Управление arduino с ик приемником tsop 1833

Ультразвуковой датчик и светодиод Ардуино

Представленный скетч работает без библиотеки, поэтому в коде многовато строчек. Мы воспользуемся библиотекой для ультразвуковых дальномеров, что позволит нам значительно упростить скетч. Для начала установите библиотеку Ultrasonic (инструкция по установке библиотек в Arduino IDE) и загрузите следующую программу в Ардуино. Ссылка на скачивание архива со скетчами и библиотекой Ultrasonic.h — здесь.

Подключите дополнительно к плате RGB светодиод или несколько светодиодов, для создания мини проекта. Цвета светодиода будут переключаться, в зависимости от расстояния от датчика расстояния до предмета. Для управления светодиодами от УЗ датчика в программе используется условные операторы if. После сборки схемы, как на картинке выше, загрузите в микроконтроллер следующую программу.

Скетч с использованием библиотеки Ultrasonic.h

#include <Ultrasonic.h>    // подключаем библиотеку Ultrasonic
Ultrasonic ultrasonic(8,9); // назначаем выходы для Trig и Echo
 
void setup() {
  Serial.begin(9600);        // подключаем монитор порта
  pinMode (11, OUTPUT); // подключаем к пину светодиод
  pinMode (12, OUTPUT); // подключаем к пину светодиод
}

void loop () {
  int dist = ultrasonic.Ranging(CM);
  Serial.print(dist);     // выводим расстояние в сантиметрах
  Serial.println(" cm");

  // переключаем цвета светодиода
  if (dist < 50) {digitalWrite(12,0); digitalWrite(11,1);}
  if (dist < 50) {digitalWrite(12,1); digitalWrite(11,0);}

  delay(100);
}

Как подключить ультразвуковой датчик к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • макетная плата;
  • УЗ дальномер HC-SR04;
  • 1 светодиод и резистор 220 Ом;
  • провода «папа-папа» и «папа-мама».


Схема подключения ультразвукового датчика к Arduino Uno

Схема подключения указана на рисунке выше. Отметим, что ультразвуковой дальномер HC-SR04 имеет диапазон измерения от 2 см до 400 см, работает при температурах от 0° до 60° С. Точность измерения составляет ± 1 см, рабочее напряжение датчика до 5,5 В. Для начала мы используем простой скетч, без использования библиотеки Ultrasonic. После подключения к Arduino дальномера HC-SR04 загрузите следующий скетч:

Скетч для подключения датчика hc-sr04 к Arduino

int trigPin = 8; // назначаем имя для Pin8
int echoPin = 9; // назначаем имя для Pin9
 
void setup() { 
  Serial.begin (9600); // подключаем монитор порта
  pinMode(trigPin, OUTPUT); // назначаем trigPin (Pin8), как выход
  pinMode(echoPin, INPUT); // назначаем echoPin (Pin9), как вход
} 
 
void loop() { 
  int duration, cm; // назначаем переменную "cm" и "duration" для показаний датчика
  digitalWrite(trigPin, LOW); // изначально датчик не посылает сигнал
  delayMicroseconds(2); // ставим задержку в 2 ммикросекунд

  digitalWrite(trigPin, HIGH); // посылаем сигнал
  delayMicroseconds(10); // ставим задержку в 10 микросекунд
  digitalWrite(trigPin, LOW); // выключаем сигнал

  duration = pulseIn(echoPin, HIGH); // включаем прием сигнала

  cm = duration / 58; // вычисляем расстояние в сантиметрах

  Serial.print(cm); // выводим расстояние в сантиметрах
  Serial.println(" cm");

  delay(1000); // ставим паузу в 1 секунду
}

Пояснения к коду:

  1. для подключения выходов Trig и Echo на датчике можно использовать любые цифровые входы на Ардуино;
  2. чтобы получить значение датчика в миллиметрах следует использовать следующую формулу для расчета: .

Декодирование инфракрасных сигналов управления с помощью Arduino

Плата Arduino в рассматриваемом проекте выполняет сразу две функции: одна заключается в декодировании инфракрасных сигналов от пультов ДУ, а вторая — в управлении инфракрасным излучателем.

Для декодирования сигналов от инфракрасных пультов ДУ мы будем использовать заголовочный файл от Ken Shirriff’s IRremote, который значительно упрощает эти процессы. Для работы с этим заголовочным файлом вы должны сделать следующую последовательность действий:

Текст программы для декодирования сигналов от инфракрасных пультов ДУ:

После того как вы сумеете это реализовать аккуратно запишите все значения кодов и другую представленную информацию для всех кнопок со всех пультов ДУ, которые вы хотите реализовать в вашем универсальном пульте. Таким образом, вы создадите своеобразную базу данных кнопок и соответствующих им кодов.

Представленный пример программы для декодирования сигналов инфракрасных пультов ДУ был взят из подпапки ‘examples’ (примеры) папки IRremote (которую мы скачали по вышеприведенной ссылке). Также в подпапке ‘examples’ вы можете при желании изучить и другие примеры работы с устройствами инфракрасной связи.

Преобразование типов данных

В Ардуино преобразование переменной — это приведение значение переменной к другому типу. Например, требуется в программе преобразовать тип данных byte в тип данных int. Для этого требуется указать нужный тип переменной в скобках перед преобразуемой переменной — результат вернет переменную с новым типом данных. Приведем пример явного преобразования типа данных (переменных) Ардуино:

byte x = 150;
int y = (int)x;
// в переменную y будет записано значение переменной x, приведенной к типу byte
float x = 15,4;
int y = (int)x;
// в переменную y будет записано значение x, приведенной к целочисленному значению
// переменная будет округлена до 15

Заключение. Знание типов переменных поможет правильно использовать объем памяти в плате Arduino, что поможет работать микроконтроллеру намного быстрее и эффективнее. Использование переменных позволяет не запоминать какое-либо значение, для этого достаточно обратиться к ячейке памяти по заданному имени.

Устройство ИК приемника. Принцип работы

Приемники инфракрасного излучения получили сегодня широкое применение в бытовой технике, благодаря доступной цене, простоте и удобству в использовании. Эти устройства позволяют управлять приборами с помощью пульта дистанционного управления и их можно встретить практически в любом виде техники. Но, несмотря на это, постепенно Bluetooth модуль набирает все большую популярность.


Принцип работы IR ресивера. Обработка сигнала от пульта ДУ

ИК-приемник на Ардуино способен принимать и обрабатывать инфракрасный сигнал, в виде импульсов заданной длительности и частоты. Используется при изготовлении датчика препятствия и дальномера для Arduino. Обычно ИК-приемник имеет три ножки и состоит из следующих элементов: PIN-фотодиод, усилитель, полосовой фильтр, амплитудный детектор, интегрирующий фильтр и выходной транзистор.

Под действием инфракрасного излучения в фотодиоде, у которого между p и n областями создана дополнительная область из полупроводника (i-область), начинает течь ток. Сигнал поступает на усилитель и далее на полосовой фильтр, который настроен на фиксированную частоту: 30; 33; 36; 38; 40 и 56 килогерц и защищает приемник от помех. Помехи могут создавать любые бытовые приборы.

ИК-приемник VS1838B и arduino

Управлять своими устройствами можно очень многими способами, один из них – это с помощью ИК-сигналов, про этот метод постараюсь расписать в сегодняшней статье. Тут поможет любой ИК-пульт – от телевизора, музыкального центра или любого другого домашнего устройства, которое есть у каждого.

Пульт дистанционного управления являться передатчиком информации, а в качестве приемника можно использовать инфракрасный датчик VS1838B, который продается совсем за смешные деньги.

Приемник работает на частоте 38 кГц, данная частота является самой распространенной среди ИК-пультов, используемых в домашней технике.

Подключение ИК-датчика VS1838B к arduino

Для считывания ИК-сигнала и преобразования его к человеческому виду – числу, можно воспользоваться библиотекой IRremote, с ее помощью весь скетч займет всего несколько строк.Ссылка на библиотеку: IRremote .

Но прежде, чем начать писать программу, необходимо разобраться с подключением приемника VS1838B. Датчик имеет всего три ноги, две из них – это питание, и третья передает полученный сигнал.

Ниже приведена фотография VS1838B с подписанными ножками:

Ногу, которая отвечает за передачу данных, будем подключать к пину 11 arduino. Так же для наглядности подключим к 13 пину светодиод, который будет включаться и выключаться при нажатии на кнопки на ИК-пульте.

Код скетча для ИК-приемника VS1838B

Каждая кнопка ИК-пульта имеет уникальный код, который мы будем получать с помощью датчика VS1838B. В первую очередь запишем скетч, который выводит в консоль коды кнопок, после чего уже дополнить программу условиями на конкретные кнопки.Ниже приведет скетч для работы с ИК-приемником VS1838B и arduino, скачать его можно тут: скачать.

#include // подключаем библиотеку int ledPin = 13; // светодиод int reciverPin = 11; // пин, к котрому подключен ИК-приемник IRrecv irrecv(reciverPin); decode_results results; void setup() { Serial.begin(9600); irrecv.enableIRIn(); // запуск приемника pinMode(ledPin, OUTPUT); } void loop() { // постоянно считываем данные с приемника if (irrecv.decode(&results)) { // выводим в консольку, что получили, число в 16-ричном виде Serial.println(results.value, HEX); // проверяем сигналы – и если это те, что нам нужны, то вкл или выкл светодиод if(results.value == 0x926DC837) digitalWrite(13, HIGH); if(results.value == 0x926D48B7) digitalWrite(13, LOW); irrecv.resume(); // готовы принимать следующий сигнал } }

Пример работы ИК-датчика VS1838B и arduino можно посмотреть ниже на видео.

Дистанционное управление роботом на базе Ардуино своими руками

Перевёл alexlevchenko для mozgochiny.ru

Сегодня никого не удивишь радиоуправляемыми самоделками.

Но согласитесь, как-то «по старинке» нажимать на клавиши управления… Гораздо интереснее управлять поделками с помощью движений кисти, не так ли? В данной статье показан пример того, как можно организовать дистанционное управление при помощи платы Arduino и нескольких датчиков изгиба. В качестве подопытного будет выступать PHIRO Pro

Шаг 2: Загружаем стандарт Firmata на Arduino

Необходимо загрузить стандарт firmata на плату Ардуино, для того, что соединить её с Pocket Code. В данном проекте используем Arduino UNO, однако может быть использована любая плата Arduino.

  • Подключаем плату Arduino к компьютеру/ноутбуку.
  • В Arduino ID выбираем COM Port. Tools -> Serial Port -> Corresponding COM Port
  • Далее выбираем тип платы. Tools -> Board -> Your Arduino Board
  • Затем выбираем стандарт Firmata. Examples -> Firmata -> Standard Firmata
  • Нажимаем «Upload» и загружаем код на плату.

Шаг 3: Соединяем датчики с платой и крепим их на перчатку

Датчики изгиба — это резистивные устройства, что могут использоваться для фиксации сгибания или наклона. Ниже приводится схема подключения датчиков на Arduino. Для того, чтобы надежно закрепить датчики на перчатке использовал согнутые скобки для степлера, однако вы можете при желании использовать пластиковые стяжки.

Шаг 4: Подсоединяем Bluetooth модуль HC-05 к Arduino

Соединяем выводы bluetooth модуля и платы Arduino следующим образом:

  • HC05 Tx — Arduino Rx
  • HC05 Rx — Arduino Tx
  • Vcc — 5V
  • GND — GND

Шаг 5: Соединяем Arduino с батареей

Используем 9В батарею для питания платы Arduino с Bluetooth модулем. Такой тип компоновки объясняется возможностью легкого монтажа на запястье/браслете. Чем компактнее тем лучше.

Шаг 6: Программа Pocket Code

Ниже представлены примеры использования программы. Прежде всего убедитесь, что PHIRO Pro находится в Mode 3 (Bluetooth Mode). Нажмите на кнопку Mode на PHIRO не раньше, чем синий светодиод, что расположен рядом с дисплеем на верху, включится.

Управление элементами с помощью Ик пульта на Arduino в программе  FLProg

Управление элементами с помощью Ик пульта на Arduino в программе FLProg

Для программы, в общем есть 7 режимов.

  • Указательный палец выпрямлен. Фары светятся красным. Программа показывает STOP.
  • Указательный и средний палец выпрямлены. Фары светятся зеленым. Программа показывает STOP.
  • Указательный, средний и безымянный пальцы выпрямлены. Фары светятся синим. Программа показывает STOP.
  • Ладонь открыта. PHIRO движется вперёд. Фары светятся белым. Программа показывает FORWARD (вперёд).
  • Ладонь сжата в кулак. PHIRO останавливается. Фары выключены. Программа показывает STOP.
  • Ладонь сжата в кулак и наклонена влево (телефон наклонён влево). PHIRO поворачивает налево. Левая фара светится желтым. Программа показывает LEFT (влево).
  • Ладонь сжата в кулак и наклонена вправо (телефон наклонён вправо). PHIRO поворачивает вправо. Правая фара светится желтым. Программа показывает RIGHT (право).

Шаг 7: Проводим финальный монтаж

Для крепления телефона на руке, можете воспользоваться наручной повязкой или сделать так, как сделал я.

Купил дешевую крышку под мой мобильник, прорезал отверстия и протянул ленту липучку. Наручная повязка с телефоном готова.

Вот и всё!) Спасибо за внимание)

(A-z Source)

Радиоуправление на Arduino

Соберем радиоуправление на основе Arduino Uno и радиомодуля MX-05v. Этот модуль работает на частоте 443 МГц, что позволяет использовать его под водой (волны в диапазоне 2.4 ГГц не проникают под воду). Потом поставим его на модель Радиоуправляемой Подводной Лодки.

Радиомодуль MX-05V + MX-FS-03V подкупает своей низкой ценой – около 60 рублей за пару. Заявленной дальности связи 20-200 метров хватает для небольших моделей машин или лодок.

Сделаем одноканальную аппаратуду. Для этого нам понадобятся:

  • 2 платы Ардуино для приемника и передатчика
  • комплект радиомодуля MX-05V + MX-FS-03V
  • переменный резистор или джойстик для передатчика
  • рулевая машинка (серва) для приемника

Суть работы программы заключается в следующем:

  • считываем значение с переменного резистора (число от 0 до 1023)
  • переводим это число в 2 байта (16 бит, т.к. 1023 занимает 10 бит и не поместится в один байт)
  • передаем по радио-каналу
  • приемник принимает 2 байта по радио каналу
  • переводит их обратно в число от 0 до 1023
  • передает команду серво-машинке

Принцип работы Arduino доступно описан на разных веб-ресурсах. Мне понравился бесплатный обучающий онлайн курс «Строим роботов и другие устройства на Arduino». Рекомендую.

Arduino Start #2. Управление arduino ИК-пультом

Arduino Start #2. Управление arduino ИК-пультом

Загружаем текс программы (скетч) для передатчика и приемников. Кстати, программы надо хранить в разных папках, иначе во время компиляции они будут сливаться в один файл и конфликтовать из-за дублирования функций setup и loop. Как подключить сторонние библиотеки к Arduino описано например тут.

Передатчик

// Библиотека передатчика
#include void setup() { // Запуск передатчика vw_set_ptt_inverted(true); vw_setup(1000); // Bits per sec } void loop() { // чтение показаний с переменного резистора int sensorValue = analogRead(A0); // отправляем значение send(sensorValue); } void send(int param) { // конвертируем int в массив из 2 байт uint8_t msg; int len = 2; msg = highByte(param); msg = lowByte(param); // отправляем непосредственно в радиоканал vw_send(msg, len); // ждем пока сообщение не уйдет целиком vw_wait_tx(); }

Приемник

// Библиотека для приемника
#include // Библиотека для серво машинки. В отличии от обычной Servo.h не конфликтует с VirtualWire.h
// Скачать библиотеку можно тут. // http://en.osdn.jp/projects/sfnet_pgahtow/downloads/Arduino%20(v1.0)%20libaries/ServoTimer2.zip/
// Надо закомментировать 41 строчку в файле ServoTimer2.

h в случае ошибки компиляции
// ‘typedef uint8_t boolean;’
#include // Создаем объект серво-машинки
ServoTimer2 myservo; void setup() { // для отладки // Serial.begin(9600); // Запуск приемника vw_set_ptt_inverted(true); vw_setup(1000); // бит в секунду vw_rx_start(); // запуск приемника // подключаем серво к 6 пину myservo.

attach(6);
} void loop() { uint8_t msg; uint8_t len = 2; if (vw_get_message(msg, &len)) { // переводим байты в int int value = word(msg, msg); // подгоняем под диапазон входных данных сервы int sValue = map(value, 0, 1023, 600, 2400); myservo.write(sValue); // Serial.

println(sValue); }
}

И в итоге – ничего не работает! Почему?

Питание

Радиомодуль MX-05V очень простой, из-за этого он очень восприимчив к внешним помехам. И даже такой маленький мотор как в серво-машинке способен нарушить его работу.

Для того, чтобы минимизировать влияние электромотора (это касается только колекторных моторов), нужно разделить питание силовой части от приемника. При этом «минус» у них должен быть общий.

Итоговая схема подключения приемника выглядит так.

Результат

Данные радиомодуль слишком восприимчив к помехам, и управлять летательной техникой на нем нельзя. Но для игрушечной машинки или лодки вполне подойдет.

Константы, директива define

Если значение глобальной или локальной переменной не задано, то присваивается значение 0. Переменные, которые нельзя изменять в программе после объявления — называются константы. Для задания константы — перед типом данных переменной добавляют const. В следующей таблице приведены типы данных Ардуино, которые можно использовать при написании скетчей для микроконтроллера.

В языке программирования Ардуино дополнительно еще существует директива define, которая объявляется в скетче до процедуры void setup. Формат записи директивы следующий: #define <имя> <значение>. Главное отличие директивы от константы в том, что она не занимает памяти в Ардуино. Директива define используется в программе для назначения имен пинов или хранения констант (постоянных величин).

Bluino Loader – Arduino IDE

ПО для компиляции кода в файл и загрузки его на платформу Ардуино через смартфон и USB OTG. Громоздкие кнопки и запутанные провода значительно усложняют работу над проектами. Для упрощенного контроля удаленным администрированием предоставляется графический идентификатор Bluino Loader IDE. Разрабатывает проекты, доступные триггеру. Подключается к всемирной паутине с помощью: Wi-Fi, Ethernet или через накопитель ESP8266. Когда необходимые процедуры будут выполнены и произойдет начало работы, приложение даст сигнал.

Настройка софта для создания проектов займет не более 5 минут. Матобеспечение настраивается по выбору пользователя. Простой и удобной софт. Для проверки заливают скетч в микроконтроллер и убеждаются в том, что все работает как надо. Мигающий диод подаст сигнал о правильности выполняемых действий. Далее приступают к прошивкам.

Why do we use 33% duty cycle

  • Carrier duty cycle 50 %, peak current of emitter IF = 200 mA, the resulting transmission distance is 25 m.
  • Carrier duty cycle 10 %, peak current of emitter IF = 800 mA, the resulting transmission distance is 29 m. — Factor 1.16
    The reason is, that it is not the pure energy of the fundamental which is responsible for the receiver to detect a signal.
    Due to automatic gain control and other bias effects high intensity and lower energy (duty cycle) of the 38 kHz pulse counts more than high low intensity and higher energy.

BTW, the best way to increase the IR power is to use 2 or 3 IR diodes in series. One diode requires 1.1 to 1.5 volt so you can supply 3 diodes with a 5 volt output.
To keep the current, you must reduce the resistor by (5 — 1.3) / (5 — 2.6) = 1.5 e.g. from 150 ohm to 100 ohm for 25 mA and 2 diodes with 1.3 volt and a 5 volt supply.
For 3 diodes it requires factor 2.5 e.g. from 150 ohm to 60 ohm.

Contributing

If you want to contribute to this project:

  • Report bugs and errors
  • Ask for enhancements
  • Create issues and pull requests
  • Tell other people about this library
  • Contribute new protocols

Check here for some guidelines.

Инструкция по изготовлению лодки с пультом

Проверку работы ИК-приемника и сервомотора на Ардуино лучше проводить с отключенным электромоторчиком, поскольку он будет создавать сильные вибрации при работе. На этом этапе тестирования проекта следует лишь оценить подвижность киля и отцентровать рычаг привода на сервомоторе. Необходимо сделать так, чтобы при нажатии кнопки «вперед» или «стоп» на пульте, киль вставал по центру.

1. Изготовление корпуса лодки из пеноплекса


Изготовление корпуса лодки на Ардуино своими руками

Размеры и форма лодки могут быть абсолютно разными — все зависит лишь от фантазии. Что касается прорезей, то они должны соответствовать размерам деталей. На трафарете (слева-направо) размечены прорези для: платы Ардуино UNO, сервомотора, привода киля и микромоторчика. Учтите, что привод от сервомотора к килю должен свободно ходить в прорези, для этого надо точно рассчитать радиус.

2. Изготовление деталей для привода и управления


Изготовление деталей для привода и управления лодкой

Киль можно изготовить из любого материала — пластик, дерево и т.д. Стержень от ручки, прикрепленный к килю служит осью, на котором он поворачивается. Скрепка на киле обеспечивает подвижное соединение киля и рычага сервомотора из проволоки. Размер и конструкция привода сервомотора будет зависеть от конструкции лодки. Винт изготавливается из стержня шариковой ручки и куска пластиковой баночки.


Сборка деталей для привода радиоуправляемой лодки

3. Сборка лодки на Ардуино с управлением


Для начала следует установить плату, сервопривод и двигатель

В этом проекте мы обошлись без использования макетной платы. Если вспомнить схему подключения ИК приемника к Ардуино, то она очень проста (слева-направо): A0 — GND — 5V  и не требует расходов на приобретение макетной платы. Транзистор мы использовали в этой схеме для включения советского электромоторчика от 3,3 V.


Сборка электрической схемы лодки на ИК управлении

Транзистор размещен на пинах 12, 11 и 10. На Pin11 (средняя ножка транзистора — это база) мы подаем напряжение для включения электродвигателя. Pin12 и Pin10 в скетче не используются, поэтому служат нам эмиттером и коллектором. К Pin12 подключен выход 3,3 V, а к Pin10 подключен электромоторчик (красный плюсовой провод).

4. Крепление привода винта на валу двигателя


Разогрейте стержень от ручки над паяльником и он зайдет на вал двигателя

Винт для судна изготавливается из любой пластиковой баночки или корпуса с небольшим закруглением, например, баночка от витаминок или корпус от  клея-карандаша. Для начала необходимо вырезать из пластика винт в форме восьмерки, а затем выпрямить противоположные края винта, используя высокую температуру для размягчения пластика. Смотрите фото винта для лодки Ардуино выше.

Скетч для лодки на Ардуино с ИК пультом

#include <IRremote.h> // библиотека для IR-приемника
#include <Servo.h>      // библиотека для сервомотора

// Замените коды команд от пульта ДУ на свои значения
#define forward 16736925
#define left 16769565
#define right 16754775
#define turm_left 16712445
#define turm_right 16711935
#define stope 16755285

Servo servo; // присваиваем имя сервомотору

int RECV_PIN = A0;
IRrecv irrecv(RECV_PIN);
decode_results results;

void setup() {
  Serial.begin(9600); // подключаем монитор, чтобы узнать коды кнопок пульта
  irrecv.enableIRIn();
  pinMode(11, OUTPUT);
  pinMode(13, OUTPUT);
  pinMode(A0, INPUT);
  servo.attach (7);
}

void loop() {
  
    if (irrecv.decode(&results)) {
    
    Serial.println(results.value); // выводим на монитор порта коды с пульта ДУ

    if (results.value == left) {
    servo.write(60);
    digitalWrite(11, HIGH);
   }
   
    if (results.value == right) {
    servo.write(120);
    digitalWrite(11, HIGH);
   }
   
    if (results.value == turm_left) {
    servo.write(10);
    digitalWrite(11, HIGH);
   }
   
    if (results.value == turm_right) {
    servo.write(170);
    digitalWrite(11, HIGH);  
   }
   
    if (results.value == forward) {
    servo.write(90);
    digitalWrite(11, HIGH);
   }
   
    if (results.value == stope) {
    servo.write(90);
    digitalWrite(11, LOW);
   }
   
    irrecv.resume(); // Ждем следующий сигнал от пульта
  }  
}

Добавление опций в схему

Вы можете добавить больше вещей в схему, найдя коды различных кнопок ИК-пульта дистанционного управления и написав коды для их вставки и их работы. Например, ниже приведен код, который мы бы добавили к коду, чтобы светодиоды светились по определенному шаблону.

if (IRCode == 16712445){
digitalWrite(ledb,HIGH);

delay(100);
digitalWrite(ledb,LOW);
digitalWrite(ledg,HIGH);
delay(100);
digitalWrite(ledg,LOW);
digitalWrite(ledr,HIGH);
delay(100);
digitalWrite(ledr,LOW);
digitalWrite(ledy,HIGH);
delay(100);
digitalWrite(ledy,LOW);
digitalWrite(ledw,HIGH);
delay(100);
digitalWrite(ledw,LOW); 
}

Платы дополнения (шилды)

Для расширения вспомогательного функционала используются дополнительные платы – шилды. Ниже приведен список самых интересных:

  • LCD Shield определяет метеорологические показатели в помещениях: влажность, скорость ветра, температуру.
  • Motor Shield обеспечивает управление скоростью и оборотами моторов. Есть модели с поддержкой нескольких приводов.
  • Data Logging Shield предназначена для записи и хранения информации до 32 Gb.
  • Relay Shield самая востребованная в системах Smart Homе, рассчитана на обслуживание приборов мощностью 1 КВт.
  • Ethernet Shield от Ардуино обеспечивает независимость Умного дома от ПК, настраивает интернет-связь.
  • Wi-fi Shield нужен для передачи шифрованных данных между Arduino и устройствами.
  • Energy Shield позволяет разнообразить источники питания для подключения проекта.
  • GPRS Shield используется для связи Умного дома с телефоном владельца.

Как собрать

  1. Возьмите Troyka Shield LP и установите сверху на управляющую плату — Arduino или Iskra JS.

  2. Закрепите на обратную сторону управляющей платы с помощью двустороннего скотча два сервопривода спереди — «передние колёса», и два сзади — «задние колёса». Закрепите круглые качельки на валах сервоприводов.

  3. Подключите передние колёса «ServoFordL» и «ServoFordR» через 3-проводные шлейфы к и пину Troyka Shield LP соответственно, а задние колёса «ServoBackL» и «ServoBackR» — к и пину Troyka Shield LP соответственно.

  4. Подключите ИК-приёмник к пину Troyka Shield LP. В итоге должна получиться схема.

  5. Установите Power Shield сверху на Troyka Shield LP.

Принципы работы GSM модуля

GSM модуль используется во многих устройствах, которые ориентированы на взаимодействие с технологией GSM. Обычно он используется для взаимодействия компьютера с GSM сетью. Однако в роли компьютера может выступать и плата Arduino.

GSM модуль понимает только AT команды и может на них отвечать. На большинство AT команд модуль отвечает сообщением “OK“ если он выполнил ее успешно, и сообщением “ERROR” если во время выполнения команды произошли какие либо проблемы. Существуют различные AT команды, например, ATA – ответить на звонок, ATD – сделать звонок, AT+CMGR — прочесть сообщение, AT+CMGS – передать SMS сообщение и т.д. AT команды должны заканчиваться символом возврата каретки, то есть \r (0D в шестнадцатеричном формате), например, “AT+CMGS\r”. К примеру, в нашем проекте мы можем использовать следующие AT команды:

ATE0 For echo offAT+CNMI=2,2,0,0,0 <ENTER> режим автоматического открытия принимаемых сообщений ATD<Mobile Number>; <ENTER> осуществить вызов (например, ATD+919610126059;\r\n)AT+CMGF=1 <ENTER> выбор текстового режимаAT+CMGS=”Mobile Number” <ENTER> назначение мобильного номера получателя>>после этого мы можем написать наше сообщение>>после написания сообщенияCtrl+Z команда передачи сообщения (26 в десятичном коде).ENTER=0x0d в шестнадцатеричном формате

SIM900 представляет собой четырех диапазонный GSM/GPRS модуль, способный функционировать в диапазонах 850/900/1800/1900 МГц в режимах передачи/приема голоса, SMS и данных. Отличается низким энергопотреблением. Внешний вид данного модуля показан на следующем рисунке.

Как подключить датчик движения к Ардуино

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • PIR датчик движения HC-SR501;
  • беспаечная макетная плата;
  • 1 светодиод и резистор 220 Ом;
  • провода «папа-папа», «папа-мама».


Схема подключения PIR датчика к Ардуино Уно

Распиновка датчиков движения Ардуино у разных производителей может отличаться, но рядом с контактами есть надписи (см. фото выше). Поэтому, перед подключением внимательно изучите модуль. Один выход идет к GND, второй к питанию 5 Вольт (VCC), а третий выход (OUT) выдает цифровой сигнал с PIR сенсора. Соберите схему, как на фото выше, подключите светодиод к пину 12 на Ардуино и загрузите следующий скетч.

Скетч для датчика движения Ардуино

#define PIR 2
#define LED 12

void setup() {
  pinMode(PIR, INPUT);
  pinMode(LED,OUTPUT);
}

void loop() {
   int pirVal = digitalRead(PIR);

   if (pirVal == HIGH) {
      digitalWrite(LED, HIGH);
      delay(2000);
   }

   else {
      digitalWrite(LED,LOW);
      delay(2000);
   }

}

Пояснения к коду:

  1. с помощью директивы для портов 2 и 12 мы назначили соответствующие имена PIR и LED. Это сделано лишь для нашего удобства;
  2. в условном операторе if использовано двойное равенство: . Согласно языку программирования Ардуино, двойное равенство является оператором сравнения.

Скетч для светильника с PIR датчиком движения

#define LED  3 // назначаем порт для светодиода
#define PIR  2 // назначаем порт для PIR sensor

unsigned long counttime; // выделение памяти для счетчика

void setup() {
   pinMode(LED, OUTPUT);
   pinMode(PIR, INPUT);
}

void loop() {
   // если есть движение включаем светодиод
   if (digitalRead(PIR) == HIGH) {
      digitalWrite(LED, HIGH);
   }

   // включаем счетчик на 1 минуту
   counttime = millis();

   // если нет движения и прошла 1 минута
   if (digitalRead(PIR) == LOW && millis() - counttime > 60000) {

   // если нет движения в течении 1 минуты выключаем светодиод
   digitalWrite(LED, LOW);
   }
}

Пояснения к коду:

  1. с помощью функции мы начинаем отсчет времени. При этом, в отличие от функции , которая полностью прерывает программу, микроконтроллер может продолжать остальные вычисления в скетче.
  2. мы изменили время выключения светильника. Если в первом скетче светодиод выключался сразу после сигнала LOW с датчика. То сейчас мы даем 1 минуту до выключения светильника, на случай если человек не вышел из комнаты.

Характеристики датчика сердцебиения KY-039

KY-039 состоит из фототранзистора и инфракрасного светодиода. Инфракрасное излучение светодиода поступает на фототранзистор сквозь палец. При изменении кровяного давления в капиллярах пальца — меняется сопротивление фототранзистора. К сожалению, на сайтах посвященных программированию микроконтроллеров и на форумах пока никто еще не добился более-менее надежных показателей.

Для стабильности показаний датчика, фототранзистор следует закрывать от попадания солнечного или искусственного света, чтобы исключить дополнительные помехи. На среднюю ножку модуля KY-039 подается питание +5V, на «–» подключается земля (GND). S – это аналоговый выход, который подключается к пину A1. Данные с модуля передаются на компьютер через аппаратный монитор порта Arduino IDE.

Библиотеки для работы с IR

Для работы с ИК устройствами можно использовать библиотеку IRremote, которая позволяет упростить построение систем управления. Скачать библиотеку можно здесь.  После загрузки скопируйте файлы в папку \arduino\libraries. Для подключения в свой скетч библиотеки нужно добавить заголовочный файл #include <IRemote.h>.

Для чтения информации используется пример IRrecvDumpV2 из библиотеки. Если пульт уже существует в списке распознаваемых, то сканирование не потребуется. Для считывания кодов нужно запустить среду ARduino IDE и открыть пример IRrecvDemo из IRremote.

Существует и вторая библиотека для работы с ИК сигналами – это IRLib. Она похожа по своему функционалу на предыдущую. По сравнению с IRremote в IRLib имеется пример для определения частоты ИК датчика. Но первая библиотека проще и удобнее в использовании.

После загрузки библиотеки можно начать считывать получаемые сигналы. Для этого используется следующий код.

Оператор decode_results  нужен для того, чтобы присвоить полученному сигналу имя переменной results .

В коде нужно переписать «HEX» в «DEC».

Затем после загрузки программы нужно открыть последовательный монитор и нажимать кнопки на пульте. На экране будут появляться различные коды. Нужно сделать пометку с тем, к какой кнопке соотносится полученный код. Удобнее полученные данные записать в таблицу. После этот код можно записать в программу, чтобы можно было управлять прибором. Коды записываются в память самой платы ардуино EEPROM, что очень удобно, так как не придется программировать кнопки при каждом включении пульта.

Бывает, что при загрузке программы выдается ошибка «TDK2 was not declared In his scope». Для ее исправления нужно зайти в проводник, перейти в папку, в которой установлено приложение Arduino IDE и удалить файлы IRremoteTools.cpp и IRremoteTools.h. После этого нужно произвести перезагрузку программы на микроконтроллер.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий