Контроллер заряда для солнечной системы бесплатно

Порядок подключения устройств МРРТ

Подключение контроллеров МРРТ в целом выполняется так же, как и в других устройств. Существуют некоторые отличия в технологии, связанные с повышенной мощностью такой аппаратуры. В связи с этим потребуется кабель для силового подключения, способный выдерживать плотность тока минимум 4 А/мм2. Если МРРТ контроллер рассчитан на ток 60 А, то сечение кабеля, подключаемого к АКБ, составит не менее 20 мм2.

На концах соединительных кабелей должны быть установлены медные наконечники, обжатые как можно плотнее. К отрицательным клеммам АКБ и солнечной панели подключаются переходники с выключателями и предохранителями. Это позволит снизить потери электроэнергии и обеспечить безопасность в процессе эксплуатации.

Все подключения к прибору МРРТ осуществляются в следующем порядке:

  • Выключатели в переходниках АКБ и панели устанавливаются в отключенное положение.
  • Далее производится извлечение защитных предохранителей.
  • Клеммы контроллера, предназначенные для АКБ, соединяются кабелем с клеммами аккумулятора.
  • К соответствующим клеммам контроллера подключаются выходные провода от солнечной батареи.
  • Клемма заземления прибора соединяется с заземляющей шиной.
  • В соответствии с инструкцией на контроллере устанавливается датчик температуры.

По завершении всех операций предохранитель АКБ вставляется на свое место, а выключатель переводится во включенное положение. На дисплее контрольного устройства должен появиться сигнал о том, что аккумулятор обнаружен. Через небольшой промежуток времени те же операции проделываются с предохранителем и выключателем солнечной панели. На экране прибора появится значение ее напряжения, что означает успешный запуск в работу всей энергетической установки.

Солнечные батареи и контроллеры заряда для дома. Общие сведенияСолнечные батареи и контроллеры заряда для дома. Общие сведения

Установка солнечных батарей

Солнечные батареи для дома

Расчет солнечных батарей

Инверторы для солнечных батарей

Производство солнечных батарей

Аккумуляторы для солнечных батарей

Чем можно заменить некоторые комплектующие

Любой из этих элементов можно заменять. При установке других схем нужно подумать об изменении емкости конденсатора С2 и подборе смещения транзистора Q3.

Вместо транзистора MOSFET можно установить любой другой. Элемент должен иметь низкое сопротивление открытого канала. Диод Шоттки лучше не заменять. Можно установить обычный диод, но его нужно правильно разместить.

FAQ для начинающих : Правильное подключение контроллера нагрузки и СБ.FAQ для начинающих : Правильное подключение контроллера нагрузки и СБ.

Резисторы R8, R10 равны 92 кОм. Такое значение нестандартное. Из-за этого такие резисторы найти сложно. Их полноценной заменой может быть два резистора с 82 и 10 кОм. Их нужно включать последовательно.

Если контроллер не будет использоваться в агрессивной среде, можно провести установку подстроечного резистора. Он дает возможность управлять напряжением. В агрессивной среде он долго не поработает.

При необходимости использовать контроллер для более сильных панелей нужно провести замену транзистора MOSFET и диода более мощными аналогами. Все остальные компоненты менять не нужно. Нет смысла устанавливать радиатор для регулирования 4 А. При установке MOSFET на подходящем теплоотводе устройство сможет работать с более продуктивной панелью.

Системы автономного обеспечения энергией

Ветрогенераторы

Востребованы в местности с сильными ветрами, иначе их рентабельность заметно падает. Данные системы просты в эксплуатации и обслуживании.

Преимущества очевидны:

Система полностью автономна, топливо не требуется.

  • Простая конструкция, не требующая дорогостоящего обслуживания. Ремонт сводится к профилактическому осмотру.
  • Для бесперебойной работы не требуется остановка системы. При отсутствии ветра энергия потребителям идет с аккумуляторных батарей.
  • Бесшумная работа системы достигнута за счет прогрессивных материалов и конструкций ветрогенераторов.

Для получения оптимальных показателей необходимо чтобы были выполнены следующие условия:

Устойчивый ветер. Перед установкой нужно предусмотреть отсутствие вблизи лесов и парков, показатели скорости и силы ветряных потоков.

  • Для установки понадобится специальная техника для установки мачты ветрогенератора.
  • Периодически обновлять смазочные материалы для продолжительной службы системы. 

Солнечные панели (батареи)

В сравнении с ветрогенераторами у солнечных батарей более сложный процесс изготовления, в связи с чем их стоимость будет выше. Но такие системы технологичнее по ряду преимуществ:

Так же, как и ветрогенераторы, солнечные батареи не нуждаются в топливе, работают бесшумно и без перерыва.

  • Более долговечны. Время эксплуатации превышает ветрогенераторы на 10 лет.
  • Более доступная кинетическая энергия. Солнечный свет более постоянный, чем порывы ветра.
  • Область установки. Солнечная энергия намного доступнее ветра.
  • Регулировка мощности. У ветрогенераторов мощность фиксированная, а на солнечных батареях есть возможность устанавливать нужную в зависимости от потребностей.

Единственным недостатком солнечных панелей является продолжительность дня в зависимости от часового пояса. Например, в Мурманской области в декабре-январе солнечные батареи будут непригодны в связи с наступлением полярной ночи и отсутствием солнечного света.

Солнечные батареи, установленные на крыше жилого дома

Гибридные системы

Объединив ветрогенераторы и солнечные батареи, мы получим систему, в которой будут компенсированы недостатки получения энергии. Основным источником является ветрогенератор, он требует меньше затрат на установку и проще в обслуживании. В качестве дополнительного источника энергии применяют солнечные фотовольтаические панели. В случае штиля они возьмут на себя функцию производства электроэнергии.

Средние цены

Для того, чтобы понять в каком ценовом диапазоне находятся МРРТ контроллеры различных производителей, можно рассмотреть стоимость моделей, приведенных выше, это:

  • КЭС 100/20 MPPT – от 10000,00 рублей;
  • КЭС DOMINATOR MPPT 250/60 – от 40000,00 рублей;
  • Epsolar MPPT TRACER-2215BN 20А 12/24В – от 9000,00 рублей;
  • IT6415ND 60A 12V/24V/36 В – от 30000,00 рублей.
  • Victron BlueSolar 100/15 12/24В 15А – от 11000,00 рублей;
  • Victron BlueSolar 150/70 12/24/48В 70А – от 55000,00 рублей.

Как видно из приведенных цифр, наиболее дешевые, это модели китайского производства, а наиболее дорогие – европейских производителей.

Продукция отечественных предприятий несколько дороже устройств, произведенных в Китае, но дешевле изготовленных в Европе.

Установка

Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

Несколько рекомендаций, которые помогут сберечь деньги и время при изготовлении солнечных панелей:

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом, велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются, следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон, на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником, и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки, деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Краткий обзор известных брендов инверторов

ChintPower Systems Co., LTD

Данный тип инвертора достаточно дорогой. Страна производства Китай. Выдает чистый синус с пониженным шумом около 30 децибел. Мощность 1000 ВА, напряжение до 230 вольт. Мощность СБ с данным преобразователем доходит до 1200 ват. Ценник варьирует в пределах 40 000 р.

Инвертор фирмы Cyber Power

Считается бюджетным микроинвертором для солнечных батарей. Выдает сигнал в виде чистого синуса. Отлично подойдет для приборов малой мощности. Может автоматически выполнять переключение. Выходная мощность 200 ВА. Напряжение на выходе 220 v. Выполняет переход на АКБ за 4 мс. Его стоимость всего около 5000 р.

Voltronicpower

Устройство этой компании имеет встроенный контроллер заряда. Так же имеет чистый синус. Он обладает максимальной мощностью в 1600 ват. На выходе напряжение 230 v. Частота 50 герц на выходе. Чтобы его приобрести придется выложить около 20 000 р.

Чтобы получить максимальный выхлоп со всей электростанции необходимо чтобы каждый компонент системы гармонизировал друг с другом.

МАП «Энергия»

Данная фирма выпускает преобразователи российского производства. Она создает инверторы мощностью от 800 – 1200 Ват.

С ее конвейера выходят следующие варианты преобразователей:

  • 3-х фазные.
  • Инверторы генерирующие чистый синус.
  • Приборы заимствовавшие дополнительную энергию с АКБ.

Каждый из этих приборов способен выполнять зарядку аккумулятора. Данный тип используют повсеместно как для домашних нужд, так и для промышленных.

Данная фирма выпустила прибор мощностью до 20 квт. Это ее гордость! Он держит нагрузку до 25 квт.

Schneider Electric

Данная фирма производит инверторы для солнечных батарей с хорошими эксплуатационными характеристиками. Эти устройства спокойно можно использовать в пасмурную погоду. Корпус покрыт антикоррозийной защитой, это позволяет противостоять соляным осадкам.

При изготовлении французская компания отказалась от электрохимических конденсаторов. Это дало ей преимущество на рынке потребителей.

КПД устройств выпускаемых этой компанией составляет 97,5%. Используя инвертор от этой компании вполне можно соорудить солнечную электростанцию на 3-20 квт.

TBS Electronics

Предприятие изготавливает преобразователи с 1996 года. Их приборы подойдут к солнечным модулям Poversine мощностью от 175 до 3500 ват. Металлическая поверхность защищает его от разных вредных факторов. Хорошая электроника позволяет ему работать очень надежно.

Данный тип устройств защищен от короткого замыкания и перегрузок.

Kostal

Производит преобразователи разного типа и мощности. В некоторых приборах имеется встроенный выключатель переменного тока. Множество приборов уже встроены в данное устройство.

Овладеть этим прибором сможет любой желающий. Он легко ставиться и очень удобен в эксплуатации. Производитель дает гарантию целых 5 лет. Его создают по Европейским Гостам.

Тайваньские инверторы ABi-Solar

Это автономники SL/ SLP и гибриды. В них встроены контроллеры для подзарядки АКБ. Тайваньские разработчики совместили в одном устройстве 3 прибора: контроллер, инвертор и зарядник.

Встроенный экран позволит наблюдать за поступающими данными. КПД 93%. В некоторых подобных приборах есть защита от разной пыли.

Модель ABi-Solar SL 1012 PWM выдает мощность 800 вт. С ним легко сделать автоматическим процесс зарядки.

Производитель GoodWE

Китайский изготовитель выполняет качественные устройства и продает их за небольшую цену в России. С помощью специального программного обеспечения можно произвести расчеты. Это позволит выжать из солнечной станции максимальный КПД.

Контролировать работу установки можно с помощью обычного мобильника.

Таким образом поставив нужный инвертор для солнечных батарей можно полностью не зависеть от стандартного электроснабжения.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору. Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Принцип работы

При отсутствии тока с солнечной батареи контроллер находится в спящем режиме. Он не использует ни одного вата из аккумулятора. После попадания солнечных лучей на панель электрический ток начинает поступать к контроллеру. Он должен включиться. Однако индикаторный светодиод вместе с 2 слабыми транзисторами включается только тогда, когда напряжение тока достигнет 10 В.

Отличный бюджетный контроллер заряда для солнечных батарей LMS2420 с сюрпризом внутри!Отличный бюджетный контроллер заряда для солнечных батарей LMS2420 с сюрпризом внутри!

После достижения такого напряжения ток будет проходить через диод Шоттки к аккумулятору. Если напряжение поднимется до 14 В, начнет работать усилитель U1, который откроет транзистор MOSFET. В результате светодиод погаснет, и состоится закрытие двух не мощных транзисторов. Аккумулятор заряжаться не будет. В это время будет разряжаться С2. В среднем на это уходит 3 секунды. После разрядки конденсатора С2 гистерезис U1 будет преодолен, MOSFET закроется, аккумулятор начнет заряжаться. Зарядка будет происходить до момента, когда напряжение поднимется до уровня переключения.

Зарядка происходит периодически. При этом ее продолжительность зависит от того, каким является зарядный ток аккумуляторной батареи, и насколько мощные подключенные к ней устройства. Зарядка длится до тех пор, пока напряжение не станет равным 14 В.

Схема включается за очень короткое время. На ее включение влияет время зарядки С2 током, который ограничивает транзистор Q3. Ток не может быть больше 40 мА.

Оборудование системы электроснабжения: ассортимент, характеристики

В предыдущей статье мы рассмотрели виды солнечных батарей. Но в системах генерации солнечной энергии эти элементы являются лишь первичными преобразователями. Для создания полноценной домашней электростанции нам понадобится такой комплект оборудования:

  • контроллер заряда аккумуляторной батареи
  • аккумуляторная батарея (АКБ)
  • инвертор напряжения

Контроллеры заряда АКБ бывают двух типов: ШИМ-контроллеры (PWM-контроллеры) и ОТММ-контроллеры (MPPT-контроллеры).

ШИМ-контроллер более простое и более дешевое устройство, управляющее зарядом АКБ. КПД ШИМ-контроллера обычно выше, чем у ОТММ-контроллера в силу того, что на начальном этапе зарядки он подключает аккумулятор практически напрямую к солнечной батарее без преобразования генерируемого напряжения. ОТММ-контроллеры рекомендуют использовать с модулями с нестандартным выходным напряжением от 28 В и выше.

Экономически оправданным использование ОТММ-контроллеров будет в системах генерации номинальной мощностью более 400 Вт. Еще одно основание для использования такого контроллера — проектирование солнечной станции для круглогодичной выработки электроэнергии. В пасмурные зимние дни при зарядке аккумуляторов ОТММ-контроллер проявит себя с лучшей стороны.

Аккумулятор в системе солнечного электроснабжения играет роль буфера, накапливающего электрическую энергию.

В отличие от всего остального оборудования гелиостанции аккумулятор является расходным элементом. Поэтому чем дольше он проработает без замены, тем меньше будет срок окупаемости приобретенных вами компонентов. Чтобы АКБ прослужила долго, нужно ответственно подойти к его выбору. Основные параметры АКБ, интересующие потенциального владельца, — это:

  • напряжение (Вольт, В) — в продаже есть аккумуляторы для солнечных батарей на напряжение 12, 24 и 48 В. Для небольших домашних станций мощностью 200–300 Вт вполне подходят АКБ на 12 В;
  • электрическая емкость (Ампер⋅час, А⋅ч) — характеризует количество электроэнергии, которую можно аккумулировать. Соответственно, чем больше этот параметр, тем больше электросистема может проработать в автономном режиме (в пасмурную погоду или в темное время суток);
  • уровень саморазряда (% от номинальной емкости) — чем ниже этот параметр, тем лучше АКБ.

Инвертор напряжения предназначен для преобразования постоянного напряжения аккумулятора в переменное напряжение сети 220 В, питающей бытовую нагрузку.

На рынке есть большой ассортимент инверторов, обладающих разнообразными функциями. Среди самых важных параметров следует отметить следующие:

  • мощность инвертора;
  • напряжение первичной цепи (напряжение подключаемого аккумулятора);
  • наличие встроенных защит (от перегрузки, от переполюсовки аккумулятора, от короткого замыкания в нагрузке, от чрезмерного разряда аккумулятора);
  • синусоидальность выходного напряжения (принципиально, если в подключаемой нагрузке есть двигатели, например, стиральные машины, холодильники, циркуляционные насосы, вентиляторы и т. п.).

Следует также отметить, что избыточное количество функций приводит лишь к удорожанию прибора и усложнению его настройки и эксплуатации.

К вопросу о линеаризации характеристики термистора

В процессе разработки схемы контроллера были исследованы различные варианты управления положением рабочей точкой контроллера при помощи измерения температуры панели. В одной из моделей использовалась более сложная схема термокомпенсации, основанная на суммирующем ОУ для сложения опорного напряжения с выходным напряжением температурного датчика на термисторе. Это решение не применяется в описываемом контроллере, но автор считает полезным упомянуть его в рамках данной статьи.

Рисунок 4. Схема линеаризации датчика температуры.

Наилучшая линеаризация выходного сигнала датчика получается при включении термистора по схеме, приведенной на Рисунке 4. Динамический диапазон изменения выходного сигнала сужается, чувствительность термистора при этом существенно не ухудшается, оставаясь постоянной в широком диапазоне температур.

Рисунок 5. График зависимости выходного напряжения
датчика от температуры.

В Таблице 1 и на Рисунке 5 приведены результаты компьютерного моделирования термисторного датчика температуры. Как мы можем видеть, в рабочем диапазоне температур выходной сигнал практически линеен.

Таблица 1. Зависимость выходного напряжения датчика
от температуры при Rt = 10 кОм
T Rt Re=Rt||10k UВЫХ
70 1.68 1.44 1.26
60 2.3 1.87 1.58
50 3.32 2.49 1.99
40 5 3.33 2.50
30 7.8 4.38 3.05
20 12.3 5.52 3.56
10 19.9 6.66 4.00
32 7.62 4.32

Внешний вид и конструкция контроллера показаны на Рисунке 6.

Рисунок 6. Конструкция контроллера солнечной панели.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.  

Три принципа построения контроллеров заряда

По принципу действия различают три типа солнечных контроллеров.Первый, самый простой тип – это устройство, выполненное по принципу «On/Off» («Вкл./Выкл.»). Схема такого аппарата представляет собой простейший компаратор, который включает или выключает цепь заряда в зависимости от значения напряжения на клеммах аккумулятора. Это самый простой и дешевый тип контроллеров, но и способ, которым он производит заряд, самый ненадежный. Дело в том, что контроллер отключает цепь заряда по достижении предельного значения напряжения на клеммах аккумуляторной батареи. Но при этом не происходит полного заряда банок. Максимально достигается не более 90% заряда от номинального значения. Вот такой постоянный недобор заряда значительно уменьшает работоспособность аккумулятора и срок его работы.

Вольт-амперная характеристика солнечного модуля

Второй тип контроллеров – это устройства, построенные по принципу ШИМ (широтно-импульсной модуляции). Это более сложные аппараты, в которых кроме дискретных компонентов схемы имеются уже и элементы микроэлектроники. Аппараты на базе ШИМ (англ. – PWM) осуществляют зарядку аккумуляторов ступенчато, выбирая оптимальные режимы заряда. Эта выборка производится автоматически и зависит от того, как глубоко разряжены АКБ. Контроллер повышает напряжение, одновременно понижая силу тока, обеспечивая тем самым полную зарядку аккумуляторной батареи. Большой недостаток ШИМ-контроллера – заметные потери в режиме зарядки аккумулятора – теряются до 40%.

ШИМ – контроллер

Третий тип – это контроллеры MPPT, то есть работающие по принципу отыскания точки максимальной мощности солнечного модуля. В процессе работы устройства этого типа используют максимально доступную мощность для любого режима заряда. По сравнению с другими, аппараты этого типа отдают на заряд аккумуляторных батарей примерно на 25% — 30% больше энергии, чем другие аппараты.

MPPT — контроллер

Заряд АКБ производится меньшим напряжением, чем это делают контроллеры других типов, но большей силой тока. Коэффициент полезного действия аппаратов MPPT достигает 90% — 95%.

Виды контроллеров

Существует три принципиально разных по принципу работу, но одинаковых по назначению

PWM контроллер

видов контроллеров заряда аккумуляторных батарей, это:

  1. On/Off контроллеры. Устройства данного вида применяются редко. Малое распространение данного вида устройств обусловлено тем, что при их использовании происходит неполный заряд АКБ, что в свою очередь отрицательно отражается на их состоянии и может привести к их полному выходу из строя.
  2. ШИМ (PWM) – контроллер. Аппараты данного вида после заряда АКБ не отключают солнечные батареи, это позволяет полностью зарядить АКБ. Устройства данного вида используются в установках мощностью до 2,0 кВт.
  3. МРРТ – контроллер. Это наиболее сложные устройства. Данный аппараты эффективны в работе, обладают большим набором настроек и элементам защиты. Использование устройств данного вида позволяет сократить сроки окупаемости солнечных электрических станций.

Требования к контроллеру

Если солнечные панели должны обеспечить энергией большое количество потребителей, самодельный гибридный контроллер заряда аккумуляторов не будет хорошим вариантом — по надежности он все же будет существенно уступать промышленному оборудованию. Однако для бытового применения микросхему собрать можно — схема ее несложна.

Он выполняет всего две задачи:

  • не дает батареям зарядиться сверх меры, что может привести к взрыву;
  • исключает полную разрядку аккумуляторов, после которой снова зарядить их становится невозможно.

Прочитав любой обзор дорогостоящих моделей, легко убедиться, что за громкими словами и рекламными лозунгами скрывается именно это. Придать микросхеме соответствующий функционал самостоятельно — задача выполнимая; главное — это применение качественных деталей, чтобы гибридный контроллер зарядабатарей от панелей не сгорел в процессе работы.

К качественному оборудованию, сделанному своими руками, предъявляются следующие требования:

  • оно должно работать по формуле 1,2P≤UxI, где P — мощность всех фотоэлементов в сумме, I — сила выходного тока, а U — напряжение в сети с пустыми элементами питания;
  • максимальное U на входе должно быть равно суммарному напряжению во всех батареях в простое.

Собирая устройство своими руками, необходимо прочитать обзор найденного варианта и убедиться, что его схема соответствует этим параметрам.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий