Как установить библиотеку ардуино

Программирование Arduino

Теперь, когда необходимая нам схема собрана, мы можем начать программирование платы Arduino UNO. Полный текст программы будет приведен в конце статьи, в этом разделе будет дано объяснение некоторых участков кода этой программы.

В каждой программе для Arduino должны обязательно присутствовать две функции – это функции void setup () и void loop (), иногда их называют «абсолютным минимумом», необходимым для написания программы. Все операции, которые мы запишем внутри void setup (), исполнятся только один раз, а операции, которые мы запишем внутри void loop () – будут исполняться снова и снова. Пример этих функций показан в коде ниже – именно в таком виде они создаются когда вы выбираете пункт меню File -> New.

Arduino

void setup() {
// put your setup code here, to run once:
}

void loop() {
// put your main code here, to run repeatedly:
}

1
2
3
4
5
6
7

voidsetup(){

// put your setup code here, to run once:

}
 

voidloop(){

// put your main code here, to run repeatedly:

}

Начнем писать программу в функции setup (). Обычно в этой функции объявляются названия пинов (контактов). В нашей программе нам необходимо объявить всего два контакта: контакт 2 в качестве входного контакта и контакт 3 в качестве выходного контакта. Это можно сделать с помощью следующих строчек кода:

Arduino

pinMode(2,INPUT);
pinMode (3,OUTPUT);

1
2

pinMode(2,INPUT);

pinMode(3,OUTPUT);

Но здесь необходимо внести небольшое изменение в программу – нам желательно чтобы контакт 2, который мы объявили в качестве входного контакта, никогда не был бы в «плавающем» состоянии. Это означает что входной контакт должен быть всегда подсоединен либо к +5 В, либо к земле. А в нашем случае при нажатии кнопки он будет подсоединен к земле, а при отжатой кнопке он будет находиться в плавающем состоянии. Чтобы исключить это нам необходимо задействовать внутренний подтягивающий резистор, который находится внутри микроконтроллера ATmega 328 (то есть снаружи мы этот резистор не видим). Для его задействования необходимо написать соответствующую строчку кода в программе.

С помощью этой строчки кода контакт 2 будет подключаться через подтягивающий резистор к напряжению +5 В всегда когда он не подсоединен к земле. То есть мы должны в одной из написанных нами строчек кода изменить слово INPUT на слово INPUT_PULLUP как показано ниже.

Arduino

pinMode(2,INPUT_PULLUP);

1 pinMode(2,INPUT_PULLUP);

Теперь, когда мы закончили с функцией setup (), перейдем к функции loop (). В этой функции мы должны проверять не подсоединен ли контакт 2 к земле (то есть на его входе низкий уровень – LOW) и если он подсоединен в земле, то мы должны зажечь светодиод при помощи подачи на контакт 3 высокого уровня (HIGH). А если контакт 2 не подсоединен к земле (то есть кнопка не нажата), то мы должны держать светодиод в выключенном состоянии при помощи подачи на контакт 3 низкого уровня (LOW). В программе это будет выглядеть следующим образом:

Arduino

if (digitalRead(2) == LOW)
{
digitalWrite(3,HIGH);
}

else
{
digitalWrite(3,LOW);
}

1
2
3
4
5
6
7
8
9

if(digitalRead(2)==LOW)

{

digitalWrite(3,HIGH);

}

else

{

digitalWrite(3,LOW);

}

В этих строчках кода оператор digitalRead() используется для проверки статуса (состояния) входного контакта. Если контакт подсоединен к земле, то оператор digitalRead() возвратит значение LOW, а если оператор подсоединен к +5 В, то оператор возвратит значение HIGH.

Аналогично, оператор digitalWrite() используется для установки состояния выходного контакта. Если мы установим контакт в состояние HIGH, то на его выходе будет напряжение +5 В, а если мы установим контакт в LOW, то на его выходе будет 0 В.

Таким образом в нашей программе когда мы нажимаем кнопку на контакт 2 будет подана земля и, соответственно, на контакт 3 мы подаем высокий уровень +5 В (HIGH) чтобы зажечь светодиод. Если условие не выполняется – то есть на контакт 2 не подана земля, то мы на контакт 3 подаем низкий уровень 0 В (LOW) чтобы выключить светодиод.

На этом наша программа закончена, теперь загрузим код программы на нашу плату Arduino таким же образом как ранее мы загружали код программы мигания светодиодом.

Окно настроек

Настройки Arduino IDE

Куча интересных настроек на свой вкус. Из них отмечу

  • Размещение папки скетчей – куда по умолчанию сохраняются скетчи
  • Показать подробный вывод – показывает подробный лог при компиляции и загрузке, нужно при поиске багов и непонятных глюков/ошибок
  • Использовать внешний редактор – запрещает редактирование кода из Arduino IDE, чтобы редактировать его в других редакторах, например Notepad++. Редактируем там, а загружаем через IDE. Зачем это? Писать код в том же Notepad++ гораздо удобнее и приятнее, чем в Arduino IDE. К сожалению.
  • Дополнительные ссылки для менеджера плат – сюда вставляются ссылки на пакеты для работы с другими платами, например такими основанными на ESP8266 или ATtiny85.

7Загрузка скетчав память Ардуино

Теперь можно загрузить программу в память платы. Подключите плату к компьютеру, подождите несколько секунд, пока происходит инициализация платы. Нажмите кнопку Загрузить, и Ваш скетч запишется в память платы Arduino. Светодиод должен начать весело подмигивать вам с периодичностью 2 секунды (1 секунду горит, 1 выключен). Ниже приведён код нашей первой программы для Ардуино.

void setup() { // блок инициализации
    pinMode(13, OUTPUT); // задаём пин 13 в качестве выхода.
}

void loop() { // цикл, который повторяется бесконечно, пока включена плата:
    digitalWrite(13, HIGH);   // подаём на 13 вывод высокий уровень - зажигаем светодиод
    delay(1000);                  // на 1000 мсек = 1 сек.
    digitalWrite(13, LOW);    // подаём на 13 вывод низкий уровень - гасим светодиод
    delay(1000);                  // на 1 сек.
}   // далее цикл повторяется

Почитайте комментарии в тексте программы – их достаточно чтобы разобраться с нашим первым экспериментом. Сначала описываем блок инициализации setup(), в котором задаём начальные значения переменных и функции выводов Arduino. Далее следует бесконечный цикл loop(), который повторяется снова и снова, пока на плату подаётся питание. В этом цикле мы выполняем все необходимые действия. В данном случае – зажигаем и гасим светодиод. Оператор delay() задаёт длительность выполнения (в миллисекундах) предшествующего оператора. Оператор digitalWrite() указывает Ардуино, на какой вывод подать напряжение, и какой именно уровень напряжения.Ваш первый скетч готов!

Полезный совет

В сети есть множество сайтов, посвящённых работе с платами семейства Arduino. Читайте, осваивайте, не бойтесь экспериментировать и познавать новое! Это увлекательное и полезное занятие, которое принесёт вам много удовольствия.

Обратите внимание

Будьте внимательны при работе с платой Arduino – это электронное изделие, которое требует бережного отношения. Снизу платы есть оголённые проводники, и если Вы положите плату на токопроводящую поверхность, есть вероятность сжечь плату. Также не трогайте плату влажными или мокрыми руками и избегайте при работе сырых помещений.

Ошибка загрузки

Возникает на этапе, когда прошивка скомпилирована, в ней критических ошибок, и производится загрузка в плату по кабелю. Ошибка может возникать как по причине неисправностей железа, так и из-за софта.

Всем привет. Ха, вы таки думаете, что все так просто? Ан нет.Имеется несколько Nano (из одной партии). Robotdyn, раньше вообще проблем не было. Но не в этот раз. Некоторые прошиваются без проблем, а некоторые…

При прошивке штатным образом, через USB, в начале прошивки три раза коротенько мигает светик TX, и все. В IDE замирает полоса загрузки, а плата уходит в демонстрацию Blink, зашитую на заводе.

Безрезультатно. Как можно вылечить платки? Жалко, не одна такая. Брак явно заводской, но с гарантией неясно пока.

ВАЖНО! Платы из одной партии, часть шьется без проблем, часть ни в какую. При попытке прошивки загрузчика через IDE ошибка:

При попытке прошивки загрузчика через IDE ошибка:

avrdude: usbdev_open(): did not find any USB device «usb»Ошибка при записи загрузчика.

При попытке прошивки загрузчика через другую Нано (Arduino as ISP) ошибка:

***failed;avrdude: verification error, first mismatch at byte 0x00000x00 != 0x3favrdude: verification error; content mismatchОшибка при записи загрузчика.

Загрузка скетча или прошивка контроллера Ардуино – основная операция, с которой рано или поздно сталкивается любой ардуинщик. Именно возможность быстро и без лишних проблем загрузить в память контроллера управляющую программу и стала одной из основных причин успеха платформы Arduino. В этой статье мы узнаем, как прошиваются Arduino Uno, Nano, Mega и другие платы на основе Atmega с использованием Arduino IDE, программатора или другой платы Ардуино.

Память Arduino Uno R3

Плата Uno по умолчанию поддерживает три типа памяти:

  • Flash – память объемом 32 кБ. Это основное хранилище для команд. Когда вы прошиваете контроллер своим скетчем, он записывается именно сюда. 2кБ из данного пула памяти отводится на bootloader- программу, которая занимается инициализацией системы, загрузки через USB и запуска скетча.
  • Оперативная SRAM память объемом  2 кБ. Здесь по-умолчанию хранятся переменные и объекты, создаваемые в ходе работы программы. Память эта энерго-зависимая, при выключении питания все данные, разумеется, сотрутся.
  • Энергонезависимая память (EEPROM) объемом 1кБ. Здесь можно хранить данные, которые не сотрутся при выключении контроллера. Но процедура записи и считывания EEPROM требует использования дополнительной библиотеки, которая доступна в Arduino IDE по-умолчанию. Также нежно помнить об ограничении циклов перезаписи, присущих технологии EEPROM.

Некоторые модификации стандартной платы Uno могут поддерживать память с большими значениями, чем в стандартном варианте. Но следует понимать, что для работы с ними потребуются и дополнительные библиотеки.

Модели Ардуино

Платы Arduino

Вот мы и добрались до самих плат Ардуино, которых на данный момент появилось великое множество благодаря открытости платформы: все схемы и исходные коды находятся в открытом доступе, и вы можете сделать свою версию платы и продавать её, чем активно занимаются китайцы. Единственный пункт: слово Arduino – зарегистрированная торговая марка, и свою плату вам придется назвать как-то по-другому, отсюда и появились всякие Искры, Бузины и прочие так называемые Arduino совместимые платы. Разновидностей плат очень много, но используют они одни и те же модели микроконтроллеров. От модели микроконтроллера зависит объем памяти и количество ног, ну и есть некоторые специальные фишки. На большинстве моделей Arduino стоят 8-битные МК от AVR с кварцевым генератором на 16 МГц (либо ниже), то есть по производительности платы на ATmega не отличаются, отличаются только объемом памяти, количеством ног и интерфейсов/таймеров. Модели Ардуино с МК от производителя ARM, например Arduino DUE, в разы мощнее своих собратьев за счёт 32-битного процессора, но это совсем другая история.

Параметр ATtiny85 ATmega328 ATmega32u4 ATmega2560
Кол-во ног 8 32 44 100
Из них доступны 5 23 24 86
Flash память 8 Kb 32 Kb 32 Kb 256 Kb
EEPROM память 512 bytes 1 Kb 1 Kb 4 Kb
SRAM память 512 bytes 2 Kb 2.5 kB 8 Kb
Каналов АЦП 3 (4 с rst) 6 (8 в SMD корпусе) 12 16
Каналов PWM 3 6 7 15
Таймеры 2х 8bit 2х 8bit 2х 8bit 2х 8bit
    1х 16bit 2х 16bit 4х 16bit
Serial интерфейс Нет х1 х1 х4
I2C интерфейс Нет Да Да Да
Прерывания 1 (6 PCINT) 2 (23 PCINT) 5 (44 PCINT) 8 (32 PCINT)
Платы на его основе Digispark, LilyTiny Uno, Nano, Pro Mini, Lilypad, Strong Leonardo, Micro, Pro Micro, BS Micro Mega, Mega Pro

Таким образом вы должны сразу понять, что, например, Ардуино Уно=Нано=Про Мини=Лилипад по своим возможностям и взаимозаменяемости. Или Леонардо=Про Микро. Ссылки на недорогие китайские Ардуины вы можете найти у меня на сайте. Точно там же вы найдёте ссылки на кучу датчиков, модулей и другого железа, которое можно подключить к Arduino. О возможностях ардуино по работе с другими железками поговорим в одном из следующих уроках.

Варианты прошивки Ардуино

Прошивка с помощью Arduino IDE

Прошить плату при помощи среды разработки Arduino IDE можно в несколько шагов. В первую очередь нужно скачать и установить саму программу Arduino IDE. Также дополнительно нужно скачать и установить драйвер CH341. Плату Ардуино нужно подключить к компьютеру и подождать несколько минут, пока Windows ее опознает и запомнит.

После этого нужно загрузить программу Arduino IDE и выбрать нужную плату: Инструменты – Плата. Также нужно выбрать порт, к которому она подключена: Инструменты – Порт. Готовая прошивка открывается двойным кликом, чтобы ее загрузить на плату, нужно нажать кнопку «Загрузить» вверху панели инструментов.

В некоторых ситуациях может возникнуть ошибка из-за наличия кириллицы (русских букв) в пути к папке с кодами. Для этого файл со скетчами лучше создать и сохранить в корне диска с английским наименованием.

Прошивка с помощью программатора

Одни из самых простых способов прошивки платы – при помощи программатора. Заливка будет производиться в несколько этапов.

В первую очередь нужно подключить программатор к плате и к компьютеру. Если программатор не опознается компьютером, нужно скачать и установить драйверы.

После этого нужно выбрать плату, для которой нужно прошить загрузчик. Это делается в меню Сервис >> Плата.

Затем нужно выбрать программатор, к которому подключен контроллер. В данном случае используется USBasp.

Последний шаг – нажать на «записать загрузчик» в меню Сервис.

После этого начнется загрузка. Завершение произойдет примерно через 10 секунд.

Прошивка Arduino через Arduino

Для того чтобы прошить одну плату с помощью другой, нужно взять 2 Ардуино, провода и USB. В первую очередь нужно настроить плату, которая будет выступать в качестве программатора. Ее нужно подключить к компьютеру, открыть среду разработки Arduino IDE и найти в примерах специальный скетч ArduinoISP. Нужно выбрать этот пример и прошить плату.

Теперь можно подключать вторую плату, которую нужно прошить, к первой. После этого нужно зайти в меню Инструменты и выставить там прошиваемую плату и тип программатора.

Можно начать прошивать устройство. Как только прошивка будет открыта или написана, нужно перейти в меню Скетч >> загрузить через программатор. Для заливания прошивки не подходит стандартная кнопка загрузки, так как в этом случае прошивка будет загружена на первую плату, на которой уже имеется прошивка.

Изготовление теплоаккумулятора

Шаг третий — выбираем, на что сажать компоненты

Шилда (shield) для Ардуино — держатель для МК и его модулей чтобы не развалились. Можно без неё\него обойтись спокойно, если знаешь как чего подключать. Не знаешь закона Ома? Не умеешь паять? Забей. Тупо посади всё на шилд, где уже продумали что куда и спаяли.

Всего лишь один из множества вариантов шилдов, самый общий, без какой-то конкретной функции. Обычно у них предусмотрен разъем питания, хотя, как правило, можно работать, подключив питание через USB разъем на Ардуино.

Выбирайте себе любой шилд или готовый набор шилд + компоненты, как это сделала я.

Если погуглить, то это всё, конечно, страшно читать: «плата расширения Arduino для управления световыми эффектами по протоколу DMX» Не бойтесь этих слов и не забивайте ими себе голову. Ваша задача: решить, какое собрать устройство, выбрать соответствующую плату расширения, а затем компоненты к ней. И нагуглить скетч.

Всего вариантов три у вас — куда сажать МК:

Шилда, которую умные люди для вас продумали заранее. Берёте любую готовую и всё — всё прикорячили, закачали скетч, запустили, ходите, всем показываете. Гуглится по: Arduino-совместимая плата расширения.

Хлебная доска (breadboard, макетная плата). Недостаток: придётся вникать куда и как течёт ток, что у него есть три параметра — I, U, R — сила тока, напряжение, сопротивление. Придётся знать закон Ома. Ну и если им пренебречь, вы сожжёте МК чуть позже, чем все компоненты вместе с ним. Но зато ничто, как доска не помогает понять принципы работы этого всего. Поэтому определитесь: хотите ли вы собрать готовое устройство или познакомиться с законами физики и принципами электрического тока. Кто-то скажет, что не бывает одного без другого, но суть конструктора Ардуино как раз в том, что бывает.

Так выглядит хлебная доска.

Джигурда. Термин, который я впервые услышала, общаясь с тех. поддержкой одного хорошего сайта, посвященного электронике. Каждый пин за что-то отвечает. По идее шилд — это просто отводы от нужных пинов к нужным посадкам для модулей. Можно же без этого обойтись. Можно напрямую подключить модули к нужным пинам. Получится радужная белиберда такого типа:

Чем-то, наверное, даже похожи. На самом деле нет.

Но зато если всю её залить пластиковой ручкой, то минимум места занимает. Какой пин отвечает за что — обязательно разберёмся, читайте здесь. Но я считаю, что лучше начинать с шилд. У них много преимуществ и одно из них: они помогают быстро перейти от железа к программированию, например.

Итак, у нас есть только шилд и да не будет у нас ничего другого — пока что. Потому что это очень удобно. Это-то и превращает Ардуино в обычный конструктор «собери сам».

Важные страницы

  • Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
  • Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
  • Полная документация по языку Ардуино, все встроенные функции и макро, все доступные типы данных
  • Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
  • Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
  • Поддержать автора за работу над уроками
  • Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту (alex@alexgyver.ru)

Где купить Arduino Uno

Минимальные цены на платы UNO можно найти в китайских электронных магазинах. Если у вас есть несколько недель на ожидание, вы можете существенно сэкономить, купив дешево (в районе 200-300 рублей) с бесплатной доставкой. Причем можно найти как самые простые варианты, так и официальные или “почти оригинальные” платы на базе оригинального микроконтроллера. Еще одна группа товаров – необычные платы со встроенными WiFi (на базе ESP8266 или ESP32), дополнительными разъемами для более удобного подключения периферии. Вот некоторые варианты, которые можно купить у проверенных поставщиков на Алиэкспрессе:

Если вы интересуетесь наборами Ардуино, то более подробный обзор доступных вариантов вы можете найти на нашем сайте.

Загрузка примера “Blink” (мигание) в Arduino IDE

При подключении новой платы к персональному компьютеру, обратите внимание, что светодиод начинает мигать, так как все платы от производителей поступают с уже “залитым” скетчем “Blink”. На этом уроке мы перепрограммируем нашу плату, изменив частоту мигания светодиода. Не забудьте настроить оболочку Arduino IDE и выбрать нужный серийный порт, по которому Вы подключили Вашу плату

На этом уроке мы перепрограммируем нашу плату, изменив частоту мигания светодиода. Не забудьте настроить оболочку Arduino IDE и выбрать нужный серийный порт, по которому Вы подключили Вашу плату.

Пришло время проверить Ваше подключение и запрограммировать плату.

В оболочке Arduino IDE существует большая коллекция скетчей, которые уже готовы к использованию. Среди них находится и пример, который заставляет мигать “L” светодиод.

Откройте пример “Blink”, который находится в пункте меню File – Examples – 01.Basics

После открытия, расширьте окно оболочки Arduino IDE, чтобы Вы могли весь скетч в одно окне.

Скетчи из примеров, включенные в Arduino IDE предусматривают режим “только чтение” (“read only”). То есть, загрузить их на плату Вы сможете, но после изменения кода, Вы не сможете их сохранить в том же файле.

Мы будем изменять скетч, так что в первую очередь Вам необходимо сохранить собственную копию, которую Вы сможете изменять.

Из меню “File” выберите опцию “Сохранить как” (“Save As..”) и сохраните скетч под подходящим Вам названием, например, “MyBlink”.

Вы сохранили копию скетча “Blink” в Вашей библиотеке. Теперь открыть этот файл Вы можете в любой момент, перейдя по вкладке File – Scetchbook.

Открытие доступа к вашим скетчам

Каждый созданный вами скетч будет иметь уникальный URL (адрес в сети интернет) как, к примеру, и любой документ в сервисе Google Docs. Нажмите кнопку ‘Share’ (поделиться, расшарить) и скопируйте предоставленный URL в новую вкладку вашего браузера чтобы проверить его работоспособность.

Если вы дадите этот URL кому то еще он сможет увидеть ваш код, добавить его копию в свой Sketchbook в облаке или скачать его. Если вы написали обучающее руководство в Project Hub и добавили ссылку в разделе программного обеспечения (Software section), ваш код будет включен в него и будет всегда оставаться актуальным.

Мы считаем что скетч Arduino представляет собой структурную единицу информации, которая содержит все что нужно для претворения идеи в жизнь. Когда кто-нибудь предоставляет вам (расшаривает) доступ к своему скетчу, вы будете иметь доступ к его коду, схеме проекта и даже к его описанию (если оно имеется). То есть вы получаете всю информацию, чтобы создать копию проекта-оригинала.

Вы даже можете встроить ваш скетч в веб-страницу скопировав код находящийся в Share window (окне для предоставления доступа).

Что такое Arduino Web Editor

Arduino Web Editor – это онлайн инструмент, который позволяет вам писать скетчи и загружать их в любую плату Arduino с помощью вашего веб-браузера (Chrome, Firefox, Safari и Edge). Разработчики платформы Arduino рекомендуют использовать браузер Google Chrome.

Arduino Create EditorArduino Create Editor

Эта IDE (Integrated Development Environment – интегрированная среда разработки) является частью проекта Arduino Create, онлайн платформе, которая позволяет разработчикам писать программы, иметь доступ к обучающим материалам, конфигурировать платы и делиться своими проектами с другими участниками сообщества Arduino. Обеспечивая пользователей непрерывным трудовым процессом, Arduino Create обеспечивает взаимосвязи между всеми процессами создания готового изделия, начиная от его задумки и заканчивая его осуществлением. То есть с помощью этого сервиса вы можете управлять всеми аспектами создания проекта для Arduino.

Arduino Web Editor является онлайн сервисом, поэтому он всегда учитывает все самые последние изменения в платформе Arduino и все самые свежие платы, появившиеся в рамках этой платформы.

Эта интегрированная среда разработки (IDE) позволяет вам писать код программы (скетча) и сохранять его в облаке, к которому вы затем сможете получить доступ с любого устройства, имеющего выход в сеть интернет. Она автоматически распознает все платы Arduino и Genuino, подсоединенные к вашему компьютеру и выполняет необходимые настройки. Аккаунт в этой системе – это все, что вам нужно для начала работы.

Как устроен RGB-светодиод и его назначение

Светодиодная лента состоит из 3 цветных кристаллов и 4 выходов: 12 (общий вывод), R (Red), G (Green), B (Blue). Основные комплектующие помещены в пластиковый корпус. Также в некоторых моделях RGB LED Arduino присутствуют встроенные резисторы. Они подключены к цветным выходам. Анодные и катодные электроды обладают самыми длинными выводами.

Одной из самых современных моделей RGB Ардуино является адресная светодиодная лента. Она состоит из диодов и контроллера. В это устройство по умолчанию встроены 3 полевых транзистора, что позволяет регулировать цвет светодиодов по отдельности.

Устройство светодиоида.

Для питания резисторов и выводов нужно подключить адресную ленту к следующим приборам:

  1. Powerbank 5V: лента подсоединяется к данному устройству при помощи USB-штекеров. Емкость Powerbank 5V составляет 3350 мА*ч, что позволяет питать светодиоды током с силой 3А.
  2. Батарейки АА: используются в количестве 3 шт. Общая емкость этих приборов составляет 180 мА*ч. Они подают ток с напряжением до 5,5 В. Рекомендуется использовать батарейки AA, изготовленные из лития или апкалина.
  3. Никелевые аккумуляторы: имеют напряжение до 1,4 В. Для питания RGB Arduino требуется не менее 4 аккумуляторов из никеля. Емкость сборки составляет 2700 мА*ч.
  4. Литиевые аккумуляторы: имеют напряжение 4,2 В. В процессе эксплуатации значение этого показателя снижается до 3 В. Литиевые аккумуляторы позволяют сохранять полную яркость светодиодов. Они питают диоды током с силой до 2 А.

В зависимости от способа подачи электрического тока светодиоды будут гореть разными цветами. Если подать питание на 3 цветных светодиода одновременно, то кристаллы станут белыми. Для настройки цветовой гаммы Arduino RGB используются контроллеры с пультом управления. Они состоят из 3 полевых транзисторов и микропроцессора. Это приспособление позволяет настроить цветовую гамму светодиодов на дальнем расстоянии. Работа контроллеров с пультом управления обеспечивается при помощи скетчей, написанных в программной среде Ардуино.

Выделяют 2 основные модели RGB LED Arduino:

  1. WS2811: светодиоды питаются от чипа WS2811, расположенного отдельно от RGB-ленты. Питание устройства составляет 12 В.
  2. WS2812b: представляет собой ленту с напаянными светодиодами. В диоды встроены чипы WS2812b. Они позволяют менять окрас светодиодов по отдельности. Питание ленты WS2812b составляет 5 В.

Основными преимуществами RGB LED Arduino являются простота конструкции и высокий КПД. Эти приспособления активно используются при изготовлении осветительных приборов и декоративных подсветок. Также технология RGB нашла применение в трехмерной графике и WEB-разработке.

Подводя итоги

В завершении этой статьи – краткого знакомства с новым интересным сервисом Tinkercad Arduino Circuits, хотелось бы еще раз подчеркнуть его ключевые возможности: визуальный редактор схем, визуальный и текстовые редакторы кода, режим отладки, режим симуляции схем, возможность экспорта полученных скетчей и электрических схем в реальные проекты. Возможно, по отдельности каждая из этих возможностей лучше реализована в других мощных инструментах, но собранные вместе, да еще и в виде удобного, простого для освоения web-сервиса, они делают Tinkercad крайне полезным для любого, особенно начинающего, ардуинщика.

Судя по всему, сервис продолжает активно развиваться (небольшие апдейты и улучшения производятся непрерывно), так что, надеюсь, мы еще вернемся к этой теме в наших статьях.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий