Крутизна передаточной характеристики

Светлое и оригинальное декорирование стены

Режимы работы биполярного транзистора

В зависимости от способа подключения р-n-переходов транзистора к внешним источникам питания он может работать в режиме отсечки, насыщения или активном режиме.

Режим отсечки

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный p-n-переходы подключены к внешним источникам в обратном направлении (рис. 5). В этом случае через оба p-n-перехода протекают очень малые обратные токи эмиттера () и коллектора (). В этом случае говорят, что
транзистор полностью закрыт или просто закрыт.

Рис. 5 — Транзистор в режиме отсечки

Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Режим насыщения

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения (рис. 6 ). Через эмиттер и коллектор транзистора потекут токи насыщения эмиттера () и коллектора (). Величина этих токов в много раз больше токов в режиме отсечки.

Рис. 6 — Транзистор в режиме насыщения

При этом ток коллектора перестаёт зависеть от тока базы. Он перестаёт
увеличиваться, даже если продолжать увеличивать ток базы. В этом случае
говорят, что транзистор полностью открыт или просто открыт. Чем глубже
мы уходим в область насыщения — тем больше ломается зависимость .
Внешне это выглядит так, как будто коэффициент β уменьшается.

Есть такое понятие, как коэффициент насыщения. Он
определяется как отношение реального тока базы (того, который у вас есть
в данный момент) к току базы в пограничном состоянии между активным
режимом и насыщением.

Режимы отсечки и насыщения используются при работе транзисторов в импульсных схемах и в режиме переключения.

Активный режим

При работе транзистора в активном режиме (нормальном активном режиме) эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях (рис. 7).

В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

Для токов коллектора и эмиттера выполняется соотношение:

Рис. 7 — Транзистор в активном режиме

Величина h21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h21Б=0,90…0,998. Активный режим используется при построении транзисторных усилителей.

Инверсный активный режим

Если на эмиттерном переходе обратное смещение, а на коллекторном — прямое, то транзистор попадает в инверсный активный режим. Этот режим является довольно экзотическим и используется редко.
Несмотря на то, что на рисунках эмиттер не отличается от коллектора и по сути они должны быть равнозначны, на самом деле у них есть конструктивные отличия (например в размерах) и равнозначными они не являются. Именно из-за этой неравнозначности и существует разделение на «нормальный активный режим» и «инверсный
активный режим».

Барьерный режим

Иногда ещё выделяют пятый, так называемый, «барьерный режим». В этом случае база транзистора
закорочена с коллектором. По сути правильнее было бы говорить не о
каком-то особом режиме, а об особом способе включения. Режим тут вполне
обычный — близкий к пограничному состоянию между активным режимом и
насыщением. Его можно получить и не только закорачивая базу с
коллектором. В данном конкретном случае при таком
способе включения, как бы мы не меняли напряжение питания или нагрузку —
транзистор всё равно останется в этом самом пограничном режиме. То есть
транзистор в этом случае будет эквивалентен диоду.

Крутизна — характеристика — триод

Крутизна характеристики триодов в зависимости от назначения лежит в пределах от 1 до 50 мА / В. Большинство маломощных триодов имеет крутизну от 1 до 10 мА / В.

Крутизна характеристики триода зависит от эмиссионной способности катода и от особенностей конструкции лампы.

Построение семейства анодных характеристик по семейству анодно-сеточиых характеристик.

Крутизна характеристики триодов в зависимости от их назначения лежит в пределах от 1 до 50 мА / В. Большинство маломощных триодов, предназначенных для усиления сигналов, имеет крутизну от 1 до 10 мА / В.

Крутизна характеристики триодов в зависимости от назначения лежит в пределах от 1 до 50 мА / В. Большинство маломощных триодов имеет крутизну от 1 до 10 мА / В.

Семейство анодных характеристик.| Определение параметров триода.

Крутизна характеристики триода представляет собой отношение изменения анодного тока к вызвавшему его изменению напряжения на управляющей сетке лампы при постоянном анодном напряжении.

Uc-7 в крутизна характеристики S триода 6С1П равна 2 25 ма / в, а внутреннее сопротивление переменному току Rt 11 6 ком.

Корректирование значения крутизны характеристики триода может быть осуществлено либо за счет изменения расстояния сетка — катод, либо изменением активной длины катода. В лампах с оксидными подогревными катодами изменение величины крутизны в пределах 10 — 15 % может быть достигнуто изменением длины оксидного покрытия. При этом следует исходить из того, что величина крутизны прямо пропорциональна активной длине катода.

Что называется крутизной характеристики триода.

Из сравнения ( 9 — 8) и ( 9 — 9) видно, что матрица Y ( не имеет симметрии относительно главной диагонали, причем нарушение симметрии вызвано наличием второй матрицы, отличные от нуля элементы которой равны крутизне S характеристики триода.

Продолжая эти рассуждения, убедимся, что в цепи анода сила тока / а, как показано на кривой Б, изменяется с частотой изменения напряжения на сетке. Амплитуда колебаний анодной силы тока зависит от крутизны характеристики триода и амплитуды напряжения, подаваемого на сетку.

Можно также вывести и использовать в особых случаях и другие константы, однако наиболее важными являются два определенных выше параметра. Они аналогичны двум динамическим характеристикам триода: kq0 — крутизне характеристики триода, kp0 — коэффициенту усиления.

ЭНИМС, которая имеет плавный диапазон настройки усилителя от 25 до 110 гц. Нулевой двойной Т — четырехполюсник с разделенными первичными и вторичной цепочками подключен к аноду усилительной лампы без катодного повторителя. Крутизна характеристики разделяющих триодов в рабочей точке равна Sp s 2 0 male.

Крутизна характеризует возможность управления анодным током изменением напряжения на управляющей сетке. Крутизна характеристики возрастает с уменьшением расстояния сетка — катод и увеличением площади катода и его эмиссионной способности. Обычно крутизна характеристики триода с термоэлектронным катодом не превышает 10 — 30 мА / В. Внутреннее сопротивление тем меньше, чем меньше расстояние катод-анод и чем менее плотно прилегают друг к другу витки управляющей сетки.

Характеристики биполярного транзистора.

Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.

И первая на очереди – входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:

I_{б} = f(U_{бэ}), \medspace при \medspace U_{кэ} = const

В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_{кэ}):

Входная характеристика, в целом, очень похожа на прямую ветвь . При U_{кэ} = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_{кэ} ветвь будет смещаться вправо.

Переходим ко второй крайне важной характеристике биполярного транзистора – выходной! Выходная характеристика – это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы. I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

I_{к} = f(U_{кэ}), \medspace при \medspace I_{б} = const

Для нее также указывается семейство характеристик для разных значений тока базы:

Видим, что при небольших значениях U_{кэ} коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения – изменение тока очень мало и фактически не зависит от U_{кэ} (зато пропорционально току базы). Эти участки соответствуют разным .

Для наглядности можно изобразить эти режимы на семействе выходных характеристик:

Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.

Для управления током базы мы увеличиваем напряжение U_{бэ}, что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано

Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_{кэ} (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно – при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta, несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:

I_к = \beta I_б

Двигаемся дальше!

На участке 2 транзистор находится в режиме насыщения. При уменьшении U_{кэ} уменьшается и напряжение на коллекторном переходе U_{кб}. И при определенном значении U_{кэ} = U_{кэ \medspace нас} напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина – эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.

В этом режиме основные носители заряда начинают двигаться из коллектора в базу – навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_{кэ} ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.

Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!

И, наконец, область 3, лежащая ниже кривой, соответствующей I_{б} = 0. Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.

Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_{FE}) от тока коллектора для биполярного транзистора BC847:

Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.

Мощные полевые транзисторы

В мощных полевых транзисторах квадратическая модель зависимости тока от управляющего напряжения действует только в области малых токов. В области больших токов эта зависимость принимает характер, близкий к линейному, с примерно постоянной крутизной характеристики S{\displaystyle S}. Паспортные её значения обычно приводятся в спецификациях для тока стока, равному половине предельно допустимого. Для высоковольтных (1 кВ и выше) транзисторов крутизна не превышает 1 См; у транзисторов, рассчитанных на меньшие напряжения, крутизна измеряется единицами или десятками См. Низковольтные транзисторы разработки XXI века, рассчитанные для работы при токах стока в сотни А, имеют крутизну в несколько сотен См в номинальном режиме; динамическая крутизна, измеряемая при коротких импульсах тока, может превышать тысячу См.

Для чего нужен полевой транзистор

При рассмотрении работы сложных видов электротехники, стоит рассмотреть работу такого важного компонента интегральной схемы, как полевой транзистор. Основная задача от использования данного элемента заключается в пяти ключевых направлениях, в связи с чем транзистор применяется для:

Основная задача от использования данного элемента заключается в пяти ключевых направлениях, в связи с чем транзистор применяется для:

  1. Усиления высокой частоты.
  2. Усиления низкой частоты.
  3. Модуляции.
  4. Усиления постоянного тока.
  5. Ключевых устройств (выключателей).

В качестве простого примера работа транзистора-выключателя, может быть представлена как микрофон и лампочка в одной компановке.  Благодаря микрофону улавливаются звуковые колебания, что влияет на появление электрического тока, поступающего на участок запертого устройства. Присутствие тока влияет на включение устройства и включение электрической цепи, к которой подключаются лампочки. Последние загораются после того как микрофон уловил звук, но горят они за счет источников питания не связанных с микрофоном и более мощных.

Модуляцию применяют с целью управления информационными сигналами. Сигналы управляют частотами колебаний. Модуляцию применяют для качественных звуковых радиосигналов, для передачи звуковых частот в телевизионные передачи, для трансляции цветовых изображений и телевизионных сигналов с высоким качеством. Модуляцию применяют повсеместно, где нужно проводить работу с высококачественными материалами.

Как усилители полевые транзисторы в упрощенном виде работают по такому принципу: графически любые сигналы, в частности, звукового ряда, могут быть представлены как ломаная линия, где ее длиной является временной промежуток, а высотой изломов – звуковая частотность. Чтобы усилить звук к радиодетали подается поток мощного напряжения, приобретаемого нужную частотность, но с более большим значением, из-за подачи слабых сигналов на управляющие контакты. Иначе говоря, благодаря устройству происходит пропорциональная перерисовка изначальной линии, но с более высоким пиковым значением.

Схемы включения полевых транзисторов

Полевой транзистор в каскаде усиления сигнала можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

Схема включения полевого транзистора с управляющим p-n-переходом с общим истоком

Схема включения полевого транзистора с управляющим p-n-переходом с общим стоком

Схема включения полевого транзистора с управляющим p-n-переходом с общим затвором

На практике в усилительных каскадах чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с общим эмиттером (ОЭ). Каскад с общим истоком даёт большое усиление по мощности. Но, с другой стороны, этот каскад наиболее низкочастотный из-за вредного влияния эффекта Миллера и существенной входной ёмкости затвор-исток (Сзи).

Схема с ОЗ аналогична схеме с общей базой (ОБ). В этой схеме ток стока равен току истока, поэтому она не даёт усиления по току, и усиление по мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет специфическое практическое применение в усилительной технике. Преимущество такого включения — практически полное подавление эффекта Миллера, что позволяет увеличить максимальную частоту усиления и такие каскады часто применяются при усилении СВЧ.

Каскад с ОС аналогичен каскаду с общим коллектором (ОК) для биполярного транзистора — эмиттерным повторителем. Такой каскад часто называют истоковым повторителем. Коэффициент усиления по напряжению в этой схеме всегда немного меньше 1, а коэффициент усиления по мощности занимает промежуточное значение между ОЗ и ОИ. Преимущество этого каскада — очень низкая входная паразитная ёмкость и его часто используют в качестве буферного разделительного каскада между высокоомным источником сигнала, например, пьезодатчиком и последующими каскадами усиления. По широкополосным свойствам этот каскад также занимает промежуточное положение между ОЗ и ОИ.

Области применения полевых транзисторов

КМОП-структуры, строящиеся из комплементарной пары полевых транзисторов с каналами разного (p- и n-) типа, широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят всё более широкое применение в различных радиоустройствах, где с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью. Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где с успехом заменяют биполярные транзисторы и электронные лампы. Биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие биполярные и полевые транзисторы, — находят применение в устройствах большой мощности, например в устройствах плавного пуска, где успешно вытесняют тиристоры.

Типы транзисторов

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.

В таблице ниже представлена цветовая маркировка транзисторов:

Цветовая маркировка транзисторов

Биполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами.

В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов. Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Слово “транзистор” составлено из слов TRANSfer и resISTOR – преобразователь сопротивления. Он пришел на смену лампам в начале 1950-х. Это прибор с тремя выводами, используется для усиления и переключения в электронных схемах.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость).

Таким образом формируют один из электродов транзистора, называемый базой. Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.

Классификация биполярных транзисторов.

Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам. Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.

Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Области применения полевых транзисторов

КМОП-структуры, строящиеся из комплементарной пары полевых транзисторов с каналами разного (p- и n-) типа, широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят всё более широкое применение в различных радиоустройствах, где с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью. Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где с успехом заменяют биполярные транзисторы и электронные лампы. Биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие биполярные и полевые транзисторы, — находят применение в устройствах большой мощности, например в устройствах плавного пуска, где успешно вытесняют тиристоры.

Крутизна — анодная характеристика

Крутизна анодной характеристики у экранированных ламп примерно такая же, как у триодов, а внутреннее сопротивление и коэффициент усиления значительно выше. Проходная емкость тетродов и пентодов не превышает единиц пикофарад.

Крутизна анодной характеристики диода определяется как отношение изменения анодного тока Л / а к вызвавшему его изменению анодного напряжения At / a: sA / a / At / a. Для современных диодов крутизна лежит в пределах от 1 до 50 мА / В, причем чем мощнее диод, тем больше его крутизна.

В, если крутизна анодной характеристики составляет на этом участке 5 мА / В.

Ко второй группе параметров относят крутизну анодной характеристики и внутреннее сопротивление диода переменному току, которые определяют связь между малыми изменениями напряжений и токов.

Внутреннее сопротивление лампы Rt обратно пропорционально крутизне анодной характеристики.

Внутреннее сопротивление лампы R; обратно пропорционально крутизне анодной характеристики. Поэтому, если анодное напряжение при работе тетрода или пентода изменяется в пределах, соответствующих пологому участку их анодной характеристики, то величина Rt достаточно велика и может превышать 1 Мом. На крутом участке анодной характеристики внутреннее сопротивление составляет лишь несколько килоом. В справочниках указывается значение R, соответствующее пологому участку характеристики.

Определить анодный ток при анодном напряжении 80 В, если крутизна анодной характеристики на участке изменения анодного напряжения от 60 до 80 В составляет Ъ мА / В.

Определить анодный ток при анодном напряжении 80 В, если крутизна анодной характеристики на участке изменения анодного напряжения от 60 до 80 В составляет 5 мА / В.

Формы пилообразного напряжения. а идеальная. б реальная.

В точке В шунтирующее действие сопротивления гек настолько уменьшается, а крутизна анодной характеристики настолько увеличивается, что лампа опять оказывается в нормальном усилительном режиме и вновь возникает положительная обратная связь. На участке ВГ уменьшающийся ток вызывает изменение знака эдс самоиндукции на анодной обмотке трансформатора. Изменяются также знаки напряжения на сеточной обмотке трансформатора. Лампа скачком запирается, и полный цикл колебаний на сетке завершается.

Основными параметрами диодов, характеризующими свойства большинства двухэлектродных ламп, являются крутизна анодной характеристики S, внутреннее сопротивление Ri, сопротивление постоянному току R0, междуэлектродные емкости, предельное обратное напряжение С / 0бр и максимальная мощность, рассеиваемая анодом, Рдмакс.

Так как анодная характеристика лампы нелинейна, то крутизна характеристики лампы, определяемая крутизной анодной характеристики, зависит от анодного напряжения.

Так как анодная характеристика лампы не является линейной, то крутизна лампы, определяемая крутизной анодной характеристики, зависит от анодного напряжения.

Импульсные диаграммы лампового блокинг-генератора.

В точке Б положительное сеточное напряжение перестает расти по двумя причинам. Вочвторых, при значительном положительном напряжении а управляющей сетке лаМ Пы крутизна анодной характеристики также резко падает, что приводит к снижению эдс самоиндукции в обмотках трансформатора.

1.1. Нелинейные элементы и их характеристики. Способы аппроксимации характеристик нелинейных элементов

В общем случае нелинейная цепь описывается оператором преобразования Wнц:

uвых(t) = Wнц[Uвх(t),t], (1.1)

для которого свойство линейности не выполняется. В состав такой цепи входят один или несколько нелинейных элементов (НЭ). Различают резистивные и реактивные НЭ. В качестве резистивных НЭ выступают транзисторы, полупроводниковые диоды, электронные лампы. Примером реактивного НЭ является варикап.

При анализе НЭ предполагается, что переходные процессы в НЭ заканчиваются практически с окончанием изменения входного сигнала, т.е. НЭ является безынерционным.

В подавляющем большинстве задач радиотехники рассматриваются резистивные безынерционные НЭ. В таких элементах в качестве входного сигнала выступает напряжение, а в качестве выходного – ток, протекающий по элементу. На Рис.1.1 показаны: нелинейный двухполюсник – полупроводниковый диод и четырехполюсник, которым может быть представлен транзистор. Основной характеристикой НЭ является его вольт-амперная характеристика (ВАХ), т.е. зависимость тока, протекающего через НЭ, от приложенного к нему напряжения:

Другими характеристиками НЭ являются (Рис 1.2):

– статическое сопротивление или сопротивление НЭ по постоянному току:

, (1.2)

– статическая крутизна:

, (1.3)

– дифференциальное сопротивление:

, (1.4)

– дифференциальная крутизна:

. (1.5)

Статическая крутизна пропорциональна тангенсу угла α, а динамическая тангенсу угла β – угла наклона касательной ВАХ в рабочей точке.

Замена истинной (реальной) ВАХ приближенно представляющей функцией называется аппроксимацией характеристики.

Степенная аппроксимация – представление ВАХ в виде ряда Тейлора в окрестности рабочей точки (I, U):

i=f(u)=a+a1(u-U)+a2(u-U)2+… (1.6)

Кусочно-линейная аппроксимация – представление ВАХ отрезками прямых с различными наклонами. На практике ограничиваются двумя отрезками:

(1.7)

Здесь – напряжение начала характеристики;

– крутизна наклона характеристики;

Аппроксимации (1.6) и (1.7) показаны на Рис. 1.3.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий