЭДС ЕНН обмотки
низшего напряжения (или отношение их
чисел витков) называют коэффициентом
трансформации

k= ЕВННН = wВН/wНН

                                            
(2.3)

Коэффициент kвсегда
больше единицы.

В
системах передачи и распределения
энергии в ряде слу­чаев применяют
трехобмоточные трансформаторы, а в
устрой­ствах радиоэлектроники и
автоматики — многообмоточные
трансформаторы. В таких трансформаторах
на магнитопроводе размещают три или
большее число изолированных друг от
друга обмоток, что дает возможность при
питании одной из обмоток получать два
или большее число различных напряжений (U2,
U3,
U4 и
т.д.) для электроснабжения двух или
большего числа групп потребителей. В
трехобмоточных силовых трансформаторах
различают обмотки высшего, низшего и
среднего (СН) напряжений.

В трансформаторе
преобразуются только напряжения и токи.
Мощность же остается приблизительно
постоянной (она несколько уменьшается
из-за внутренних потерь энергии в
трансформаторе). Следовательно,

I1/I2≈ U2/U1≈ w2/w1.

                                            
(2.4)

При
увеличении вторичного напряжения
трансформатора в kраз
по сравнению с первичным, ток i2 во
вторичной обмотке соответственно
уменьшается в kраз.

Трансформатор
может работать только в цепях переменного
тока.Если
первичную обмотку трансформатора
под­ключить к источнику постоянного
тока, то в его магнито-проводе образуется
магнитный поток, постоянный во времени
по величине и направлению. Поэтому в
первичной и вторичной обмотках в
установившемся режиме не индуцируются
ЭДС, а следовательно, не передается
электрическая энергия из первичной
цепи во вторичную. Такой режим опасен
для трансформатора, так как из-за
отсутствия ЭДС E1 первич­ной
обмотке ток I1 =U1R1 весьма
большой.

Важным
свойством трансформатора, используемым
в устройствах автоматики и радиоэлектроники,
является способность его преобразовывать
нагрузочное сопротивление. Если к
источнику переменного тока подключить
сопротивление R через
трансформатор с коэффициентом
трансформации к,то
для цепи источника

R’= P1/I12≈ P2/I12≈
I22R/I12≈ k2R

                                       
(2.5)

где Р1
мощность, потребляемая трансформатором
от источ­ника переменного тока,
Вт;
Р2 =
I22R≈ P1 —
мощность, по­требляемая сопротивлением R от
трансформатора.

Таким
образом, трансформатор
изменяет значение сопро­тивления R в
k2раз.Это
свойство широко используют при разработке
различных электрических схем для
согласования сопротивлений нагрузки
с внутренним сопротивлением источ­ников
электрической энергии.

Схемы питания трансформатора

Допускаемая величина плотности тока в проводах обмоток трансформатора в значительной мере определяет вес и стоимость последнего. Чем выше плотность тока в обмотках, тем меньше их вес меди и соответственно стоимость трансформатора. С другой стороны, с увеличением плотности тока возрастают потери в меди обмоток и нагрев трансформатора.

Схема питания тяговой сети системы 2×25 кВ трехфазным трансформатором с повышающими автотрансформаторами.

Самой простой является схема питания тяговой сети системы 2×25 кВ с помощью трехфазного трансформатора и повышающих автотрансформаторов. Особенностью схемы является то, что для повышения напряжения до 55 кВ используется обычный линейный автотрансформатор АТ, который подключен к контактной сети и питающему проводу, а трансформатор Т включен между контактной сетью и рельсами.

Автотрансформаторы устанавливаются на выводах 27,5 кВ трансформатора или на фидерах контактной сети. Последний вариант предпочтительнее, так как позволяет иметь на подстанции только шины контактной сети, а автотрансформаторы могут быть установлены и за пределами территории тяговой подстанции.

В схеме существенно большая часть электроэнергии поступает к электрическим локомотивам непосредственно по контуру контактная сеть — рельсы, минуя повышающий автотрансформатор.

Это обстоятельство позволяет устанавливать повышающие автотрансформаторы на подстанции такой же мощности, что и на фидерной зоне, и не резервировать их на подстанции. При отключении автотрансформатора на подстанции роль повышающего воспринимает на себя ближайший к подстанции автотрансформатор на фидерной зоне.

Согласующий

Трансформатор данного типа применяется в различных многокаскадных схемах для согласования сопротивления между различными частями схемы. Можно встретить его в ламповом звуковом усилителе. Обычно в таких устройствах он является выходным.

Так для чего же служит трансформатор согласования с нагрузкой? Например, рабочее напряжение ламп в усилителе звуковых частот составляет 70-90 В, но ток мизерный. На динамики такое напряжение подавать нельзя, значит, его понижают до допустимого напряжения и, соответственно, ток повышается.

Целью такого трансформатора является понижение напряжения или повышение до значения, необходимого определенному узлу аппарата.

Изготовление самодельного ЛАТРа

В продаже есть достаточно готовых устройств, но при необходимости его можно сделать самостоятельно. За основу лучше взять трансформатор на О- или Ш-образном магнитопроводе. Изготовление ЛАТРа на тороидальном железе сводится к его перемотке и требует очень высокой аккуратности при наматывании катушки.

почти самодельный ЛАТР (часть 1)почти самодельный ЛАТР (часть 1)

Подготовка материала

Для изготовления регулируемого автотрансформатора необходимы:

  • Магнитопровод. Его сечение определяет мощность автотрансформатора.
  • Обмоточный провод. Его сечение зависит от мощности и потребляемого тока устройства.
  • Термоустойчивый лак. Необходим для пропитки катушки после намотки проводов. Допускается замена масляной краской.
  • Тряпичная изолента или киперная лента и корпус с закрепленными разъемами для подключения нагрузки и питания. Желательно разместить в корпусе цифровой или аналоговый вольтметр
  • Многопозиционный переключатель. Его допустимый ток должен соответствовать току аппарата. При необходимости допускается производить переключение выводов автотрансформатора при помощи пускателей.

Расчет провода

Перед началом намотки катушки необходимо определить сечение провода и необходимое количество витков/вольт (n/v). Этот расчёт производится по поперечному сечению магнитопровода при помощи онлайн-калькуляторов или по специальным таблицам.

Если для изготовления устройства используется исправный трансформатор, то эти параметры определяются по имеющимся обмоткам:

  • подключить трансформатор к сети 220В;
  • вольтметром измерить выходное напряжение V;
  • отключить аппарат;
  • разобрать магнитопровод;
  • размотать вторичную обмотку, считая количество витков N;
  • по формуле n/v=N/V вычислить количество витков/вольт – основной параметр для расчета катушки;
  • измерить сечение провода первичной обмотки.

Совет! Если первичная обмотка не была пропитана лаком и разматывается без нарушения изоляции, то допускается использовать её для намотки катушки автотрансформатора.

Схема

Перед началом работ составляется схема обмотки с указанием количества витков и напряжением на каждом из выводов. В отличие от обычного трансформатора автотрансформатор имеет только одну обмотку, которая изображается с одной из сторон черты, символизирующей магнитопровод.

Для расчетов витков необходимо определить число выводов. Оно зависит от количества положений многопозиционного переключателя. Один из отводов может совпадать с сетевым выводом:

  • определить и указать на схеме напряжение V каждого из положений переключателя;
  • рассчитать необходимое число витков между отводами по формуле N=(n/v)*(V²-V³), где V¹, V², V³ и т.д. – напряжение на последующих выводах;
  • указать на схеме количество витком между каждыми из отводов.

Совет! При необходимости сделать повышающий автотрансформатор к первичной обмотке добавляется необходимое количество витков. Для этого допускается использовать провод, снятый со вторичной обмотки.

Намотка катушки

После выполнения всех расчётов производится намотка катушки. Она выполняется на готовом или специально изготовленном каркасе вручную или при помощи намоточного станка:

  • наматывается необходимое число витков в секции;
  • выполняется ответвление – из обмоточного провода, не обрывая его, делается петля длиной 5-20 см и скручивается в жгут;
  • после изготовления отвода продолжается намотка катушки;
  • операции 1-3 повторяются до завершения намотки;
  • готовая обмотка закрепляется киперной лентой и покрывается лаком или краской.

Процесс сборки

После завершения намотки и высыхания лака производится сборка автотрансформатора:

  • собирается магнитопровод;
  • собранный аппарат устанавливается в корпус;
  • подключаются многопозиционный переключатель и вольтметр;
  • собранный автотрансформатор подключается к клеммам.

Проверка

После сборки работоспособность устройства необходимо проверить:

  • первичная обмотка аппарата подключается к сети;
  • измеряются напряжения при каждом из положений переключателя и данные сравниваются с расчетными;
  • через 20 минут трансформатор отключается и проверяется на нагрев – при его отсутствии производятся повторные испытания под нагрузкой.

Силовые трансформаторы

Это более мощные устройства, которые многие из вас видели. Далее подробно расскажем, для чего служат силовые трансформаторы. Они нужны для повышения/понижения напряжения посредством электромагнитной индукции до той величины, которая необходима потребителю. В случае с данными устройствами под словом “потребитель” подразумеваются производства и жилые дома.

Самым ярким примером служат устройства, которые понижают 6(10) кВ до приемлемых 380 В, которые уже отдельно взятой фазой в совмещении со средней линией питают наши дома необходимыми 220 В. А пример такого повышающего трансформатора можно встретить в микроволновке, где тот из сетевых 220 В делает необходимые для работы магнетрона 2 кВ. Высоковольтные агрегаты (свыше 1000 В) почти всегда трехфазные, и их подразделяют на устройства масляного или воздушного охлаждения, а также по климатическому исполнению и по напряжению первичной обмотки.

Особенностью трехфазных трансформаторов является то, что в зависимости от включения обмоток (звезда-треугольник) можно изменять рабочее напряжение в 1,73 раза. Допустим, данный агрегат, соединенный треугольником на 6 кВ, может работать в сети 10 кВ, если, конечно, производитель позаботился о такой возможности со стороны изоляции. Бывают такие трансформаторы, как выше указанно, трехфазные и однофазные. Предназначены устройства для работы с различными мощностями в зависимости от нужд потребителя.

Однофазные трансформаторы, которые раньше использовались как блоки питания, сейчас активно вытесняются различными электронными преобразователями, которые обладают большим КПД, меньшим весом и габаритами. Также силовые устройства можно подразделить по типу исполнения магнитопровода на стержневые и броневые.

Трансформатор со стержневым магнитопроводом устроен таким образом, что на П-образную деталь устанавливают на 2 катушки, а сверху замыкают ярмом. Преимуществом является то, что элементы фактически не соприкасаются друг с другом.

В броневом магнитопроводе катушка устанавливается на Ш-образную деталь. Секция, на которой находятся проводники, обычно сначала наматывается как первичная, а затем, через термостойкий разделитель, как вторичная. Преимуществом является усиленная механическая защита обмоток.

Также существуют тороидальные сердечники, но они выполняются из ферритовых колец, т. к. сооружать такую конструкцию из шихтованного магнитопровода накладно. Такие агрегаты обычно применяются в электронике и работают на высоких частотах.

Что это за устройство?

Это электрическая статическая машина, которая используется для преобразования тока или напряжения. Причем можно выделить несколько видов устройств в зависимости от того, от какой сети производится питание. Так, трехфазные имеют три сетевые обмотки, которые включаются по схеме «звезда» или «треугольник». В этом можно провести аналогию с асинхронными электродвигателями. Существуют разнообразные виды силовых трансформаторов, о которых будет рассказано немного ниже.

Но в быту используются устройства, в которых одна сетевая обмотка. К тому же имеется как минимум одна вторичная, которая служит для питания устройств. Например, в ламповой технике применяются силовые трансформаторы, у которых несколько вторичных обмоток. Возникала необходимость с одного устройства получать несколько значений напряжения: 6,3 В, 250 В. Кроме того, в быту можно встретить трансформаторы тока. Они установлены в электросчетчиках и служат для работы устройства контроля.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ ТОКА

Современные производители предлагают широкую номенклатуру трансформаторов. Чтобы облегчить выбор была разработана система классификации ТТ по нескольким параметрам.

По назначению.

  • измерительные – комплектуются приборами учета, подключенными к вторичной обмотке;
  • защитные – в состав входят разнообразные реле;
  • промежуточные – основная задача, это преобразование параметров тока первичной электросети и приведение этих значений к величинам пригодным для функционирования внешних потребляющих устройств;
  • многоступенчатые – имеют несколько вторичных обмоток, чем обеспечивают более широкие возможности трансформации;
  • лабораторные – повторяют принципиальную конструкцию многоступенчатых, но обеспечивают более высокий класс точности.

Их установка регламентируется стандартами категорий размещения для электрооборудования ГОСТ 15150-69. В зависимости от модели допускается установка, как на открытом воздухе, так и в распределительном щитке открытого типа (ОРУ).

Внутренние.

Допускается установка только в закрытом помещении (специализированном или с дополнительно обустроенной вентиляцией по ГОСТ 15150-69) в ЗРУ или КРУ (закрытое или комплектное).

Встроенные.

Являются частью конструкции другого электрооборудования. Как правило, для обеспечения дифференциальной защиты общего устройства.

Переносные.

Оборудование для измерений и испытаний электросетей и других электрических устройств. К примеру, лабораторные и измерительные трансформаторы тока.

Специальные.

Используются в качестве электрооборудования на транспорте (морские суда и электровозы) или на производстве (высокочастотные электропечи).

ПО СПОСОБУ УСТАНОВКИ, ТИПУ ОБМОТОК

Проходные.

Такие устройства имеют специфическую конструкцию, позволяющую устанавливать их в стенных проемах или на металлических основаниях. Как правило, такие ТТ используются на старых трансформаторных подстанциях, выполняет функцию проходного изолятора.

Специфика их конструкции состоит в расположении контактов первичной обмотки, один вывод расположен сверху другой снизу.

Опорные.

Монтируются на ровном опорном основании. Отличительной особенностью конструкции является наличие контактов первичной обмотки в верхней части устройства либо по бокам корпуса.

По способу трансформации:

  • одноступенчатые — один коэффициент;
  • многоступенчатые – несколько коэффициентов.

Трансформаторы тока зачастую переделывают (как одно-, так и многоступенчатые), путем изменения числа витков на катушках. Однако при этом существенно снижается коэффициент точности.

По конструкции или наличию первичной обмотки ТТ можно классифицировать на:

Без первичной обмотки: встроенные, шины, разъёмные. Фактически, они состоят из магнитопровода со вторичной обмоткой. Функцию первичной обмотки выполняет стержень высоковольтного ввода электроцепи.

Одновитковые: стержневые и u-образные. Используется на подстанциях промышленных предприятий для подключения устройств учета энергии.

Многовитковые: петлевые, звеньевые. Используются в сложных многофазных сетях для контроля нескольких фаз.

ПО ТИПУ ИЗОЛЯЦИИ

Суть такой классификации состоит определении способа изоляции обмоток.

Согласно ГОСТ 7746-2015, при производстве трансформаторов применяются следующие типы изоляционных материалов:

  1. Твёрдые: фарфор, бакелит, полимерные материалы типа капрона или эпоксидной смолы;
  2. Вязкие — компаунды изоляционных материалов;
  3. Смешанные – бумажно-масляные изоляционные материалы;
  4. Газовые: элегаз или воздух.

Классов трансформаторов тока по напряжению бывает только два — до одного киловатта и более.

Области различных технологий

Например, для питания электротермических установок применяют электропечные трансформаторы. Работают такие трансформаторы обычно на частоте 50Гц, а их мощность может достигать десятков тысяч киловольт-ампер при напряжении до 10кВ.

В области электросварки широко применяются сварочные трансформаторы, мощность которых гораздо меньше чем электропечных.

Как случай единичного применения, трансформатор Тесла, который применяется для создания спецэффектов в шоу индустрии.

    Для подачи питания в различные электрические цепи радио и теле аппаратуры, автоматики и телемеханики, изделий связи, электробытовых приборов; а также для разделения и (или) согласования напряжений цепей различных элементов вышеуказанных устройств и т.д.

Эти трансформаторы обычно маломощные (от вольт-ампера до нескольких киловольт-ампер). Могут иметь две или более обмотки, работают при невысоких напряжениях в основном на частоте 50Гц, но гораздо реже и на более высоких частотах (до десятков килогерц).  Условия  работы вышеуказанных трансформаторов зачастую могут быть специфичны, что может вызывать повышенные требования при изготовлении и проектировании.

Проверка прибора

Принадлежность трансформатора к той или иной группе соединения можно определить полярометром-вольтметром магнитоэлектрической системы с нулем посередине шкалы и отмеченной полярностью его зажимов.

Каждой группе соединений отвечает определенная таблица отклонений стрелки полярометра для испытуемого трансформатора и, сравнив ее с имеющимися, устанавливают группу соединений обмоток.

При включении обмоток ВН на постоянное напряжение определенной полярности в других обмотках трансформатора в момент включения наводится мгновенная ЭДС, величина и направление которой зависят от группы соединения обмоток и фиксируются с помощью полярометра.

В видеоролике, представленном ниже, подробно рассмотрен принцип работы трехфазного трансформатора и его устройство.

Принцип работы трансформатораПринцип работы трансформатора

Трансформатор. Передача Электроэнергии

Трансформатор — это устройство для повышения или
понижения переменного напряжения. Простейший трансформатор
состоит из двух обмоток, одна из которых называется
первичной, а другая — вторичной. Обмотки
трансформатора расположены на общем сердечнике из
электротехнической стали; обычно он изготовляется наборным из
листов для уменьшения потерь на вихревые токи.

Принцип действия трансформатора основан на явлении
электромагнитной индукции. Когда на первичную обмотку подается
переменное напряжение, возникающий в результате этого
переменный магнитный поток возбуждает во вторичной обмотке
(катушке) переменное напряжение той же частоты. Однако
напряжение на обмотках будет различным в зависимости от числа
витков в каждой из них.

Согласно закону Фарадея, ЭДС индукции на вторичной обмотке
равна

1;

11

Разделив эти выражения одно на другое, получим:

Это уравнение трансформатора, показывающее, как напряжение на
вторичной обмотке связано с напряжением на первичной обмотке.
Если n2>n1; то трансформатор
повышающий, если n2 < nl, то —
понижающий.

Из закона сохранения энергии следует, что выходная мощность
трансформатора не может превышать его входную мощность.

Грамотно сконструированный трансформатор может иметь КПД
порядка 99%; столь низки потери энергии в нем. Таким образом,
выходная мощность трансформатора практически равна входной, и,
поскольку мощность равна р = IU, имеем:

Трансформатор может работать только на переменном токе.

Трансформаторы играют важную роль в передаче энергии на
расстояние. Электростанции часто располагаются далеко от
промышленных городов, гидроэлектростанции строятся на больших
реках, для атомных электростанций требуется большое количество
охлаждающей воды, тепловые электростанции тоже часто строят
вдали от городов, чтобы уменьшить загрязнение воздуха.

В любом случае электроэнергию часто приходится передавать на
большие расстояния, и в линиях электропередачи всегда
неизбежны потери энергии.

Потери энергии можно уменьшить, если использовать в линиях
электропередачи высокое напряжение.

Чем выше напряжение, тем меньше сила тока, и тем меньшая доля
мощности теряется в линии электропередачи.

Рассмотрим следующую задачу: поселок потребляет электрическую
мощность в среднем 120 кВт от электростанции, расположенной в
10 км. Полное сопротивление линии электропередачи равно 0,40
Ом. Следует определить потери мощности при напряжении на
линии: а) 240 В; б) 24 000 В.

Решение

а) Если передать мощность 120 кВт при напряжении 240 В, то
сила тока в линии составит

Потери мощности в линии достигнут

Свыше 80% общей мощности будет теряться в линии выделяться в
виде тепла. то] б) При U = 24 000 В,

Потери мощности составят:

Меньше 1% общей мощности будет теряться в линии, если энергию
передавать высоким напряжением.

ОБЛАСТЬ ИСПОЛЬЗОВАНИЯ И ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

Трансформаторы тока используется для преобразования параметров электроэнергии первичных цепей высокого напряжения. Они выполняют две основные функции:

1. Приведение характеристик тока к величинам, которые могут использовать различные электроприборы: счетчики, измерительные устройства, защитные реле.

2. Физическая отделение (изоляция) исполнительных устройств, подключенных измерительным и защитным цепям, от высоковольтных кабелей линий электропередач.

ПОДКЛЮЧЕНИЕ СЧЕТЧИКА ЧЕРЕЗ ТРАНСФОРМАТОР ТОКА

Так как подсоединять измерительные устройства к первичной цепи питания прямым включением нельзя используются ТТ, с соответствующим коэффициентом трансформации. К примеру, для выполнения учета потребления электроэнергии на линии с нагрузкой в 400А необходимо использовать трансформатор тока с рабочими показателями не менее 400/5.

Подсоединение трансформаторов осуществляется на подстанции потребителя. Первичная катушка подключается к силовым контактам фаз (А и С) так называемая «схема неполной звезды». К контактам вторичной обмотки подключается электросчетчик и амперметр. К примеру, модели САЗУ-ИТ и Э378 в щитовом исполнении.

ПОДКЛЮЧЕНИЕ ЧЕРЕЗ ТРАНСФОРМАТОРЫ ТОКА РЕЛЕЙНОЙ ЗАЩИТЫ

К примеру, необходимо установить релейную защиту на первичной (входящей) электроцепи с параметрами тока: напряжение 10 кВ и нагрузкой 1 кА. При таких показателях релейная защита не может быть включена в электроцепь напрямую напрямую.

Для подключения рекомендуется использовать трансформаторы тока модель ТПЛ-10 с коэффициентом трансформации 1000/5 при использовании токовых реле и ТТ — НТМИ-10с коэффициентом трансформации 1000/100 для подключения реле напряжения.

Также через этот тип трансформатора допускается подключение электросчетчика.

На отечественных предприятиях и бытовых подстанциях чаще всего встречаются проходные трансформаторы тока с двумя вторичными обмотками, которые используются для учета потребления электроэнергии и установки релейной защиты соответственно.

  *  *  *

2014-2021 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий