Схема индикатора заряда аккумулятора на светодиодах

Индикаторы аккумулятора своими руками

Необоснованно завышенная цена промышленных приборов уровня напряжения АКБ заставляет автомобилистов, знакомых с основами радиотехники и обладающих навыками пайки, изготавливать эти устройства самостоятельно. Специально для них выпускается популярный конструктор (DC-12 В) с набором радиодеталей, на основе которого можно самостоятельно собрать индикатор разряда аккумулятора.

Устройство информирует пользователя о достижении измеряемого напряжения одного из трех уровней, определяемых номиналами элементов схемы. Если загорелся индикатор аккумулятора — соответствующий уровень напряжения достигнут.

НАСТРОЙКА

3.1. Сразу после подключения питания (см. п 2.3.) засветятся и погаснут все светодиоды. Далее, снизу вверх, по одному, начнут зажигаться периферические светодиоды. После этого СтопРазряд перейдет в режим настройки уставок. Замигает единственный светодиод, указывающий текущую уставку по напряжению срабатывания защиты (начальная заводская уставка 12,3В). 

Постукивая по корпусу устройства можно установить новый уровень напряжения срабатывания в диапазоне от 11.7В до 12,6В с шагом 0,1В.

Добившись мигания светодиода на нужном вам уровне напряжения, прекратите постукивание на 2-3 секунды. 

3.2. Следующим этапом настройки будет выбор времени срабатывания защиты, при этом устройство начнет мигать уже парами светодиодов начиная с минимальной заводской уставки в 10 минут. Аналогичным п.3.1. образом можно выбрать уставку в диапазоне от 10 до 50 минут.

Аналогично п.3.1 добившись мигания светодиодов на нужной вам задержке срабатывания, прекратите постукивание на 2-3 секунды. 

3.3. Последним этапом настройки является установка чувствительности сенсора вибраций. От самого чувствительного (сверху) до самого грубого (снизу) при этом устройство начнет мигать отрезками по три светодиода.

 ,

Аналогично п.3.1 и 3.2, добившись мигания светодиодов на нужном вам уровне чувствительности, прекратите постукивание на 2-3 секунды. Прибор запомнит последнее установленного значение времени и перейдет в основной режим работы.

3.4. Сброс уставок. Если требуется сбросить и переустановить сохраненные уставки времени, напряжения или чувствительности срабатывания, отключите устройство от плюсовой клеммы на 2-3 секунды (см.п 2.3.) и повторите действия указанные в п. 3.1, 3.2 и 3.3.

Какие бывают индикаторы заряда автомобильного аккумулятора?

Технологии не стоят на месте и производители автомобильной техники изо всех сил стараются сделать поездки на автомобиле и его обслуживание максимально комфортным. Поэтому на современных автомобилях в бортовом компьютере, среди прочих функций, можно найти данные о напряжении аккумуляторной батареи. Но такие возможности есть далеко не на всех автомобилях. На старых авто может присутствовать аналоговый вольтметр, по которому достаточно сложно понять, в каком состоянии находится АКБ. Для новичков в автомобильном деле советуем ознакомиться с материалом о норме заряда аккумулятора автомобиля.

Технические данные аккумуляторов

Основные применяемые типы аккумуляторов:

  • Щелочные – Ni-Cd,
  • Ni-MH – никель-металлогидридные,
  • кислотные – аккумуляторы для автомобилей,
  • Li-ion – литий-ионные,
  • Li-po – литий-полимерные.

При эксплуатации аккумулятора необходимо учитывать его функциональные характеристики, такие как:

  • значение ёмкости,
  • выходное напряжение,
  • размеры,
  • сколько весит,
  • допустимое минимальное напряжение,
  • срок эксплуатации,
  • коэффициент полезного действия,
  • диапазон рабочей температуры,
  • рабочий ток заряда и разряда.

Аккумулятор для автомобиля (АКБ) состоит из 6 последовательно соединённых аккумуляторных секций с напряжением питания каждой 2,1-2,16 В, на хорошей батарее напряжение 13-13,5 В.

Важно! Не допускается снижение напряжения ниже 9 вольт, поскольку из-за особенностей процессов, происходящих в батареях, садится плотность, что повышает температуру промерзания электролита и ускоряет разрушение электродов. В свою очередь, уменьшается и срок службы аккумулятора

Для чего контроллер аккумулятора

Несмотря на то, что емкость современных АКБ, как и их функциональные возможности, существенно увеличилась, алгоритм их зарядки остался практически неизменным. Когда батарея разряжается, к ней подключают специальное оборудование, которое за счет стимулирования химических реакций в аккумуляторе производит пополнение его емкости.

Важно! Если своевременно не прекратить зарядку, то АКБ может перегреться, и даже произойти взрыв. В ситуации, когда тока для восполнения заряда недостаточно, батарея не может восстановить свою емкость, нахождение длительное время в разряженном состоянии может существенно сократить срок эксплуатации. Чтобы все процессы происходили корректно, а встроенный в мобильный прибор элемент питания работал как можно дольше, необходим контроллер заряда аккумулятора

В его основе, как правило, находятся два резистора, которые контролируют верхний и нижний пределы напряжения. В самом начале восполнения энергии они пропускают через себя максимальный ток, затем его постепенно сокращают, предохраняя АКБ от перезарядки. Если напряжение ниже минимально необходимого, резистор дополняет его до требуемого уровня за счет ранее накопленной энергии

Чтобы все процессы происходили корректно, а встроенный в мобильный прибор элемент питания работал как можно дольше, необходим контроллер заряда аккумулятора. В его основе, как правило, находятся два резистора, которые контролируют верхний и нижний пределы напряжения. В самом начале восполнения энергии они пропускают через себя максимальный ток, затем его постепенно сокращают, предохраняя АКБ от перезарядки. Если напряжение ниже минимально необходимого, резистор дополняет его до требуемого уровня за счет ранее накопленной энергии.

Контроллер заряда АКБ в обязательном порядке присутствует в ноутбуках, мобильных телефонах, переносных кассовых аппаратах, планшетах и так далее. Устанавливают его и в возобновляемые источники энергии, поскольку принцип их работы заключается в том, чтобы накопить энергию в специальную батарею в период солнечной или ветряной активности, а затем передавать ее потребителю. Чтобы контролировать данные процедуры, нужен в данном оборудовании описываемый элемент.

Применение приборов для отслеживания заряда аккумулятора

Печатная плата и детали сборки

  • резисторы МЛТ-0,125 Вт с точностью не менее 5% (ряд Е24) R1, R2, R3, R4, R7, R9, R10, R11– 1 кОм, R5, R8 – 5,1 кОм, R6, R12 – 10 кОм;
  • диод VD1 любой маломощный с обратным напряжением не ниже 30 В, например, 1N4148;
  • стабилитрон VD2 маломощный с напряжением стабилизации 6,2 В. Например, КС162А, BZX55C6V2;
  • светодиоды LED1-LED5 – индикаторные типа АЛ307 любого цвета свечения.

Хороший индикатор заряда/разряда аккумуляторовХороший индикатор заряда/разряда аккумуляторов

Хороший индикатор заряда/разряда аккумуляторовХороший индикатор заряда/разряда аккумуляторов

Данную схему можно использовать не только для контроля напряжения на 12 вольтовых аккумуляторах. Пересчитав номиналы резисторов, расположенных во входных цепях, получаем светодиодный индикатор на любое желаемое напряжение. Для этого следует задаться пороговыми напряжениями, при которых будут включаться светодиоды, а затем воспользоваться формулами для пересчёта сопротивлений, приведенные выше.

↑ Заметки о литии

1. В разрядник нужно вставлять предварительно заряженный (!) аккумулятор. 2. Всё описанное выше можно, и даже желательно, применять и к новым Li-Io аккумуляторам для их хранения более 1-2-х месяцев. Например, на зимнее межсезонье.

3. Естественно, эта методика применима ко всем другим Li-Io аккумуляторам, например — от сотовых телефонов. У них иногда барахлит контроллер, а сам аккумулятор — в рабочем состоянии.

4. Аккумуляторы, разряженные до «хранительного» напряжения, желательно сохранять при температуре +2… +4 °С. Лучшее место хранения — верхняя полка холодильника, у задней стенки, в герметичном пакете, и в непрозрачной светлой коробочке, чтоб жена не сразу поняла

Импульсные зарядные устройства

Импульсные зарядные устройства имеют ряд преимуществ:

Какую сигнализацию с автозапуском лучше поставить на автомобиль? — здесь больше полезной информации.

  • высокий коэффициент полезного действия, как следствие, меньшее энергопотребление и нагревание при работе;
  • меньшие габариты и масса по сравнению с трансформаторными устройствами;
  • возможность автоматизации контроля основных параметров заряда;
  • большую технологичность при изготовлении.

Основные недостатки импульсных зарядных устройств:

  • высокая вероятность выхода из строя мощных транзисторов;
  • необходимость глубоких знаний в области электротехники для настройки устройств;
  • отсутствие гальванической развязки с питающим напряжением понижает степень электробезопасности;
  • большой уровень электромагнитных помех (их нельзя включать в непосредственной близости с радиоустройствами, мобильной техникой).

Один из наиболее простых вариантов электрической схемы приведен на рисунке 8.

Вас заинтересует эта статья — Как пользоваться динамометрическим ключом для автомобиля?

Принцип действия импульсных устройств основан на преобразовании переменного напряжения бытовой электросети в постоянное при помощи диодной сборки VD8. Затем постоянное напряжение преобразуется в импульсы высокой частоты и амплитуды. Импульсный трансформатор Т1 вновь преобразует сигнал в постоянное напряжение, которое заряжает аккумулятор.

Так как обратное преобразование ведется на высокой частоте, то габариты трансформатора значительно меньше. Обратная связь, необходимая для контроля параметров заряда, обеспечивается оптроном U1.

Несмотря на кажущуюся сложность устройства, при правильной сборке блок начинает работать без дополнительной регулировки. Такое устройство обеспечивает ток заряда до 10 Ампер.

Общие рекомендации

При заряде АКБ с помощью самодельного устройства необходимо:

  • устройство и АКБ располагать на токонепроводящей поверхности;
  • соблюдать требования электробезопасности (применять перчатки, резиновый коврик, инструмент с электроизоляционным покрытием);
  • не оставлять надолго включенное зарядное устройство без контроля, следить за напряжением и температурой АКБ, зарядным током.

Индикатор окончания заряда аккумулятора на светодиодах

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Простейший индикатор заряда аккумулятораПростейший индикатор заряда аккумулятора

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Назначение и схема зарядного контролера

Предлагаемый к самостоятельной сборке контроллер чрезвычайно простой, и поэтому безотказный. Он прекрасно дополняет альтернативные источники энергии, такие как ветрогенераторы или солнечные панели. Особых знаний в схемотехнике и пайке не потребуется. Разумеется, что если паяльник вы не пользовались по назначению, то лучше потренироваться на каких-то ненужных проводках, чтобы случайно не перегреть рабочие детали.

В базовую схему добавлены несколько элементов, которые делают работу контролера более стабильной. Например, сопротивления 15-18, подбирались эмпирически. Они устранили спонтанный нагрев таймера-микросхемы (3) и сделали установку значений подстроечных резисторов (1 и 2) более точной. Дополнительно, реле (10) было припаяно «навесным монтажом». Для неопытных радиолюбителей это будет существенным подспорьем в работе, и такой вариант делает плату универсальной, т.е. с реле можно экспериментировать в процесс эксплуатации.

Установка полевого транзистора IRF 540 обусловлена тем, что сигнал от таймера NE 555 выходит с напряжением 5V, а реле 1N4007 12-тивольтовое.

Принципы работы контроллера заряда АКБ

После выставления нужных параметров на подстроечных резисторах и включении прибора в систему, работа контроллера происходит следующим образом:

  1. Аккумулятор получает зарядный ток до достижения выставленного уровня напряжения. Затем зарядка останавливается, а напряжение с альтернативного источника энергии направляется только к потребителю.
  2. При разрядке аккумулятора до нижнего предела, выставленного в подстроечном резисторе (1), автоматически включается зарядка.

Обратите внимание, что в автоматическом режиме, во время зарядки питание к потребителю от АКБ не подаётся. Для того чтобы подать напряжение, есть кнопки 11 и 13, которые работают в ручном режиме

Список деталей контроллера зарядки АКБ

Каждая деталь пронумерована в снимке, а на схеме видно размещение резисторов 12 и 12/1, они припаяны с обратной стороны платы.

1 Подстроечный резистор (установка нижнего предела ≈11,8 V);

2 Подстроечный резистор (установка верхнего предела ≈14,4 V (оба резистора на 10 kOm);

3 Таймер — Микросхема NE 555 + гнездо для микросхемы;

4 Стабилизатор напряжения LM7805 (5V);

5 Конденсатор неполярный 330 nF (на вход);

6 Конденсатор неполярный 100 nF (на выход);

7 Полевой транзистор IRF 540;

8 Биполярный NPN транзистор 2N3904;

9 Светодиоды индикации: синий и красный;

10 Реле 1N4007 (12 вольт 10 ампер);

11 Резистор 300 Om + провод для отключения «Режима заряда»(оформляется на корпусе);

12/12-1 Резисторы 100 Om + 330 Om (припаяны с обратной стороны);

13 На кнопку включения «Режима зарядки» (оформляется на корпусе);

14 Радиатор;

15 Резистор 1,5 kOm;

16 Резистор 39 kOm;

17 Резистор 6,2 kOm;

18 Резистор 30 kOm;

19/20/21 Резистор 1 kOm;

На этой схеме обозначены места фиксации каждой детали.

Зарядка от USB-порта

Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта. При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:

На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.

Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:

Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:

Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:

  • паяльник;
  • припой;
  • флюс;
  • тестер;
  • пинцет;
  • различные отвертки и нож.

Интересный материал про изготовление своими руками, рекомендуем к просмотру

Самодельная зарядка для аккумуляторов 1865Самодельная зарядка для аккумуляторов 1865

Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.

Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).

Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.

Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.

В завершении нужно установить зарядный ток. Для этого необходимо разорвать цепь, соединяющую VD1 и плюсовую полярность аккумулятора. Подключаем тестер таким образом, чтобы его плюс соединялся с диодом, а минус — с аккумулятором. Выставляем режим измерения тока (200 мА).

Включаем в есть, после чего должен загореться светодиод, конечно, если все сделано правильно. Затем устанавливаем необходимый ток зарядки (100 мА), путем изменения сопротивления на резисторе R1. Проводим данную процедуру и для второго аккумулятора AA.

Еще одно интересное видео на это тему

Как сделать USB зарядное устройство для Ni-Mh аккумуляторовКак сделать USB зарядное устройство для Ni-Mh аккумуляторов

↑ Детали разрядника

Я предлагаю два варианта платы: для выводного и smd монтажа, поэтому далее упоминаю детали для обоих типов. Т1 и Т2 — любые маломощные кремниевые PNP транзисторы. В выводном корпусе TO-92 подойдут: BC556B, 2SA733, 2SA1206, КТ203, КТ208, КТ209, КТ3107, КТ502 и масса других. Перед установкой следует верно определить выводы Э-Б-К и правильно запаять.

Рекомендую «обуть» ноги транзисторов. Легко запастись разноцветными ПВХ-трубками, сняв их с кроссовки или кабеля UTP.


Например, на вывод базы оденьте изолятор белого цвета, на коллектор — красного, на эмиттер NPN — синего, на эмиттер PNP — чёрного или коричневого, или какого у вас больше. Цветовая схема на ваш вкус. И вы уже никогда не ошибётесь с распайкой выводов.

PNP транзисторы в планарном корпусе SOT23: BC807, а также другие, с обозначениями W06, 5Ap, 3Ep, K3N, 2A, 2D, 2L, t06, DKs.

C другой стороны, одинаковые цифробуковки на корпусе не всегда однозначны. Например, в справочнике Туруты по SMD, за 2014 год, значкам «W06» соответствуют два разных транзистора: W06 — PDTC124EU npn, 50V, 100mA, 200mW SOT-323 W06 — PMSS3906 pnp, 60V, 100mA, 200mW SOT-323 Под обозначением «t06» — тоже два разных транзистора, причём эти же! А под сочетаниями «2A», «2D», «2L» вообще по десятку разных приборов, и часто совсем не транзисторов. То есть проверять и проверять!

Транзисторы я проверял китайским, ставшим уже народным, многофункциональным тестером MG328 .

Т3 — полевой n-канальный MOSFET транзистор, у меня планарный APM3054N в корпусе TO-252, с негодной материнской платы

Важное условие — напряжение открытия MOSFETa должно быть не более 2,5 Вольт, желательно даже около 2,0. Подходят большинство низковольтных полевиков со старых материнок

Высоковольтные, силовые полевики не подходят — у них напряжение открытия (sourse-gate) превышает 3,5 вольта, и они просто не откроются.

Полевики в больших планарных корпусах (ТО-263, DD-PAK) — CEB6030, K3570, K3296, K3572, 15N03, 14N03, FDB6670, FDB6035. В корпусе TO252 — T40N03, APM2510, 70T03, P75N02.

У всех этих полевичков напряжение открытия 1,8 — 2,2 Вольта. Практически все они с напряжением «сток-исток» около 25-30 Вольт, не более. Вымерял сам, из того, что у меня есть в наличии. У меня нет низковольтных полевиков в корпусе ТО-220, поэтому ничего о них сказать не могу.

Реальный совет

— купите на рынке или найдите совсем старую убитую материнку, распотрошите и выберите нужные детальки. Всё есть на них.

Нагрузка — лампочка 6,3 В × 0,3 А, применялись повсеместно для освещения шкал ламповых радиоприёмников. Более позднее их применение — новогодние гирлянды и т. п. При отсутствии таких лампочек можно установить резистор 10-15 Ом на мощность не менее 1 Вт.

Светодиод HL — любой, видимого цвета, у меня он жёлтый.

Резистор R7 — желательно многооборотный — точнее настройка, и напряжение не прыгает со временем. Остальные резисторы — какие есть в 50-летних запасах Родины, т. е. любые, по наличию, ±50% от номинала.

Если планируется более серьёзная нагрузка — в качестве Т3 необходимо применить более мощный транзистор и радиатор.

Схема индикатора разряда аккумулятора

Сами светоизлучающие диодные индикаторы бывают различных типов и цветов, рекомендуемые показаны на самой схеме. Из-за различий в прямом падении напряжения, токоограничивающие резисторы должны быть скорректированы для достижения наилучшей производительности и однородности свечения

По схеме R18-R22 предлагаются одинакового сопротивления — обратите внимание, что эти резисторы в итоге не должны быть равны. Однако, если все они одного цвета, одного номинала резистора будет достаточно

Цвет светодиода — уровень заряда

  • Красный: от 0 до 25%
  • Оранжевый: 25 — 50%
  • Желтый: 50 — 75%
  • Зеленый: 75 — 100%
  • Синий: >100% напряжения

Здесь LM317 работает как простой источник опорного напряжения 1.25 В. Минимальное входное напряжение должно превышать выходное напряжение на значение в пару вольт. Минимальное входное напряжение = 1,25 В + 1,75 В = 3 В. Хотя LM317 имеет минимальную нагрузку по даташиту 5 мА, не обнаружен ни один экземпляр, который не функционировал бы при 3,8 мА. Именно резистор R5 (330 Ом) обеспечивает минимальную нагрузку.

При испытаниях оценивался уровень заряда 4,5 В батареи, именно для неё и приводятся напряжения на схеме. Настройка происходит так: сначала должны быть определены напряжения срабатывания каждого компаратора в соответствии с уровнем разряда батареи, потом напряжение должно быть разделено по коэффициенту деления делителя напряжения. Так, для 4,5 В АКБ, оно выглядит следующим образом:

Заключение

Самостоятельное изготовление подобных устройств не представляет сложностей для тех, кто знает хотя бы азы радиотехники и работы с ней.

Естественно, если у человека нет необходимых знаний, то ему и смысла нет браться за подобное дело, ведь толка от этого не будет абсолютно никакого.

Вообще, если сделать все правильно, соблюдая основные рекомендации, то можно забыть о постоянной покупке новых батарей для своих приборов общего пользования. Подобная экономия очень кстати, ведь цена за раcходные материалы постоянно растет, а заряда батарей хватает на очень короткое время.Ниже обзор зарядных устройств, рекомендованных к заказу:

Описание и характеристики Цена CAMELION BC-1009

Вес брутто — 0.07 кг

Коды товара производителя — 316097, 9252

Гарантия — 6 мес.

339 CAMELION BC-1001A

Вес брутто — 0.2 кг

Коды товара производителя — 8181, 197868

Гарантия — 6 мес.

449 ЗУБР 59233-4

Вес брутто — 0.25 кг

Страна происхождения — Китай

Коды товара производителя — 59233-4

Гарантия — 60 мес.

569 TANK007 18650ZU1

Вес брутто — 0.2 кг

Коды товара производителя — 18650ZU1

Гарантия — 12 мес.

595 ЯРКИЙ ЛУЧ FOLOMOV A4

Вес брутто — 0.6 кг

Страна происхождения — Китай

Коды товара производителя — 4606400622208

Гарантия — 24 мес.

2490

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий