Схемы простых генераторов импульсов

Устройство с симметричными импульсами

Сделать простой генератор импульсов такого типа можно только с использованием инверторов. Адаптер в такой ситуации лучше всего подбирать аналогового типа. Стоит он на рынке намного меньше, чем бесконденсаторная модификация

Дополнительно важно обращать внимание на тип резисторов. Многие специалисты для генератора советуют подбирать кварцевые модели. Однако пропускная способность у них довольно низкая

В результате параметр возбуждения колебаний никогда не превысит 4 мс. Плюс к этому добавляется риск перегрева адаптера

Однако пропускная способность у них довольно низкая. В результате параметр возбуждения колебаний никогда не превысит 4 мс. Плюс к этому добавляется риск перегрева адаптера.

Учитывая все вышесказанное, целесообразнее использовать полевые резисторы. Пропускная способность в данном случае будет зависеть от их расположения на плате. Если выбирать вариант, когда они устанавливаются перед адаптером, в этом случае показатель возбуждения колебаний может дойти до 5 мс. В противной ситуации на хорошие результаты можно не рассчитывать. Проверить генератор импульсов на работоспособность можно просто подсоединив блок питания на 20 В. В результате уровень отрицательного сопротивления обязан находиться в районе 3 Ом.

Чтобы риск перегрева был минимальным, дополнительно важно использовать только емкостные конденсаторы. Регулятор в такое устройство устанавливать можно

Если рассматривать поворотные модификации, то как вариант подойдет модулятор серии ППР2. По своим характеристикам он на сегодняшний день является довольно надежным.

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже


Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна

В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением

Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Схемы генераторов на транзисторах

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе

Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Измерения наносекундных импульсов

Ниже приведены результаты измерения. Первое измерение показывает генерируемый импульс, измерение времени нарастания около 13,3 нс, ограниченной ширины полосы осциллографа (200 МГц), общая длительность импульса составляет около 2,5 нс. Генератор, измеренный на осциллографе с полосой пропускания 2 ГГц (10 GS), показал Tr = 280 pS и общую длительность импульса 1 нс.

Другим является измерение открытого коаксиального кабеля с коэффициентом укорочения 0,66 (коэффициент укорочения — это значение, если электромагнитная волна «работает» медленнее в данной среде по отношению к вакууму) кабель RG 178. Общее измеренное время составляет 17 нс, чтобы рассчитать время распространения, это значение должно быть разделено на 2 (время для достижения отражения и возврата сигнала), которое мы получаем, так что 8,5 нс, теперь этого достаточно, чтобы умножить на скорость света (точнее, электромагнитную волну) и по коэффициенту укорочения кабеля, то есть 0,66. После расчетов получаем результат длины кабеля, равный 1,67 м (фактическая длина кабеля составляет 1,7 м), поэтому ошибка измерения составляет около 2%.

Последнее измерение касается установки антенного кабеля. Аналогично здесь отражение в конце и волнистости в середине измерения. Рассчитанные расстояния представляют собой соответственно разъем на расстоянии 2,2 м и молниеотвод на расстоянии 5,5 м и, наконец, антенну на расстоянии 9,2 м (эти измерения также точны до 3%).

Если отражение выше оси, это означает что кабель разорван, то есть импеданс >50 Ом (относительно выходного импеданса генератора), если под осью — короткое замыкание или импеданс <50 Ом. Измерение действительно точное и показывает любые отклонения от сопротивления кабеля, включая влагу, повреждения, изгибы и так далее. Другой вариант схемы и платы есть в архиве.

Формирование синусоидальной волны (колебания) с помощью Arduino

Мы знаем, что микроконтроллеры являются цифровыми устройствами, поэтому они не могут формировать синусоидальную волну в «чистом» виде. Но есть два способа формирования синусоидальной волны с помощью микроконтроллера: первый заключается в использовании ЦАП (цифро-аналогового преобразователя), а второй — в использовании синусоидального ШИМ сигнала (SPWM). К сожалению, в платах Arduino (за исключением платы Arduino Due) нет встроенного ЦАПа для формирования синусоидальной волны. Конечно, можно было бы использовать внешний ЦАП, но мы решили не усложнять таким образом схему проекта и использовать метод формирования синусоидального ШИМ сигнала с дальнейшим преобразованием его в синусоидальный сигнал (волну).

Что такое SPWM сигнал

SPWM расшифровывается как Sinusoidal Pulse Width Modulation и переводится как синусоидальная широтно-импульсная модуляция (синусоидальная ШИМ). Этот сигнал в определенной степени похож на обычный ШИМ сигнал, но в нем коэффициент заполнения контролируется таким образом чтобы получить среднее напряжение похожее на синусоидальную волну

Например, при коэффициенте заполнения (скважности) 100% среднее выходное напряжение будет 5V, а при коэффициенте заполнения 25% оно будет всего лишь 1.25V, таким образом, управляя скважностью (коэффициентом заполнения) мы можем получить заранее определенные изменяемые значения среднего напряжения, то есть синусоидальную волну. Этот метод обычно используется в инверторах

Принцип формирования SPWM сигнала показан на следующем рисунке.

Синим цветом на этом рисунке показан SPWM сигнал

Заметьте, что его скважность (коэффициент заполнения) изменяется от 0% до 100%, а затем снова возвращается в 0%. Представленный график построен для диапазона изменения напряжений от -1.0 до +1.0V, но в нашем случае, поскольку мы используем плату Arduino, масштаб подобного графика будет от 0V до 5V

Мы рассмотрим как в программе для Arduino формировать SPWM сигнал далее в статье.

Преобразование SPWM сигнала в синусоидальную волну

Преобразование SPWM сигнала в синусоидальную волну обычно требует использования схемы H-моста (H-bridge), которая состоит минимум из 4-х переключателей мощности (power switches). Подобные схемы обычно используются в инверторах. Мы не будем в статье подробно рассматривать эти вопросы поскольку нам с помощью нашей синусоидальной волны не нужно запитывать какое-либо устройство, нам всего лишь нужно ее сформировать. К тому же с помощью H-моста невозможно получить чистую синусоидальную волну – для этой цели необходимо использовать фильтр нижних частот (ФНЧ), состоящий из конденсаторов и индуктивностей.

Генератор релаксационных колебаний

На рис. 11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 1).

Устройства (рис. 11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

Рис. 11. Генератор релаксационных колебаний — схема.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи.

Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации.

В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА.

Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Схемы генераторов на 555

   Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит)

NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е

чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Скетч функционального генератора

#include <LiquidCrystal.h>
int ledPin = 13;      // Светодиод подключен к цифровому выводу 9
int analogPin = A0;   //потенциометр подключен к аналоговому выводу 3
int val = 0;         // переменная для хранения прочитанного значения
//int data={200,238,278,310,341,366,384,396,400,396,384,366,340,310,276,238,200,162,122,90,59,34,16,4,0,4,16,34,60,90,14,162};
int n=0;
 int data={125,157,188,213,233,246,250,245,233,213,188,156,125,93,63,37,17,4,0,4,17,37,63,93};
int P;
boolean k;
unsigned int freq;
//int data={125, 149,174,194,213,229,240,248,250,248,240,229,213,194,173,149,125,101,76,56,37,21,10,3,0,3,10,21,38,56,76,101}; 
int(y)=1;
int (sig)=1;
int freq1;
 LiquidCrystal lcd(12,11,13,4,5,6,7);
void setup()
{
  pinMode(ledPin, OUTPUT);   // устанавливает вывод как выход
  pinMode (9,OUTPUT);
  pinMode (10,OUTPUT);
  pinMode(11,OUTPUT);  
  pinMode (12,OUTPUT);
  pinMode(8,INPUT_PULLUP);
  pinMode(2,INPUT_PULLUP);
  cli();
  TCCR1A = _BV(COM1A1) | _BV(COM1B1) ; //TIMER1 PWM MODE 
  TCCR1B = _BV(WGM13) | _BV(CS11);//8 PRESCALER
  ICR1=250;//4000Hz
  //установить прерывание таймер0
  TCCR0A=0;
  TCCR0B=0;
  TCNT0=0; //инициализировать таймер0
  //OCR0A=12;
  //timer on,
  TCCR0A|=(1<<WGM01);   
  // установить бит для предварительного делителя
  //  TCCR0B |= (1<<CS00)|(1<<CS01);
  TCCR0B |= (1<<CS01);
  //Включить прерывания от таймера
  TIMSK0|=(1<<OCIE0A); 
  Serial.begin(115200);
lcd.begin(16,2);
//delay(1000);
lcd.setCursor(0,0);
lcd.print("freqency Hz");
//delayt(300);
  sei();
}
void loop(){
  //int sig=1;
  val = analogRead(analogPin);   // прочитать входной контакт
  val=val/4;
  if (val<33)//35 to 240Hz
  {val=35;
  }
  freq=8533/val;
  freq1=freq;
  if (digitalRead(8)!=1){
   freq1=freq *10;}
  if (digitalRead(2)!=1){   
for (int g=1;g<freq/18;g++){
  Serial.print(data/3+150);
  Serial.print(" ");
  Serial.print((sig)+100);
   Serial.print(" ");
Serial.println((sig/16)*10+75);
}
  sig=sig+1;
 // delay(2);
  if (sig>23)
  {sig=0;
  }
}
 else
 {
ICR1=250;  
lcd.setCursor(0,2);
lcd.print(freq1);
lcd.print("Hz");
   }
}
  void plot()
{ 
  //while (digitalRead(2)==1){
  cli();  
Serial.print(0);
  Serial.print(" ");
  //Serial.print(200);
  Serial.print(" ");
  Serial.print(data/3+300);
  Serial.print(" ");
Serial.print((sig)+150);
   Serial.print(" ");
Serial.println((sig/16)*10+50);  
  sig=sig+1;
  delay(2);
  if (sig>31)
  {sig=0;
  } 
sei();
}                                                                    
ISR(TIMER0_COMPA_vect){
//read data(n) 
   k=digitalRead(8);
   //digitalWrite(13,k);
 if (k==1)
 {
  OCR1A=data;  //sine
  OCR1B=n*8;//ramp wave
  if (data>=125)
  {   
  digitalWrite(3,HIGH);//square wave  
  }
  else
  {
    digitalWrite(3,LOW);//square wave
  }
   y=y+1;
  if ( y>10)
  {
    n=n+1;
    y=1;
   OCR1A=data;//pwm
   OCR1B=n*8;//ramp wave
  //digitalWrite(3,data);//square wave
   if (data>=125)
  {   
  digitalWrite(3,HIGH);//square wave  
  }
  else
  {
    digitalWrite(3,LOW);//square wave
  }
  }   
 }   
        else {
   OCR1A=data;
   OCR1B=n*8;//ramp wave
  digitalWrite(3,data);//square wave  
   n=n+1;
   }  
  //
   if (n>23) { 
   n=0; 
    OCR0A=val;   
}
}

Программа должна быть загружена в Ардуино с помощью программного обеспечения Arduino IDE. С USB-кабелем, подключенным между Arduino и ПК, значение частоты можно посмотреть на дисплее LCD1, а на последовательном плоттере в Arduino IDE посмотреть форму сигнала.

Переключатель S1, подключенный к контакту 2 платы Board1, используется для переключения отображения между LCD1 и последовательным плоттером в Arduino IDE. Если контакт 2 заземлен, осциллограммы (синусоидальный, квадратный и пилообразный сигнал) можно просматривать на последовательном плоттере, как на цифровом осциллографе:

Каждая форма сигнала имеет величину около 5 В. Таким образом, синусоидальная волна изменяется от 0 до 5 В и не переходит в отрицательную.

Подключения LCD1 выполняются на печатной плате с помощью 16-контактной гребенки. Резистор на 470 Ом (R1), подключенный к выводу 15, используется для подсветки LCD1. Питание для ЖК-дисплея берется с контактов 5В и Gnd платы Arduino.

USB-кабель используется для подключения Arduino к ПК или ноутбуку. После загрузки программы плату Arduino и LCD1 можно запитать от адаптера / аккумулятора напряжением 9 вольт.

Описание устройства

Вся схема основана на двух блоках. Первый блок представляет собой DC-DC преобразователь и он построен с использованием микросхемы LT1073, второй блок представляет собой генератора на базе транзистора 2N2369A от Моторола. Инвертор объекта подает переменное напряжение, которое затем повышается в цепи умножителя диодного напряжения (диоды D1-D3) до значения 90 В. Затем с этим напряжением работает импульсная генераторная схема.

Микросхема LTC1073 используется для получения напряжения + 90 В. Если найти её проблема или купить слишком дорого — эта часть схемы может быть заменена другим преобразователем, например построенным на ne555 или mc34096a.

Схема питается через резистора 1MOM (R5), который подает напряжение непосредственно на транзистор и конденсатор 2PF (C2) — когда он заряжается до напряжения около 50 В (UCE для 2n2369 составляет около 40 В) вызывается краткий пробой перехода К-Э транзистора T1 и возникает импульс (явление лавинного пробоя).

Этот повторяется каждые 10 мкс

Теперь, обратите внимание на номинал транзистора — 2N2369A, не каждый транзистор тут будет работать, многие другие транзисторы просто не хотели функционировать

Выходное сопротивление точно настраивается на 50 Ом с помощью резистора эмиттера. Если кто-то хочет протестировать кабели с разными импедансами, надо подобрать значение резисторов R2, R3 для сопротивления кабеля (например, 75 Ом (2×150)).

Analog Devices ADA4807-2

Chau Tran, Analog Devices

EDN Europe

Во многих аудио, автомобильных и измерительных приложениях требуются недорогие, но высокостабильные и точные генераторы прямоугольных импульсов, способные отдавать в нагрузку достаточный ток. Интерес к дешевым способам реализации высококачественных приложений имеется всегда. Изображенная на Рисунке 1 схема состоит из бюджетного сдвоенного операционного усилителя (ОУ) с дополнительной функцией отключения и нескольких пассивных компонентов.

Рисунок 1. Генератор прямоугольных импульсов.

В схеме на Рисунке 1 использована микросхема ADA4807-2 – сдвоенный маломощный малошумящий rail-to-rail усилитель с обратной связью по напряжению. Первый ОУ (A) выполняет основную функцию генератора прямоугольных импульсов, а второй (B) является лишь драйвером. Типовое значение втекающего или вытекающего тока, который может отдавать этот драйвер, рано ±40 мА. ОУ A работает как компаратор. Усилитель охвачен положительной обратной связью и медленной отрицательной обратной связью, переключаемой RC-цепочкой, благодаря чему схема находится в режиме автоматической генерации. Когда напряжение на конденсаторе сравнивается с каждым из порогов, источник его заряда переключается с положительной шины на отрицательную и обратно.

Система находится в неустойчивом равновесии, пока напряжения на входах и выходах компаратора равны точно нулю. Однако любые шумы смещают выходное напряжение вверх или вниз относительно нуля, и благодаря положительной обратной связи напряжение на выходе компаратора быстро достигает уровня одной из шин питания и остается на нем до следующего цикла.

Между инвертирующим входом и выходом компаратора включена RC-цепочка. Вследствие этого напряжение на инвертирующем входе компаратора асимптотически стремится к выходному напряжению компаратора с постоянной времени RC.

Постоянная времени RC определяет частоту генерации:

Коэффициент заполнения импульсов можно регулировать, меняя соотношение сопротивлений резисторов R1 и R2. В рассматриваемой схеме эти резисторы одинаковы, поэтому выходные импульсы симметричны.

Пиковые уровни выходного сигнала драйвера лишь на 40 мВ меньше напряжения шин питания, при типовых значениях линейных вытекающих и втекающих токов 50 мА и 40 мА, соответственно.

Вывод DISABLE позволяет включать и выключать генератор. Такая функция перехода в «спящий» режим очень полезна для снижения потребляемой мощности. Для отключения схемы на время, когда она не используется, достаточно подать на вывод DISABLE напряжение менее 1.1 В. Это не более чем за 200 нс автоматически снизит ток, потребляемый двумя ОУ, до ничтожно малого уровня. Остальная часть тока, потребляемого схемой, приходится, в основном, на резистивный делитель R1, R2. При переводе устройства в спящий режим ток, потребляемый от батареи, с 2 мА уменьшается до 80 мкА. При этом выход схемы переходит в высокоимпедансное состояние, а для пробуждения и возврата в активный режим достаточно всего 500 нс.

Рисунок 2. Форма выходного сигнала недорогого генератора прямоугольных импульсов.

Типовой ток потребления сдвоенного ОУ, использованного в схеме на Рисунке 1, равен 2 мА при напряжении питания 3 В. То есть, в активном режиме рассеиваемая мощность составляет 6 мВт. Однако в спящем режиме типовой ток потребления резко снижается до 2 мкА, и мощность рассеивания падает до 6 мкВт. Это соответствует коэффициенту экономии энергии 1000:1.

Рисунок 3. Вывод DISABLE позволяет быстро включать и выключать схему.

Легко и быстро переключаться между двумя режимами дает возможность наличие выводов блокировки. Благодаря исключительно малому времени включения и выключения, составляющему несколько сотен наносекунд, переключение режимов происходит практически без задержки.

Схемы такого типа могут использоваться в качестве времязадающих во множестве приложений. Изменение соотношения сопротивлений резисторов R1 и R2 дает возможность управлять коэффициентом заполнения выходных импульсов. Сочетание малого потребления мощности, rail-to-rail входов и выходов и удобного режима сна обеспечивает продолжительную работу этой схемы при питании всего от двух батареек типоразмера AA. А высокая нагрузочная способность ОУ и его быстрое включение/выключение позволяют в ряде случаев отказаться от силового транзистора и реализовать экономящие энергию рабочие схемы с чередованием режимов.

Материалы по теме

  1. Datasheet Analog Devices ADA4807-2

Модели с конденсаторами РР5

Генератор высоковольтных импульсов с указанными конденсаторами можно встретить довольно часто. При этом использоваться он способен даже с блоками питания на 15 В. Пропускная способность его зависит от типа адаптера

В данном случае важно определиться с резисторами. Если подбирать полевые модели, то адаптер целесообразнее устанавливать именно бесконденсаторного типа

В том случае параметр отрицательного сопротивления будет находиться в районе 3 Ом.

Стабилитроны в данном случае используются довольно часто. Связано это с резким понижением уровня предельной частоты. Для того чтобы ее выровнять, стабилитроны подходят идеально. Устанавливаются они, как правило, возле выходного порта. В свою очередь, резисторы лучше всего припаивать возле адаптера. Показатель колебательного возбуждения зависит от емкости конденсаторов. Рассматривая модели на 3 пФ, отметим, что вышеуказанный параметр никогда не превысит 6 мс.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий