Гост р мэк 61293-2000. оборудование электротехническое. маркировка с указанием параметров и характеристик источника питания. требования безопасности

Источники электрической энергии

Мировое производство электроэнергии базируется на работе электростанций. Основной принцип работы станций заключается в том, что турбины установленных в них электрогенераторов вращаются с помощью других видов энергии. Они получили своё название соответственно типу используемой энергии:

  • тепловые (ТЭС) – в качестве сырья используются органические виды топлива: уголь, газ, мазут и другие;
  • гидроэлектростанции (ГЭС) – лопасти турбины вращает падающая вода, она же используется для охлаждения рабочих поверхностей генераторов;
  • атомные станции (АЭС) – один из видов ТЭС, где для получения пара, вращающего турбину, используют тепло, выделяемое в результате ядерной реакции.

Размещение тех или иных видов электростанций зависит от распределения по регионам сырьевых ресурсов, географического расположения рек и выбора подходящих мест для возведения АЭС.

Внимание! Основную долю производства мировой электроэнергии до сих пор берут на себя ТЭС. Опасность при эксплуатации АЭС пока является сдерживающим фактором для полного перехода на этот мощный вид производства электричества

Неравномерная плотность проживания населения на планете не позволяет максимально приблизить такие источники энергии к местам потребления. Поэтому приходится передавать производимое электричество на дальние расстояния. Так как и потребление, и получение энергии происходит в реальном режиме, созданы энергосистемы, объединяющие электростанции между собой. Кроме того, сами системы организованы в более мощные энергосистемы. Это сделано для создания резерва рабочей мощности и возможности регулировать подачу электроэнергии к потребителям в бесперебойном режиме.

Разница в часовых поясах, сезонные колебания потребления – всё это нагружает одни станции и недогружает другие. Энергосистемы позволяют станциям подпитывать друг друга в случае перегрузок.

Что касается источников постоянного тока, то их можно разделить на два типа:

  • химические – гальванические элементы, использующие реакции окисления, и электролитические, генерирующие энергию посредством электролиза;
  • электромеханические – генераторы постоянного тока, превращающие энергию вращения в её электрический вид.

Гальванические элементы (батарейки) имеют конечный срок службы. Они конструктивно изготовлены так, что после окончания реакции окисления вырабатывание электричества прекращается. Электролитические элементы (аккумуляторы) имеют периодический режим работы. После разряда их можно заряжать, подавая на их полюса ток заряда, и использовать снова.

220 Вольт Или 220 Ватт?

Определение величин. Напряжение- это физическая величина, характеризующая величину отношения работы электрического поля в процессе переноса заряда из одной точки A в другую точку B к величине этого самого заряда. Проще говоря это разность потенциалов между двумя точками. Измеряется в Вольтах. Напряжение схоже по сути с величиной давления воды в трубе, чем оно выше тем быстрее вода течет из крана. Величина стандартизированная и одинаковая для всех квартир, домов и гаражей равная 220 Вольт при однофазном электроснабжении. 220 вольт в электропроводке А для трехфазного подключения (изредка подключаются гаражи или отдельные большие частные дома)- она равна 380 Вольтам между тремя разноименными фазами, но между каждой отдельной фазой и нулем она опять будет равна 220 Вольтам. Учитывайте, что допускается по ГОСТ 10 процентное отклонение для домашней электросети. Величина напряжения должна быть не менее 198 и не более 242 Вольт. Сила тока- это физическая величина, равная отношению количества заряда за определенный промежуток времени протекающего через проводник к величине этого самого промежутка времени. Измеряется в Амперах. Проще говоря, это количественный показатель потребляемой электроэнергии вашим каждым электроприбором в отдельности или всей квартиры в целом! токи в доме Силу тока приблизительно можно сравнить с потоком воды из крана, чем больше Мы его открываем, тем больше воды выливается за единицу времени или наоборот. Напряжение (U), ток (I) и сопротивление (R) участка цепи тесно взаимосвязаны и пропорциональны между собой по закону ОМА: I = U/R. Он звучит следующим образом- Сила тока в участке цепи обратно пропорциональна сопротивлению участка цепи и прямо пропорциональна его напряжению на концах. Напряжение всегда равно 220 В в квартире и доме или 380 В в трехфазной сети. Переменными (изменяющимися ) будут две величины Сила тока и сопротивление, которые тесно напрямую взаимосвязаны, во сколько раз уменьшается сопротивление участка цепи- во столько раз увеличивается ток в этом же участке цепи. Сопротивление участка цепи измеряется в Омах и практически не применяется для описания характеристик электросети дома. Вместо него используется потребляемая мощность, которая зависит от подключенной нагрузки или мощности потребителей электрической энергии.Вольт, ампер, Ватт Мощность вычисляется путем умножения величины напряжения на потребляемый ток электроприбором. Иными словами, ее можно сравнить с количеством воды в литрах, которое выльется из крана. Измеряется в Ваттах. А Ватт (Киловатт= 1000 Ватт)/часах ведется учет электроэнергии. Так если в течении часа будет работать телевизор мощностью 50 Ватт, то его потребление составит 50 Ватт/час, а за 2 часа соответственно- 100 Ватт/час или 0.1 кВт\ч. Пример расчета потребляемой мощности- стиральная машина потребляет из розетки 220 Вольт силу тока величиной 10 А, 10 А *220 В= 2200 Вт или 2.2 Киловатта, т. к. один Киловатт равен 1000 Ватт.

Электрическое напряжение: объяснение простыми словами

Электрическим напряжением обозначается физическая величина, равная разности потенциалов между двумя точками электрического поля при перемещении единичного заряда. Для простых пользователь такое обозначение не всегда понятно. Поэтому в этой статье мы попытаемся простым, доступным языком рассказать, что собой представляет электрическое напряжение, как оно измеряется и для чего это нужно.

Что такое разность потенциалов?

Для начала проанализируем рисунок:

В первой бутылке вода находится на уровне 300 мм, а во второй – на отметке 150 мм. Разница между уровнями воды в обоих емкостях составляет 150 мм. Если рассматривать это с точки зрения науки об электричестве, это и есть разность потенциалов.

Однако, что будет, если соединить обе бутылки шлангом, а внутрь поместить обычный пластиковый шарик?

Из школьного урока физики о принципе соединяющихся сосудах знаем, что из бутылки, где уровень воды больше, жидкость постепенно перетечет в бутылку с более низким уровнем. Под воздействием потока воды шарик внутри соединяющего шланга будет перемещаться. Процесс перетекания завершится после того, как в обоих бутылках уровень жидкости уравновесится, станет одинаковым.

Иными словами, в ситуации, когда в соединенных между собой емкостях уровень жидкости станет одинаковым, результатом разности потенциалов станет ноль. Шарик останется на месте за счет электродвижущей силы, которая, по итогам эксперимента, равна нулю.

Что такое электродвижущая сила?

Аналогично напряжению, единицей измерения электродвижущей силы (ЭДС) является Вольт.

Для проведения следующего эксперимента понадобится вольтметр (прибор, измеряющий вольты) и обычная батарейка.

При исходном замере прибор покажет 1.5 В (Вольта). Однако это не является напряжением – значение указывает на величину электродвижущей силы.

На следующем этапе эксперимента к батарейке подключаются две лампочки. А напряжение измеряется в разных участках электроцепи.

Внимание следует уделить следующим показателям: напряжение для одной лампочки составляет 1 Вольт, для другой же это значение 0.3 Вольта. Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах

Напряжение в используемых нами осветительных устройствах напрямую зависит от их мощности, измеряемой в Ваттах.

Мощность=Напряжение*ток (Р=U*I)

Из этого следует, что чем больше будет значение мощности лампы, тем большее напряжение будет на ней.

Однако, как же получается: если мощность батарейки 1.5 Вольта, к которой подключены лампочки, разделена на 1 Вольт и 0.3 Вольта, куда направились еще 0.2 Вольта? Дело в том, что каждая батарейка наделена своим внутренним сопротивлением, поэтому недостающие 0.2 Вольта были направлены именно сюда.

Резюме

Электродвижущей силой определена физическая величина, характеризующая в источниках тока работу сторонних силовых ресурсов. Посредством электродвижущей силы мы можем определять, как переносится заряд от источника тока по всей электрической цепи. Напряжение показывает этот процесс лишь на отдельном участке этой цепи. Если проще: напряжение – это внешнее силовое воздействие, способствующее перемещению шарика в шланге, соединяющим сосуды из выше приведенного примера. В электричестве напряжение обозначено силой, которая обеспечивает перемещение электронов между атомами.

Рассмотрим еще один пример

Представьте, что вам по силам будет поднять камень, вес которого составляет 40 кг. Это означает, что вы обладаете подъемной силой, равной 40 кг – в электричестве это обозначается как электродвижущая сила. Вы следуете и на своем пути вам попадается камень весом 20 кг. Вы его также берете и переносите на расстояние 10 метров. Для осуществления этого действия вам понадобилось определенное количество энергии, что в электричестве представляется как напряжение. Далее вам попадается камень весом в 30 кг. Следовательно, для его переноса из одного места в другое вам понадобится больше энергии, чем для камня, масса которого не превышала 20 кг. Однако подъемная сила (в электричестве ЭДС), независимо от веса переносимого вами камня, остается всегда одинаковой. При этом, вес камня определяет количество энергии, которая тратится на проведение этого действия (в электричестве это обозначено напряжением). Таким образом, на каждом отрезке вашего пути вы будете испытывать разное напряжение в зависимости от веса камня, который вы намерены перенести.

От чего зависит напряжение

Фиксируемый на участке электрической цепи показатель напряжения зависит от ряда факторов, например, от подсоединенной нагрузки (сопротивления). Также оказывают влияние характеристики вещества, из которого сделан проводниковый элемент, температура окружающего воздуха и самих компонентов сети.

Эффект Джозефсона

Так называется феномен сверхпроводящего тока, проходящего через слой диэлектрического материала малой толщины, изолирующий один сверхпроводящий предмет от другого. В научной работе деятеля, чьим именем назван эффект, было высказано предположение о том, что данное явление наблюдается только при использовании супертонкого слоя (значительно уступающего длине сверхпроводящей когерентности). Более поздние опыты продемонстрировали, что оно проявляет себя и при использовании куда более толстых слоев.

Применение данного феномена позволит производить высокоточные замеры напряжения, а также магнитных полей. Последнее делается возможным в силу огромной зависимости электротока, критичного для используемого в интерферометре соединения, от внешнего магнитного поля. Когда в джозефсонском переходе поддерживается константное напряжение, он может выступать в качестве генератора электромагнитного волнового излучения. Можно организовать и установку с противоположным, поглощающим эффектом. При этом как генерация, так и прием способны функционировать в частотном диапазоне, недоступном иным средствам.

Также ведутся исследования рассматриваемого эффекта и основанных на нем явлений переноса магнитного поля для передачи и накопления данных (квантовые компьютеры). Первый экспериментальный процессор такого типа был спроектирован японскими инженерами. В 2014 году работники физфака МГУ спроектировали микросхему для компьютера с использованием свойств сверхпроводников и данного эффекта.

Измерительные приборы и электрооборудование

Как обозначается ток на приборах, позволяющих измерять электрические характеристики? Обозначения те же самые, как и на приборах, его потребляющих. При измерении тока или напряжения прежде, чем прикасаться щупами к токоведущим частям электроустановок или открытых участков тоководов, необходимо выставить пределы измерения на приборе и род тока, которые соответствуют параметрам измеряемого участка.

Осторожно. Неправильная подготовка прибора к измерениям может вывести его из строя, привести к короткому замыканию измеряемого участка линии и поражению оператора электрическим током

На корпуса электрооборудования, на защитные щиты и кожухи электродвигателей и генераторов наносятся опознавательные символы, информирующие о полярности, частоте, величине напряжения и других характеристиках.

Презентация на тему: » Сила тока. Единицы силы тока и её измерение. План изучения физической величины 1. Наименование величины и её условное обозначение. 2. Характеризуемый.» — Транскрипт:

1

Сила тока. Единицы силы тока и её измерение

2

План изучения физической величины 1. Наименование величины и её условное обозначение. 2. Характеризуемый объект (явление, свойство, процесс). 3. Определение. 4. Формула, связывающая данную величину с другими. 5. Единицы измерения силы тока. 6. Способы измерения величины

3

1. Наименование величины и её условное обозначение Сила тока — I Сила тока — I

4

2. Характеризуемый объект Сила тока характеризует заряд, проходящий через поперечное сечение проводника за 1 с. Сила тока характеризует заряд, проходящий через поперечное сечение проводника за 1 с.

5

3. Определение Сила тока — это физическая величина равная отношению заряда, прошедшего через поперечное сечение проводника ко времени его прохождения Сила тока — это физическая величина равная отношению заряда, прошедшего через поперечное сечение проводника ко времени его прохождения

6

4. Формула, связывающая данную величину с другими I= q t

7

5. Единицы измерения величины Единица силы тока в СИ Единицу силы тока называют ампером (А). Единицу силы тока называют ампером (А). Так она названа в честь французского ученого Андре Ампера Так она названа в честь французского ученого Андре Ампера За единицу силы тока принимают силу тока, при которой отрезки очень длинных и очень тонкиx проводников длиной 1 м взаимодействуют с силой 0, Н За единицу силы тока принимают силу тока, при которой отрезки очень длинных и очень тонкиx проводников длиной 1 м взаимодействуют с силой 0, Н

8

5. Единицы измерения величины Дольные и кратные единицы измерения силы тока: Дольные и кратные единицы измерения силы тока: миллиампер (мА) микроампер (мкА) килоампер (кА) 1 мА = 0,001 А 1 мкА = 0, А 1 кА = 1000 А Единица электрического заряда 1 кулон = 1 ампер х 1 секунду 1 Кл = 1 А х 1 с = 1 А х с 1 Кл – это заряд, который проходит за 1 с через поперечное сечение проводника при силе тока 1 А. 1 Кл – это заряд, который проходит за 1 с через поперечное сечение проводника при силе тока 1 А.

9

6. Способы измерения величины Силу тока измеряют амперметром. Силу тока измеряют амперметром. Амперметр включают в цепь последовательно и «+» амперметра к «+» источника тока, а «-» к «-». Амперметр включают в цепь последовательно и «+» амперметра к «+» источника тока, а «-» к «-». — + A -+

10

ЗАПОМНИ !!! Сила тока- очень важная характеристика электрической цепи. Сила тока- очень важная характеристика электрической цепи. Для организма человека безопасной считается сила тока до 1 мА. Для организма человека безопасной считается сила тока до 1 мА. Сила тока больше 100 мА приводит к серьезным поражениям организма. Сила тока больше 100 мА приводит к серьезным поражениям организма.

11

Спасибо за внимание !

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей. А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей. Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей. Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю. Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети. В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Плакаты запрещающего действия

Знак «РАБОТА ПОД НАПРЯЖЕНИЕМ повторно не включать» используется для запрета повторного ручного включения выключателей воздушной линии, после того как было выполнено их автоматическое отключение. Подобные действия обязательно согласовываются с руководителем работ.

Эти плакаты по электробезопасности должны быть вывешены на управляющие ключи, входящие в состав выключателей воздушных линий. Они вывешиваются при выполнении ремонтных работ под напряжением. Стандартный размер плаката составляет 100х500 мм, по периметру проходит кайма красного цвета шириной 5 мм. Буквы надписи красного цвета нанесены на белый фон.

Плакат «НЕ ВКЛЮЧАТЬ! Работают люди» является переносным. Он запрещает подавать на линию напряжение во всех случаях. Вывешивается на кнопках, ключах и приводах управления коммутационной аппаратурой. При ее включении напряжение обязательно попадет на линию, поэтому делать этого нельзя ни в коем случае. Данные плакаты используются в электроустановках напряжением не только до 1000 вольт, но и выше этого значения.

Размеры плаката стандартные – 100х200 мм, с каймой по периметру шириной 5 мм. В надписи используются красные буквы на фоне белого цвета.

Переносной плакат «НЕ ВКЛЮЧАТЬ! работа на линии» запрещает подачу напряжения на линию. Он также вывешивается на управляющих элементах коммутационной аппаратуры электрощитов, при включении которых на линию может быть подано напряжение. Надпись наносится белыми буквами на красном фоне без каймы. Габаритные размеры стандартные – 100х200 мм.

Запрещающие знаки «НЕ ОТКРЫВАТЬ работают люди» также являются переносными. Их вывешивают на вентили и задвижки, перекрывающие подачу воздуха к коммутационной аппаратуре пневматического действия. Ошибка при открытии этих устройств может послужить толчком к включению оборудования, на котором выполняются работы. Этот знак применяется и для газовых баллонов, а также водородных или кислородных трубопроводов, при открытии которых рабочие могут получить травмы с серьезными негативными последствиями. Размеры знака стандартные, по периметру нанесена кайма красного цвета.

Постоянный электрический ток. Характеристики электрического поля. Закон Ома для участка цепи. Сформулируйте и запишите закон Джоуля-Ленца.

Электрический
ток называют постоянным, если сила тока
и его направление не меняются с течением
времени. Основные характеристики
электрического поля: потенциал, напряжение
и напряженность. Энергия электрического
поля, отнесенная к единице положительного
заряда, помещенного в данную точку поля,
и называется потенциалом поля в данной
его точке. потенциал электрического
поля в данной его точке численно равен
работе, совершаемой сторонней силой
при перемещении единицы положительного
заряда из-за пределов поля в данную
точку. Потенциал поля измеряется в
вольтах. Если потенциал обозначить
буквой φ, заряд — буквой q и затраченную
на перемещение заряда работу — W, то
потенциал поля в данной точке выразится
формулой φ = W/q

Напряжение
между двумя точками электрического
поля численно равно работе, которую
совершает поле для переноса единицы
положительного заряда из одной точки
поля в другую.

Как
видно, напряжение между двумя точками
поля и разность потенциалов между этими
же точками представляют собой одну и
ту же физическую сущность. Напряжение
измеряется в вольтах (В)

Величина
Е, численно равная силе, которую испытывает
единичный положительный заряд в данной
точке поля, называется напряженностью
электрического поля. F = Q х Е, где F —
сила, действующая со стороны электрического
поля на заряд Q, помещенный в данную
точку поля, Е — сила, действующая на
единичный положительный заряд, помещенный
в эту же точку поля.

Закон
Ома для участка цепи

Сила
тока прямо пропорциональна разности
потенциалов (напряжению) на концах
участка цепи и обратно пропорциональна
сопротивлению этого участка:

I
= U/R где U – напряжение на данном участке
цепи

R
– сопротивление данного участка цепи

Сформулируйте
и запишите Джоуля-Ленца

При
прохождении электрического тока по
проводнику количество теплоты, выделяемое
в проводнике, прямо пропорционально
квадрату тока, сопротивлению проводника
и времени, в течение которого электрический
ток протекал по проводнику.

Это
положение называется законом Ленца —
Джоуля.

Если
обозначить количество теплоты, создаваемое
током, буквой Q (Дж), ток, протекающий по
проводнику — I, сопротивление проводника
— R и время, в течение которого ток протекал
по проводнику — t, то закону Ленца — Джоуля
можно придать следующее выражение:

Q
= I2Rt.

Так
как I = U/R и R = U/I, то Q = (U2/R) t = UIt.

3. Чем
обусловлено получение фигур Лиссажу?
Нарисуйте фигуры, если частота по каналу
Х = 50 Гц – соnst, а частота по каналу Y =
25,50,100,150 Гц.

Фигуры
Лиссажу — замкнутые траектории,
прочерчиваемые точкой, совершающей
одновременно два гармонических колебания
в двух взаимно перпендикулярных
направлениях.

Вид
фигур зависит от соотношения между
периодами (частотами), фазами и амплитудами
обоих колебаний

Х=50Гц,у=50Гц
Х=50Гц,у=100Гц Х=50Гц, у=150 Гц
х=50Гц у=25Гц

Направление постоянного тока и обозначения на электроприборах и схемах

Условное обозначение однонаправленного тока на электроприборах

Условно принято считать (общепринято), что электрический ток в электрическом поле имеет направление от точек с бо́льшими потенциалами к точкам с меньшими потенциалами. Это значит, что направление постоянного электрического тока всегда совпадает с направлением движения положительных электрических зарядов, например положительных ионов в электролитах и газах. Там же, где электрический ток создаётся только движением потока отрицательно заряженных частиц, например, потока свободных электронов в металлах, за направление электрического тока принимают направление, противоположное движению электронов.

Точки с бо́льшими потенциалами (например, на зажимах батареек и аккумуляторов) носят название «положи́тельный по́люс» и обозначаются знаком +{\displaystyle +} («плюс»), а точки с меньшими потенциалами называются «отрица́тельный по́люс» и обозначаются знаком −{\displaystyle -} («минус»).

Исторически сложилось, что электрическая изоляция положительного провода окрашена в красный цвет, а отрицательного провода — в синий или чёрный.

Условное обозначение на электроприборах: −{\displaystyle \mathbf {-} } или ={\displaystyle \mathbf {=} }. Однонаправленный ток (в том числе постоянный) обозначается латинскими буквами DC{\displaystyle DC}. Для однонаправленного тока может быть также использован символ Юникода ⎓ (U+2393).

В ряде случаев можно встретить другие символы, например на малогабаритных штекерах, предназначенных для подключения к электронному устройству сетевого блока питания (или на корпусе самого электронного устройства, возле разъёма для подключения штекера) ⊙{\displaystyle \odot } с указанием полярности.

Электроды каких-либо устройств или радиодеталей (диодов, тиристоров, вакуумных электронных приборов), подключаемые к положительному проводу, носят название «анод», а электроды, подключаемые к отрицательному проводу, называются «катод».

Ещё по теме

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

Единицы измерения тока, напряжения, сопротивления
Величина Символ Единица измерения Сокращение единицы измерения
Ток I Ампер А
Напряжение V Вольт В
Сопротивление R Ом Ом

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий