Электродвигатели постоянного тока. устройство и работа. виды

Современное применение и перспективы

Существует немало устройств, для которых увеличение времени безотказной работы имеет важнейшее значение. В подобном оборудовании применение БДКП всегда оправданно, несмотря на их сравнительно высокую стоимость. Это могут быть водяные и топливные насосы, турбины охлаждения кондиционеров и двигателей и т. д. Бесщёточные моторы используются во многих моделях электрических транспортных средств

В настоящее время на бесколлекторные двигатели всерьёз обратила внимание автомобильная промышленность

БДКП идеально подходят для малых приводов, работающих в сложных условиях или с высокой точностью: питатели и ленточные конвейеры, промышленных роботы, системы позиционирования. Существуют сферы, в которых бесколлекторные двигатели доминируют безальтернативно: жёсткие диски, насосы, бесшумные вентиляторы, мелкая бытовая техника, CD/DVD приводы. Малый вес и высокая выходная мощность сделали БДКП также и основой для производства современных беспроводных ручных инструментов.

Принцип работы бесщеточного двигателя постоянного токаПринцип работы бесщеточного двигателя постоянного тока

Малоинерционные двигатели

В малоинерционных двигателях значительное бы­стродействие достигается в результате снижения момента инерции якоря путем уменьшения его массы или создания нетрадиционной торцевой конструкции с дисковым якорем. Якорь таких двигателей выполняется в виде диска из гетинакса, на обеих сторонах которого размещена обмотка в виде печатного монтажа. Малоинерционный двигатель серии ПЯ с печатной обмоткой (рис. 2.2) изготовляют в закрытом фланцевом исполнении с естественным охлаждением и с возбуждением от постоянных магнитов.

Рисунок 2.2. малоинерционный торцевойдвигатель постоянного тока

где: 1 — корпус, 2 — статор  с постоянными магнитами, 3,5 — электромагнитные коль­ца, 4 — щеткодержатель, 6 — якорь с пе­чатной обмоткой.

Наличие намагниченного яко­ря исключает изменение магнитного потока, а значит, и колебания вращающего момента и частоты вращения, что особенно важно при работе на малых частотах вращения. Недостатком малоинерционных двигателей в связи с небольшой массой якоря и незначительным «временем их нагрева является не­допустимость длительной работы с моментом нагрузки, превышаю­щим номинальный. Как и двигатели серии 2П, малоинерционные двига­тели соединяются с ходовым вин­том станка промежуточной меха­нической передачей

Как и двигатели серии 2П, малоинерционные двига­тели соединяются с ходовым вин­том станка промежуточной меха­нической передачей.

Назначение

По эксплуатационным характеристикам машины Iпер. превосходят аналоги на Iпост, потому им отдают предпочтение, их преимущества:

  • технологичная конструкция;
  • надежность;
  • высокая энергетическая отдача.

В то же время они уступают устройствам Iпост. в точности регулирования рабочих параметров. Потому двигатели электротранспорта, сложных измерительных приборов и некоторых обрабатывающих станков работают на Iпост. В большинстве же случаев применяются машины Iпер.. Асинхронные двигатели отличаются простотой и используются чаще всего и в самых разных областях.

При этом наиболее распространена разновидность с короткозамкнутым ротором — опять же в силу простоты конструкции. Такими двигателями оснащают насосы, компрессоры, центрифуги, ручной электроинструмент, станки и пр. Аналогичные установки с фазным ротором устроены сложнее и потому применяются реже.

Их преимущество — хорошие пусковые и регулировочные характеристики, благодаря чему эти двигатели используют в качестве привода подъемных устройств, конвейеров, цементных, угольных и прочих мельниц, систем вентиляции и конструкций, предназначенных для непрерывной работы в течение длительного времени.

Работаем с переключателями без документации…

Определение эквивалентного сопротивления

Режим генератора

Рассмотрим сначала работу машины в режиме генератора.

Рисунок 1. Простейшая машина постоянного тока

Рисунок 2. Работа простейшей машины постоянного тока в режиме генератора (а) и двигателя (б)

Предположим, что якорь машины (рисунки 1 и 2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется э. д. с., направление которой может быть определено по правилу правой руки (рисунок 3, а) и показано на рисунках 1 и 2, а. Поскольку поток полюсов предполагается неизменным, то эта э. д. с. индуктируется только вследствие вращения якоря и называется э. д. с. вращения.

Рисунок 3. Правила правой (а) и левой (б) руки

Значения индуктируемой в проводнике обмотки якоря э. д. с.

eпр = B × l × v,

где B – магнитная индукция в воздушном зазоре между полюсом и якорем в месте расположения проводника; l – активная длина проводника, то есть та длина, на протяжении которой он расположен в магнитном поле; v – линейная скорость движения проводника.

В обоих проводниках вследствие симметрии индуктируются одинаковые э. д. с., которые по контуру витка складываются, и поэтому полная э. д. с. якоря рассматриваемой машины

Eа = 2 × eпр = 2 × B × l × v. (1)

Э. д. с. Eа является переменной, так как проводники обмотки якоря проходят попеременно под северным и южным полюсами, в результате чего направление э. д. с. в проводниках меняется. По форме кривая э. д. с. проводника в зависимости от времени t повторяет кривую распределения индукции B вдоль воздушного зазора (рисунок 4, а).

Частота э. д. с. f в двухполюсной машине равна скорости вращения якоря n, выраженной в оборотах в секунду:

f = n,

а в общем случае, когда машина имеет p пар полюсов с чередующейся полярностью,

f = p × n (2)

Если обмотка якоря с помощью щеток замкнута через внешнюю цепь, то в этой цепи, а также в обмотке якоря возникает ток Iа. В обмотке якоря этот ток будет переменным, и кривая его по форме аналогична кривой э. д. с. (рисунок 4, а). Однако во внешней цепи направление тока будет постоянным, что объясняется действием коллектора. Действительно, при повороте якоря и коллектора (рисунок 1) на 90° и изменении направления э. д. с. в проводниках одновременно происходит также смена коллекторных пластин под щетками. Вследствие этого под верхней щеткой всегда будет находиться пластина, соединенная с проводником, расположенным под северным полюсом, а под нижней щеткой – пластина, соединенная с проводником, расположенным под южным полюсом. В результате этого полярность щеток и направление тока во внешней цепи остаются неизменными.

Рисунок 4. Кривые э. д. с. и тока простейшей машины в якоре (а) и во внешней цепи (б)

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Изменив знак второго полупериода кривой на рисунке 4, а, получим форму кривой тока и напряжения внешней цепи (рисунок 4, б). Образуемый во внешней цепи пульсирующий по значению ток малопригоден для практических целей. Для получения практически свободных от пульсаций тока и напряжения применяют более сложные по устройству обмотку якоря и коллектор. Однако основные свойства машины постоянного тока могут быть установлены на примере рассматриваемой здесь простейшей машины.

Напряжение постоянного тока на зажимах якоря генератора будет меньше Eа на величину падения напряжения в сопротивлении обмотки якоря rа:

Uа = Eа – Iа × rа. (3)

Проводники обмотки якоря Iа с током находятся в магнитном поле, и поэтому на них будут действовать электромагнитные силы (рисунок 2, а)

Fпр = B × l × Iа, (4)

направление которых определяется по правилу левой руки (рисунок 3, б). Эти силы создают механический момент , который называется электромагнитным моментом и на рисунке 2, а равен

Mэм = Fпр × Dа = B × l × Dа × Iа, (5)

где Dа – диаметр якоря. Как видно из рисунка 2, а, в режиме генератора этот момент действует против направления вращения якоря и является тормозящим.

Принцип действия современных электродвигателей

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.



Свежие записи:

  • Как сделать наждачный станок
  • Самодельный копировальный станок
  • Регулировка оборотов двигателя
  • Фрезер своими руками
  • Армирование штукатурки металлической сеткой
  • Станок для ковки своими руками
  • Самодельный шлакоблочный станок
  • Как построить вольер
  • Принцип работы двигателя постоянного тока
  • Токарный станок своими руками
  • Забор из сетки рабицы
  • Принцип действия асинхронного двигателя
  • Циркулярка своими руками
  • Самодельный сверлильный станок
  • Ручной самодельный станок для рабицы
  • Самодельные бурильные станки

Как работает электрическая машина постоянного тока

Как было отмечено ранее, поддерживается два основных рабочих режима, в которых МПТ может функционировать: двигательный и генераторный.

Каждый из них имеет свои особенности функционирования:

  1. Электродвигатель. Обмотка ротора – проводники, запитанные от коллектора. За счет этого воздействуют физические силы, вызывающие вращающий момент. Необходимо использование щеточно-коллекторного узла, так как силы момента хватает на поворот только на 180 градусов.
  2. Генератор. Вращение ротора наводит ЭДС. Данная переменная выпрямляется за счет коллектора.

Некоторые виды МПТ могут выполнять функции трансформаторов, преобразователей напряжения.

Электрические машины постоянного тока характерны тем, что их конструкция включает в себя коллектор и скользящий контакт.

Принцип работы асинхронной МПТ

Вам будет интересно:Реактивно-бомбометная установка (РБУ-6000) «Смерч-2»: история и тактико-технические характеристики

Трехфазную обмотку в данном случае подключают к симметричной сети с трехфазным напряжением, в результате чего в воздушном зазоре формируется магнитное поле. Относительно обмотки якоря принимаются специальные меры для достижения гармонического пространственного распределения поля для демпферного зазора, что образует систему вращающихся магнитных полюсов. Согласно принципу действия машины переменного тока, на каждом полюсе формируется магнитный поток, который пересекает контуры обмотки, тем самым провоцируя генерацию электродвижущей силы. В трехфазной обмотке индуцируется трехфазный ток, обеспечивающий вращающий момент двигателя. На фоне взаимодействия тока ротора с магнитными потоками происходит формирование электромагнитной силы на проводниках.

Если ротор под действием внешней силы приводится в движение, направление которого соответствует направлению потоков магнитного поля машины переменного тока, то ротор начнет обгонять темпы вращения поля. Это происходит в тех случаях, когда частота вращения статора превосходит номинальную синхронную частоту. В то же время будет изменено направление движения электромагнитных сил. Таким образом формируется тормозящий момент с обратным действием. Данный принцип работы позволяет использовать машину и в качестве генератора, работающего в режиме отдачи активной мощности в сеть.

Коллекторные МПТ

Наличие коллекторного узла в конструкции МПТ зачастую обуславливается необходимостью выполнения функции преобразования частоты вращения в электрической связи разночастотных цепей на обмотках ротора и статора. Это решение позволяет наделять устройство дополнительными эксплуатационными свойствами, в числе которых автоматическая регуляция рабочих параметров. Коллекторные машины переменного тока, которые подключаются к трехфазным сетям, получают по три щеточных пальца в каждом сегменте двойного полюсного деления. Соединение щеток между собой выполняется по параллельной схеме перемычками. В этом смысле коллекторные МПТ похожи на электродвигатели с постоянным током, но отличаются от них количеством применяемых щеток на полюсах. Помимо этого, статор в данной системе может иметь несколько дополнительных обмоток.

Замкнутая обмотка якоря при использовании коллектора с трехфазными щетками будет представлять собой трехфазную комплексную обмотку с соединением в виде треугольника. В процессе вращения якоря каждая фаза обмотки сохраняет неизменную позицию, однако секции поочередно переходят от одной фазы к другой. Если в коллекторной машине переменного тока используется шестифазный комплект щеток со сдвигом на 60° относительно друг друга, то формируется шестифазная обмотка с соединением по схеме многоугольника. На щетках многофазной машины с коллекторной группой частота тока определяется вращением магнитного потока по отношению к неподвижным щеткам. Направление вращения ротора может быть как встречным, так и согласованным.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий