7 элементарных способов снять статическое электричество

Можно ли «успеть» дотронуться до проводника переменного тока в момент, когда амплитуда равна или близка к нолю и не получить повреждений?

Naeel Maqsudov 2785 7 месяцев назад Эксперт TQ по темам: IT, телеком, телефония, базы данных, интеграционные решения, естествознание, образование. АВТОР ВОПРОСА ОДОБРИЛ ЭТОТ ОТВЕТ

Абсолютно. Если в течение некоторого времени амплитуда переменного тока ≈0В, то прикосновение к нему в этот период безопасно. Банальный вопрос — банальный ответ.

Но мне кажется, что Вы имели в виду другой кейс, когда амплитуда напряжения, например, 200В, а прикосновение происходит в тот момент фазы колебания, когда мгновенное значение напряжения находится около нуля. Мне кажется ,что именно это Вы имели в виду.

Смотрите. Действительно, 100 раз в секунду проводник бытовой электросети оказывается безопасным. Время (продолжительность времени), в течение которого он бывает в этом состоянии нетрудно вычислить. Допустим, безопасным мы будем считать 24В. Продолжительность времени, пока мгновенное напряжение не превышает ±24В составляет

2 × arcsin(24/220) / 2π = 0.03479 сек

Такое счастье наступает 2 раза в секунду Успеете?Уверен, что лучше не стоит этого делать.

Скорость с которой вы можете двигать рукой не сможет обеспечить Вам движение к проводнику, потом торможение, а потом разгон для отрыва, чтобы время прикосновения не превышало 0.045 секунды.

Спасти Вас может только полное отсутствие заземления. Если Вы стоите на диэлектрике ничем ничего больше не касаетесь кроме проводника, то можете даже сами находиться под высоким напряжением ни чего не ощущая, как птица сидящая на проводе ЛЭП, но это уже другой вопрос. (Почему птиц не бьёт током, когда они садятся на провода?)

Результат исследований

Благодаря углубленному изучению электротравм, ученым удалось выяснить, какой ток опасен – переменный или постоянный. Ученые Академии наук Киргизии в ходе лабораторных экспериментов на собаках смогли получить новые данные о соотношении опасности постоянного и переменного тока при напряжениях 12, 36, 120 В.

Оказалось, что при стандартной ситуации, когда электроды находятся на конечностях человека, опасность поражения при напряжении 120 В постоянного тока равна опасности поражения при напряжении 42 В переменного тока. Также постоянный ток в сети с напряжением 108 В может поразить человека, равно как и ток в сети с напряжением 36 В.

Все это позволяет понять, какой ток опасен – переменный или постоянный. Оба вида могут нанести вред человеку, вот только в случае с постоянным током напряжение в сети должно быть более высоким. Следовательно, шанс получить ожог или другой урон от постоянного тока намного ниже.

Виды тока

Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.

Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт. При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт. Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода. Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.

Схема распределения электроэнергии между домами представлена ниже:

В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники. Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи. С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.

Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.

Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары. Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре. Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.

Обратите внимание! Постоянный ток используется во всех электронных приборах. На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами

На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.

Устройство фундамента для теплицы из профиля своими руками

Фундамент для теплицы из профиля может быть выполнен в нескольких вариантах: ленточный, кирпичный, каменный. Также можно использовать фундамент из бруса, однако, срок эксплуатации такого варианта не превышает пяти лет, так как дерево подвержено гниению. Деревянный фундамент подойдет для временных тепличных сооружений.

Фундамент из кирпича прослужит достаточно долго, однако затраты на его сооружение будут значительными. Для устройства такого основания выполняется гидроизоляционная подушка, предотвращающая негативное действие грунтов. При кирпичной кладке применяют раствор цемента с песком.

Обустройство кирпичного фундамента для теплицы

Отличным решением для теплицы из поликарбоната является фундамент из камня. Укладка натурального камня производится на растворе из глины и песка в соотношении один к одному. Работа с камнем различной формы требует некоторых навыков, потому для выполнения такой задачи можно пригласить специалистов.

Довольно распространенным вариантом для теплицы является ленточный фундамент. Надежность и долговечность такого основания вне всяких сомнений. Для его устройства создают песчаную подушку, собирают дощатую опалубку и заливают раствором на глубину около полуметра. Ширина составляет 30-40 см.

Ленточный фундамент для теплицы из поликарбоната

Полезный совет! На этапе обустройства ленточного фундамента, можно сразу предусмотреть заливку ограждений для грядок внутри будущей теплицы.

Когда фундамент для теплицы готов, приступают к его обвязке. Для этого, как правило, используют профильную трубу или металлический уголок. Обвязку крепят к фундаменту посредством анкерных болтов. Главным требованием является качественное покрытие металлической поверхности труб краской для защиты от коррозии.

Схема теплицы арочной конструкции

Магнитное действие тока

Медь сама по себе не притягивается к магниту. В этом можно убедиться с помощью небольшого магнита и кусочка медного провода (рис. 5а).

На рисунке 5 кусок медного провода подвешен к двум штативам с помощью тонких нитей, не проводящих электрический ток.

Однако, во время протекания электрического тока, медный проводник начинает взаимодействовать с магнитом — притягиваться, или отталкиваться от него (рис. 5б).

Рис. 5. Вокруг проводника с током возникает магнитное поле, благодаря этому проводник взаимодействует с магнитом

Почему проводок с током взаимодействует с магнитом

Электрический ток — это большое количество электронов, бегущих по проводку от одного его края к другому краю. Электроны обладают зарядом.

Вокруг движущихся зарядов возникает магнитное поле. Благодаря этому проводок с током превращается в маленький магнитик. И начинает взаимодействовать с магнитом, притягиваясь к нему, или отталкиваясь от него.

При этом, проводок, как более легкий предмет, будет двигаться. А магнит продолжит оставаться на месте. Из-за того, что его масса значительно больше массы кусочка провода.

Направление движения проводка зависит от полярности его подключения к батарейке и, от того, как располагаются полюса магнита.

На магнитном действии тока основано действие электромагнита.

Самодельный электромагнит

Его легко изготовить из куска гибкой изолированной медной проволоки и железного гвоздя.

Гвоздь нужно обернуть кусочком бумаги – гильзой (рис. 6). Затем на гильзу нужно намотать 200 – 300 витков тонкого медного провода в изоляции. К выводам полученной катушки нужно подключить батарейку от карманного электрического фонаря.

Рис. 6. Из подручных материалов можно изготовить самодельный электромагнит

Во время протекания тока, к гвоздю притягиваются различные мелкие железные предметы – скрепки, кнопки, гвоздики, железные стружки, опилки и т. п.

Отсоединив батарейку, увидим, что как только ток прекращается, гвоздь перестает притягивать к себе железные предметы.

Преимущества переменного тока

В наших розетках протекает переменный ток. Но почему именно он, чем он лучше постоянного?

Дело в том, что только величину переменного напряжения можно изменять с помощью преобразовательных устройств – трансформаторов. А делать это приходится многократно.

Теплоэлектростанции, гидроэлектростанции и атомные электростанции находятся далеко от потребителей. Возникает необходимость передачи больших мощностей на расстояния, исчисляемые сотнями и тысячами километров. Провода линий электропередач имеют малое сопротивление, но все же оно присутствует. Поэтому ток, проходя по ним, нагревает проводники. Более того, за счет разности потенциалов в начале и конце линии, к потребителю приходит меньшее напряжение, чем было на электростанции.

Бороться с этим явлением можно, либо уменьшив сопротивление проводов, либо снизив значение тока. Уменьшение сопротивления возможно только с увеличением сечением проводов, а это дорого, а порой – невозможно технически.

А вот уменьшить ток можно, увеличив значение напряжения линии. Тогда при передаче одной и той же мощности ток по проводам пойдет меньший. Уменьшаться потери на нагрев проводов.

Технически это выглядит так. От генераторов переменного тока электростанции напряжение подается на повышающий трансформатор. Например, 6/110 кВ. Далее по линии электропередач напряжением 110 кВ (сокращенно – ЛЭП-110 кВ) электрическая энергия отправляется до следующей распределительной подстанции.

Если эта подстанция предназначена для питания группы деревень в районе, то напряжение понижается до 10 кВ. Если при этом нужно отправить весомую часть принятой мощности энергоемкому потребителю (например, комбинату или заводу), могут использоваться линии напряжением 35 кВ. На узловых подстанциях для разделения напряжения между потребителями, находящихся на разном удалении и потребляющими разные мощности, используются трехобмоточные трансформаторы. В нашем примере это – 110/35/6 кВ.

Теперь напряжение, полученное на сельской подстанции, претерпевает новое преобразование. Его величина должна стать приемлемой для потребителя. Для этого мощность проходит через трансформатор 10/0,4 кВ. Напряжение между фазой и нулем линии, идущей к потребителю, становится равным 220 В. Оно и доходит до наших розеток.

Думаете, что это все? Нет. Для полупроводниковой техники, являющейся начинкой наших телевизоров, компьютеров, музыкальных центров эта величина не подойдет. Внутри них 220 В понижаются до еще меньшего значения. И преобразуется в постоянный ток.

Вот такая метаморфоза: передавать на большие расстояния лучше переменный ток, а нужен нам, в основном – постоянный.

Еще одно достоинство переменного тока: проще погасить электрическую дугу, неизбежно возникающую между размыкающимися контактами коммутационных аппаратов. Напряжение питания изменяется и периодически переходит через нулевое положение. В этот момент дуга гаснет самостоятельно при соблюдении определенных условий. Для постоянного напряжения потребуется более серьезная защита от подгорания контактов. Но при коротких замыканиях на постоянном токе повреждения электрооборудования от действия электрической дуги серьезнее и разрушительнее, чем на переменном.

Разновидности электрических травм

Электрический ток, проходя через тело человека, способен оказывать целый ряд негативных воздействий, угрожающих здоровью и жизни. К таковым относят термическое, электролитическое, биологическое и световое.

Просто из этических соображений не станем размещать в данной публикации фотографии последствий поражений электричеством – это жуткое зрелище. Любой желающий сможет без труда их найти в интернете.

Местные электротравмы обычно обусловлены термическим действием и чаще всего проявляются в виде ожогов различной степени. В большинстве случаев это не приводит к летальному исходу, но если ожог обширный, отнесен к III или IV степени, то велика вероятность и необратимых последствий.

Воздействие тока нередко оставляет на коже электрические знаки – в точках входа и выхода в виде пятен или омертвелых кожных отвердений по типу мозоли. Случается, что такие знаки сопровождаются и металлизацией кожи – при попадании на нее брызг расплавленного электрической дугой металла.

  • Электролитическое действие заключается в резко нарушении сбалансированного химико-биологического состава жизненно важных жидкостей. Это прежде всего касается крови, но может отразиться и на лимфе и спинномозговой жидкости. Последствия бывают очень печальные, причем проявляться во всей своей тяжести они могут даже спустя некоторое время после получения травмы, переходить в хроническую стадию.
  • Электрическая дуга, даже если не было прямого поражения током через кожу, способна своей ультрафиолетовой составляющей вызвать ожоги роговицы глаза, воспаление слизистых оболочек, поражения век, слезных желез. Это последствия электроофтальмии (так правильно называется подобное воздействие), хоть и не относятся к смертельно опасным, способны надолго испортить человеку жизнь, привести к стойким, длительным или даже безвозвратным ухудшениям зрения. Типичный пример – ожоги глаз при выполнении сварочных работ без средств защиты.
  • Самыми опасными для здоровья и жизни человека являются биологические воздействия электрического тока. Такие поражения чаще называть электрическими ударами. Они сопровождаются судорожными неконтролируемыми сокращениями мышечных тканей или, наоборот, параличом отдельных групп мышц.

Электрические удары подразделяют на четыре группы по степени тяжести их последствий:

— Первая группа – удар сопровождается ощутимыми судорожными мышечными сокращениями, но человек не сознание не теряет.

— Вторая группа – судорожные сокращения сопровождаются резкими болевыми ощущениями, но без потери сознания.

— Третья группа – потеря сознания, но без катастрофических нарушений функции сердца и органов дыхания.

— Четвертая группа – полная потеря сознания с явными нарушениями сердечной и (или) дыхательной деятельности.

— Пятая группа – электрические удары, вызывающие клиническую смерть, то есть полную остановку сердца или полный паралич мышц грудной клетки, делающий невозможным дыхание.

Особая опасность электрических ударов связана с возможным вызовом фибрилляции сердца. Под этим термином понимают непроизвольное хаотичное сокращение мышечных волокон миокарда с большой частотой. Это резко нарушает нормальный режим работы сердца, приводит к утрате им своих перекачивающих возможностей, откуда недалеко до полной остановки (сердце перестает питать кровью себя) или до глубоких нарушений работы всего организма, в том числе – центральной нервной системы.

Электрические удары часто сопровождаются и сильными механическими повреждениями. Судорожные сокращения мышц могут закончиться разрывом тканей и кровеносных сосудов, вывихами суставов и даже переломами костей. Естественно, все это часто приводит к болевым шокам, еще больше усугубляющим состояние пораженного током человека.

Вычисляя магнитное поле в центре контура

Представьте себе, что на совещании группы разработчиков потребовалась ваша помощь. Взгляните на странное устройство, показанное на рис. 18.9. Вы видели что-либо подобное раньше?

“Конечно, — скажете вы. — Это ведь обычный контур с током.”

“Отлично, — ответят ваши коллеги. — Нам нужно вычислить магнитную индукцию в самом центре контура.”

“В самом центре?”

“Вот именно.”

“А мне заплатят?”

“Конечно.”

“Ладно, — скажете вы. — Магнитная индукция в самом центре контура с током определяется следующей формулой:

где ​\( N \)​ — количество витков контура, ​\( I \)​ — сила тока в нем, a ​\( R \)​ — радиус контура.”

Пусть контур содержит не один виток, а 2000 витков, ток в нем равен 10 А, а радиус контура равен 10 см. Какова величина магнитной индукции в центре контура? Достаточно просто подставить численные значения в известную формулу:

Итак, контур из 2000 витков создает магнитное поле с магнитной индукцией 0,13 Тл.

если в розетки напряжение 220в то как узнать сколько это будет ампер что при этом нужно сделать?

Если в розетку ничего не включено, то и ампер там ноль )))) А вот если ты что-то включишь, то тут уже появится ток. Чтобы его рассчитать, прочитай в паспорте того, что ты включаешь в розетку его мощность, а затем раздели мощность (в Ваттах) на напряжение (в Вольтах) и получишь потребляемый ток в Амперах.

амперы появятся на нагрузке, то бишь на сопротивлении…. ставиш амперметр после него сопротивление, и потом в розетку)))

Oporatik specialnij dla etogo est’

I=U/R Закон Ома в школе не учили?

поставь тестер на ток и померь)))))))))))) кто круче твоя проводка или тестер.

Напряжение это потенциал, ток величина динамическая появляется при замыкании цепи. Если говорить о максимальном токе который можно получить из этой разетки, то это определяется характеристиками сети, сечением провода. Если источник питания слабый он не даст необходимого тока и скажем электродвигатель будет вращаться медленно. Если источник мощный и вы берете большой ток нужно следить за проводами если их сечение не достаточное они на выдержат могут перегореть или закоротить. На счетчике посмотрите на какой максимальный ток он расчитан там написано и его не превышайте. Расчитать ток при известной нагрузке можно следующим образом. Напряжение в розетке 220 Вольт, смотрим в паспорте прибора его потребляемую мощность, например торшер в паспорте указано 300 Ватт. Ток будет равен потребляемую мощность разделить на напряжение I=P/U P=300 Ватт, U=220 Вольт I=300/220 I= 1.37 Ампера. Таким образо сложив потребляемую мощьность всех электро приборов в квартире и разделив полученную мощность на напряжение сети вы примерно узнаете суммарный потребляемый ток. Или узнать выдержит или не выдержит розетка скажем на не написано максимальный ток который она выдержит 10 Ампер. Посчитайте суммарную мощность всех приборов которые будут подключены к данной розетке и разделите на напряжение в розетке, если полученный ток не превышает максимально допустимый включайте смело, если превышает такую нагрузку подключать не желательно. Измерить ток можно амперметром с включеной нагрузкой, причем амперметр должен быть подключен последовательно с нагрузкой ток которой проверяется.

Возьми учебник по физике 8 класс прочти все параграфы и будешь знать даже больше.

touch.otvet.mail.ru

Идеи для лазерной резки

Исход поражения электрическим током

В зависимости от ситуации исход шока может быть разнообразным. Если человек получил сильный электрический удар, у него могут возникнуть проблемы с кровообращением и дыханием. В тяжёлых ситуациях может начаться фибрилляция сердца — сердечная мышца начинает хаотично подёргиваться. Так как сердце фактически перестаёт работать, приток крови останавливается. При не оказанной первой медицинской помощи своевременно человек может умереть.

Чаще всего наблюдаются электрические удары в момент поражения людей током при его силе до 1000 В. Ожоги могут возникнуть при воздействии тока от 1 А и выше. Происходит это в основном, если при работе с током более 1000 В человек не соблюдает элементарных правил техники безопасности. Токоведущая часть находится на довольно близком для тела человека расстоянии, между ними возникает искровой разряд, который приводит к тяжёлым ожогам.

Если человек случайно получил искровой разряд, ток в момент соединения с телом нагревает ткани до 60°. Это приводит к свёртыванию белка, и на поражённом участке образуется ожог. Ожоги, вызванные электрическим током, вылечить довольно сложно.

Индукционная печь для алюминия

Без дополнительного электропитания

Естественно, без него не может работать ни один графический ускоритель – все‐таки, это сложная конструкция, состоящая из множества микросхем и логических блоков.

p, blockquote 2,0,0,0,0 —>

Основными потребителями мощности в видеокарте являются графический ускоритель, видеопамять и система охлаждения (если она активная), чуть в меньшей степени все остальные компоненты.

p, blockquote 3,0,0,0,0 —>

Бюджетные графические карты не отличаются выдающейся мощностью, хотя и отлично справляются с офисными задачами, а поэтому не потребляют много энергии. Кроме того, у них, как правило, пассивная система охлаждения – просто радиатор, без кулера.

p, blockquote 4,0,0,0,0 —>

Для питания такого устройства достаточно напряжения, которое подается через интерфейс PCI‐E, а доп электричества не нужно – 75 Ватт с материнской платы, вполне достаточно.

p, blockquote 5,0,1,0,0 —>

При сборке такого компьютера можно ограничиться маломощным блоком – не более 400 Вт. Как правило, такой мощности хватает, чтобы обеспечить энергией все составные части.

p, blockquote 6,0,0,0,0 —>

Кроме того, «рабочие лошадки» обычно редко подвергаются апгрейду, так, как и через 5, и через 10 лет они смогут запускать программы, необходимые для работы.Это не относится к ПК, используемым в дизайнерских студиях или конструкторских бюро: для запуска Photoshop или AutoCad требуется уже компьютер помощнее, часто с хорошей графической картой.

p, blockquote 7,0,0,0,0 —>

Расположение электродов

Однако еще в 1903 году было установлено, что опасность в большей степени зависит от полюсов источника постоянного тока. В тех случаях, когда электрод с отрицательным полюсом подключен к верхней части тела человека, а электрод с положительным полюсом – к нижней, то опасность поражения намного выше, чем при обратном расположении. Ученый Ажибаев развил это утверждение, и его исследования на собаках подтвердили, что фибрилляция наступает раньше именно при расположении электрода с отрицательным полюсом вверху. Впрочем, реакция у разных животных может проявляться по-разному.

В 1970-1972 гг. были проведены исследования Гудэрски, которые заключались в сравнении оценки действия постоянного тока промышленной частоты. В ходе исследования ученые плавно увеличивали напряжение от нуля, в результате тяжесть поражения животных при постоянном токе была намного ниже (в несколько раз) по сравнению с тяжестью поражения при переменном (частота при этом была равна 50-60 Гц). Это еще раз дает понять, какой ток более опасен – переменный и постоянный.

Защита от статического электричества

Чтобы избежать неблагоприятного воздействия этого явления, разработан государственный стандарт показателя напряженности электростатических полей. Его максимально допустимый уровень 60 кВ/м в час. Они могут изменяться от времени нахождения рабочего в опасном помещении. Измерить уровень заряда статического электричества – задача для профессионала. Ключевым показателем является зависимость сопротивления поля (его способность препятствовать прохождению тока) и его напряженности (отношение силы поля к величине заряда). На этом основывается работа измерительных приборов.


Влияние статического электричества на организм человека может быть губительным и вызывает различные заболевания, в том числе психические. Если говорить о производственной безопасности в целом, основных способов борьбы два:

  1. Снижение возможности образования электростатических зарядов.
  2. Устранение накопления электростатических зарядов.

Чтобы уменьшить трение – детали оборудования шлифуют и смазывают. Для изготовления механизмов применяются одинаковые материалы. Избавиться от зарядов можно с помощью заземления станков.

Проблема решается использование специальной тары и условиями обработки. К индивидуальным средствам защиты от статического напряжения можно отнести несколько наименований:

  1. Специальная одежда (штаны и куртка).
  2. Обувь с подошвой, обеспечивающей изоляцию.
  3. Перчатки.
  4. Браслеты для снятия диэлектрического напряжения.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий