Arduino shields

Двигатели и Ардуино

Одной из ниш применения микроконтроллеров всегда были роботизированные приборы, для которых обязательно нужны драйверы, управляющие двигателями.

В нише Ардуино разработан целый класс таких устройств, предназначенных для установки в качестве шилда, с целью прямого контактного подключения двигателей. Примером может служить Motor Shield, предназначенный для контроля четырех фазовых моторов постоянного тока или пары шаговых.
Motor Shield

Основа устройства – две мостовых микросхемы L293, контактные группы портов которых в точках подключения к Ардуино демонстрируются далее:
Схема подключения Motor Shield

В верхнем левом углу можно видеть входы группы контроля, в которые поступает плюс, минус и управляющий сигнал. Где помечено стрелкой, обычно размещается перемычка, указывающая устройству, откуда оно берет энергию – от самой Ардуино или внешнего питания. Обычно в схеме используется напряжение 5В.

Для применения шилда с 4-мя фазовыми двигателями выполняется немного другой их монтаж с этой платой:
Подключение фазовых двигателей к Motor Shield

Основная библиотека для управления – AFMotor.

Есть вариант исполнения от российского изготовителя. Его основное отличие – только одна мостовая L298, что соответственно уменьшает возможности устройства. Коммутация выполняется или одного шагового двигателя, или двух фазовых.

Плюсом можно назвать их поддерживаемую мощность – в параллельном режиме доступно питать 4-амперный мотор, рассчитанный на работу от 24В.
Шилд управления двигателями от Амперки

Это еще не все, что относится к контролю моторов. Часто применяются роботизированные сборки, в которых намного больше, чем пара двигателей. Для них соответственно требуется много серво-шилдов. Большое их количество вполне заменит универсальный Multi Servo Shield. Его схема подключения:
Multi Servo Shield

Конечно, устройство не блещет мощностью подключаемых моторов, но его плюс в их количестве. Можно использовать аж 24 штуки.

Исходный код программы

Чтобы в программе подключить ЖК дисплей к ARDUINO UNO, необходимо сделать следующие несколько вещей:

Arduino

#include <LiquidCrystal.h>
lcd.begin(16, 2);
LiquidCrystal lcd(0, 1, 8, 9, 10, 11);
lcd.print(«hello, world!»);

1
2
3
4

#include <LiquidCrystal.h>

lcd.begin(16,2);

LiquidCrystallcd(,1,8,9,10,11);

lcd.print(«hello, world!»);

В первую очередь мы должны подключить заголовочный файл (‘#include <LiquidCrystal.h>’), в котором находятся все необходимые инструкции для взаимодействия с ЖК дисплеем, что значительно упростит взаимодействие с ним в 4 битном режиме. Используя этот заголовочный файл нам не нужно будет передавать в ЖК дисплей бит за битом и нам не нужно будет самим программировать какие-либо функции для взаимодействия с ЖК дисплеем.

Во второй строчке мы должны сказать плате ARDUINO UNO какой тип ЖК дисплея мы собираемся использовать, поскольку существует достаточно большое число типов подобных дисплеев, например, 20×4, 16×2, 16×1 и т.д. В нашем проекте мы собираемся подключать к ARDUINO UNO ЖК дисплей 16х2, поэтому мы и должны записать команду ‘lcd.begin(16, 2);’. А если бы мы подключали ЖК дисплей 16х1, то в этом случае изменилась бы и команда соответствующим образом — ‘lcd.begin(16, 1);’.

В следующей инструкции мы сообщаем плате ARDUINO UNO к каким контактам мы подсоединили ЖК дисплей. В нашем случае мы использовали контакты ЖК дисплея “RS, En, D4, D5, D6, D7”, которые подсоединены к контактам «0, 1, 8, 9, 10, 11» ARDUINO UNO, поэтому и приведенная команда выглядит следующим образом — “LiquidCrystal lcd(0, 1, 8, 9, 10, 11);”.

Для того, чтобы напечатать на экране дисплея строку символов, мы использовали команду lcd.print(«hello, world!»), которая выводит на экран дисплея строку ‘hello, world!’.

Как мы видим из представленного кода, нам не нужно заботиться больше ни о каких аспектах взаимодействия с ЖК дисплеем, нам нужно просто инициализировать ЖК дисплей в программе и тогда плата ARDUINO UNO будет готова к отображению информации на экране дисплея.

Далее представлен исходный код программы (с комментариями) для взаимодействия платы ARDUINO UNO с ЖК дисплеем 16х2.

Arduino

#include <LiquidCrystal.h> // инициализируем библиотеку для взаимодействия с ЖК дисплеем
LiquidCrystal lcd(0, 1, 8, 9, 10, 11); /// сообщаем Arduino номера контактов, к которым подключен ЖК дисплей — REGISTER SELECT PIN,ENABLE PIN,D4 PIN,D5 PIN, D6 PIN, D7 PIN
void setup()
{
// устанавливаем число столбцов и строк для ЖК дисплея
lcd.begin(16, 2);
}

void loop()
{
// устанавливаем курсор в нулевой столбец первой строки
lcd.print(» CIRCUIT DIGEST»); //печатаем строку
lcd.setCursor(0, 1); // устанавливаем курсор в нулевой столбец второй строки
lcd.print(«http://www.circuitdigest.com/»);//печатаем строку
delay(750); //задержка на 0.75 сек
lcd.scrollDisplayLeft();// переключаем данные на ЖК дисплее
lcd.setCursor(0, 0);// устанавливаем курсор в нулевой столбец первой строки
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#include <LiquidCrystal.h> // инициализируем библиотеку для взаимодействия с ЖК дисплеем

LiquidCrystallcd(,1,8,9,10,11);/// сообщаем Arduino номера контактов, к которым подключен ЖК дисплей — REGISTER SELECT PIN,ENABLE PIN,D4 PIN,D5 PIN, D6 PIN, D7 PIN

voidsetup()

{

// устанавливаем число столбцов и строк для ЖК дисплея  

lcd.begin(16,2);

}

voidloop()

{

// устанавливаем курсор в нулевой столбец первой строки  

lcd.print(»   CIRCUIT DIGEST»);//печатаем строку

lcd.setCursor(,1);// устанавливаем курсор в нулевой столбец второй строки  

lcd.print(«http://www.circuitdigest.com/»);//печатаем строку

delay(750);//задержка на 0.75 сек

lcd.scrollDisplayLeft();// переключаем данные на ЖК дисплее

lcd.setCursor(,);// устанавливаем курсор в нулевой столбец первой строки  

}

LCD Keypad Shield для Arduino

Популярная плата расширения для Arduino, с не менее популярным текстовым экраном WH1602A и несколькими кнопками.

Характеристики:

  • Текстовый LCD экран WH1602A с возможностью регулировки контрастности и яркости подсветки.
  • Резистивная клавиатура из пяти кнопок и кнопка Reset.
  • Дополнительные «штырьки» для подключение периферии, разъем ICSP.

Подключение:

Совместим со всеми arduino совместимыми платами,которые имеют стандартное для arduino подключение шилдов, за одним небольшим исключением, разъем ICSP на шилде не дублирует ICSP платы, а соединен с 11, 12 и 13 цифровыми выходами, работать он будет с платами серии UNO.

Резистивная клавиатура подключена к аналоговому входу А0, клавиатура представляет собой делитель напряжения с группой резисторов, сопротивление делителя и напряжение на входе А0 зависит от нажатой кнопки. Более подробно на схеме ниже.

Все задействованные выходы, включая выходы LCD экрана указаны в таблице ниже.

Пин Функция
A0 Резистивная клавиатура, кнопки select, up, right, down and left
D4 LCD 1602 — DB4
D5 LCD 1602 — DB5
D6 LCD 1602 — DB6
D7 LCD 1602 — DB7
D8 LCD 1602 — RS
D9 LCD 1602 — Enable
D10 Управление подсветкой LCD 1602

Основные элементы шилда:

Дополнительные штырьки для подключения периферии, обычно не распаяны.

Пример для работы с шилдом от производителя:

Элементы платы

Дисплей

Дисплей MT-16S2H-I умеет отображать все строчные и прописные буквы латиницы и кириллицы, а также типографские символы. Для любителей экзотики есть возможность создавать собственные иконки.

Экран выполнен на жидкокристаллической матрице, которая отображает 2 строки по 16 символов. Каждый символ состоит из отдельного знакоместа 5×8 пикселей.

Контроллер дисплея

Матрица индикатора подключена к встроенному чипу КБ1013ВГ6 с драйвером расширителя портов, которые выполняют роль посредника между экраном и микроконтроллером.

Контроллер КБ1013ВГ6 аналогичен популярным чипам зарубежных производителей HD44780 и KS0066, что означает совместимость со всеми программными библиотеками.

I²C-расширитель

Для экономии пинов микроконтроллера на плате дисплея также распаян дополнительный преобразователь интерфейсов INF8574A: микросхема позволит общаться экрану и управляющей плате по двум проводам через интерфейс I²C.

Контакты подключения

На плате дисплея выведено 18 контактов для подведения питания и взаимодействия с управляющей электроникой.

Вывод Обозначение Описание
1 GND Общий вывод (земля)
2 VCC Напряжение питания (5 В)
3 VO Управление контрастностью
4 RS Выбор регистра
5 R/W Выбор режима записи или чтения
6 E Разрешение обращений к индикатору (а также строб данных)
7 DB0 Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме)
8 DB1 Шина данных (8-ми битный режим)
9 DB2 Шина данных (8-ми битный режим)
10 DB3 Шина данных (8-ми битный режим)
11 DB4 Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12 DB5 Шина данных (8-ми и 4-х битные режимы)
13 DB6 Шина данных (8-ми и 4-х битные режимы)
14 DB7 Шина данных (8-ми и 4-х битные режимы)
15 LED+ Питания подсветки (+)
16 LED– Питания подсветки (–)
17 SDA Последовательная шина данных
18 SCL Последовательная линия тактированния

Обратите внимания, что физические контакты подсветки экрана и , также интерфейс шины I²C и расположены не в порядком соотношении с другими пинами экрана.

Питание

Экран совместим со всеми контроллерами с логическим напряжением от 3,3 до 5 вольт. Но для питания самого индикатора (пин VCC) необходимо строго 5 вольт

Если в вашем проекте нет линии 5 вольт, обратите внимание на дисплей текстовый экран 16×2 / I²C / 3,3 В.

Интерфейс передачи данных

Дисплей может работать в трёх режимах:

  • 8-битный режим — в нём используются и младшие и старшие биты (-)
  • 4-битный режим — в нём используются только младшие биты (-)
  • I²C режим — данные передаются по протоколу I²C/TWI. Адрес дисплея .

Использовать восьмибитный и четырёхбитный режим в данном дисплее не целесообразно. Ведь главное достоинство этой модели именно возможность подключения через I²C.
Если всё-таки есть необходимость использовать 4-битный или 8-битный режим, читайте документацию на текстовый экран 16×2.

Объединение питания

Для подключения питания к дисплею необходимо пять контактов:

Вывод Обозначение Описание
1 GND Общий вывод (земля)
2 VCC Напряжение питания (5 В)
3 VO Управление контрастностью
15 LED+ Питания подсветки (+)
16 LED– Питания подсветки (–)

Но если запаять перемычки и на обратной стороне дисплея, количество контактов питания можно сократить до трёх, объединив цепь питания и подсветки дисплея.

Мы взяли этот шаг на себя и спаяли перемычки самостоятельно.

Выбор адреса

Используя шину можно подключить несколько дисплеев одновременно, при этом количество занятых пинов останется прежним.

Для общения с каждым дисплеем отдельно, необходимо установить в них разные адреса. Для смены адреса на обратной стороне дисплея установлены контактные площадки , и .

Капнув припоем на контактные площадки, мы получим один из семи дополнительных адресов:

  • нет припоя, соответственно нет электрического контакта.
  • есть припой, соответственно есть электрический контакт.
J2 J1 J0 Адрес
L L L 0x38
L L H 0x39
L H L 0x3A
L H H 0x3B
H L L 0x3C
H L H 0x3D
H H L 0x3E
H H H 0x3F

Подключение Arduino Shields

Для подключения шилда нужно просто аккуратно «надеть» его на основную плату. Обычно контакты шилда типа гребенки (папа) легко вставляются в разъемы платы ардуино. В некоторых случаях требуется аккуратно подправить штырки, если сама плата спаяна неаккуратно. Тут главное действовать аккуратно и не прилагаться излишней силы.

Как правило, шилд предназначен для вполне конкретной версии контроллера, хотя, например, многие шилды для Arduino Uno вполне нормально работают с платами Arduino Mega. Распиновка контактов на меге выполнена так, что первые 14 цифровых контактов и контакты с противоположной стороны платы совпадают с расположением контактов на UNO, поэтому  в нее легко становится шилд от ардуино.

Управление подсветкой

По умолчанию разработчики шилда считают, что вы постоянно будете использовать подсветку. Однако вы можете управлять ее яркость с помощью ШИМ выходов или вообще выключать для экономии энергии. Для этого вам понадобится немного потрудиться. Найдите на задней стороне TFT LCD шилда 2.8″ два коннектора подсветки. С помощью ножа уберите дорожку между клемами VCC и соедините два квадрата, обозначенных Pin3. После этого вы сможете управлять подсветкой с использованием цифрового пина 3.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Зачем нужны шилды arduino?

Все очень просто: 1) для того, чтобы мы экономили время, и 2) кто-то смог заработать на этом. Зачем тратить время, проектируя, размещая, припаивая и отлаживая то, что можно взять уже в собранном варианте, сразу начав использовать? Хорошо продуманные и собранные на качественном оборудовании платы расширения, как правило, более надежны и занимают меньше места в конечном устройстве. Это не значит, что нужно полностью отказываться от самостоятельной сборки и не нужно разбираться в принципе действия тех или иных элементов. Ведь настоящий инженер всегда старается понять, как работает то, что он использует

Но мы сможем делать более сложные устройства, если не будем каждый раз изобретать велосипед, а сосредоточим свое внимание на том, что до нас еще мало кто решал

Естественно, за возможности приходится платить. Практически всегда стоимость конечного шилда будет выше цены отдельных комплектующих, всегда можно сделать аналогичный вариант подешевле. Но тут уже решать вам, насколько критично для вас потраченные время или деньги. С учетом посильной помощи китайской промышленности, стоимость плат постоянно снижается, поэтому чаще всего выбор делается в пользу использования готовых устройств.

Наиболее популярным примерами шилдов являются платы расширения для работы с датчиками,  двигателями, LCD-экранами, SD-картами, сетевые и GPS-шилды, шилды со встроенными реле для подключения к нагрузке.

Библиотеки для работы с i2c LCD дисплеем

Для взаимодействие Arduino c LCD 1602 по шине I2C вам потребуются как минимум две библиотеки:

  • Библиотека Wire.h для работы с I2C уже имеется в стандартной программе Arduino IDE.
  • Библиотека LiquidCrystal_I2C.h, которая включает в себя большое разнообразие команд для управления монитором по шине I2C и позволяет сделать скетч проще и короче. Нужно дополнительно установить библиотеку После подключения дисплея нужно дополнительно установить библиотеку LiquidCrystal_I2C.h

После подключения к скетчу всех необходимых библиотек мы создаем объект и можем использовать все его функции. Для тестирования давайте загрузим следующий стандартный скетч из примера.

#include <Wire.h> 
#include <LiquidCrystal_I2C.h> // Подключение библиотеки
//#include <LiquidCrystal_PCF8574.h> // Подключение альтернативной библиотеки

LiquidCrystal_I2C lcd(0x27,16,2); // Указываем I2C адрес (наиболее распространенное значение), а также параметры экрана (в случае LCD 1602 - 2 строки по 16 символов в каждой 
//LiquidCrystal_PCF8574 lcd(0x27); // Вариант для библиотеки PCF8574 

void setup()
{
  lcd.init();                      // Инициализация дисплея  
  lcd.backlight();                 // Подключение подсветки
  lcd.setCursor(0,0);              // Установка курсора в начало первой строки
  lcd.print("Hello");       // Набор текста на первой строке
  lcd.setCursor(0,1);              // Установка курсора в начало второй строки
  lcd.print("ArduinoMaster");       // Набор текста на второй строке
}
void loop()
{
}


Описание функций и методов библиотеки LiquidCrystal_I2C:

  • home() и clear() – первая функция позволяет вернуть курсор в начало экрана, вторая тоже, но при этом удаляет все, что было на мониторе до этого.
  • write(ch) – позволяет вывести одиночный символ ch на экран.
  • cursor() и noCursor() – показывает/скрывает курсор на экране.
  • blink() и noBlink() – курсор мигает/не мигает (если до этого было включено его отображение).
  • display() и noDisplay() – позволяет подключить/отключить дисплей.
  • scrollDisplayLeft() и scrollDisplayRight() – прокручивает экран на один знак влево/вправо.
  • autoscroll() и noAutoscroll() – позволяет включить/выключить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.
  • leftToRight() и rightToLeft() – Установка направление выводимого текста – слева направо или справа налево.
  • createChar(ch, bitmap) – создает символ с кодом ch (0 – 7), используя массив битовых масок bitmap для создания черных и белых точек.

Альтернативная библиотека для работы с i2c дисплеем

В некоторых случаях при использовании указанной библиотеки с устройствами, оснащенными контроллерами PCF8574 могут возникать ошибки. В этом случае в качестве альтернативы можно предложить библиотеку LiquidCrystal_PCF8574.h. Она расширяет LiquidCrystal_I2C, поэтому проблем с ее использованием быть не должно.

Скачать библиотеку можно на нашем сайте. Библиотека также встроена в  последние версии Arduino IDE.

Игра на Ардуино с дисплеем LCD I2C

Для этого проекта нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • жидкокристаллический дисплей с I2C;
  • одна тактовая кнопка и резистор;
  • пьезодинамик;
  • провода «папа-папа», «папа-мама».

Arduino Game. Схема сборки игры на Ардуино

Вместо подключения кнопки к Ардуино через резистор на макетной плате можно использовать модуль с кнопкой. Пьезодинамик (пьезоизлучатель) подключается к плате при желании, можно обойтись и без него. Соберите схему, как на картинке выше, и загрузите следующий скетч. Скачать программу для игры «Дракончик» на Arduino с жк дисплеем можно здесь. Скорость игры и звуки можно изменить в программе.

Скетч для игры «Дракончик» на дисплее

#include <Wire.h>                             // библиотека для протокола IIC
#include <LiquidCrystal_I2C.h>        // подключаем библиотеку LCD IIC
LiquidCrystal_I2C LCD(0x27, 20, 2); // присваиваем имя lcd для дисплея

int level = 1;       // переменная для отсчета уровня
int pause = 400; // переменная для задержки
byte p = 0;          // переменная для времени прыжка

// создаем массивы дракончика, дерева, камня и птицы
byte dracon = {
 0b01110, 0b11011, 0b11111, 0b11100, 0b11111, 0b01100, 0b10010, 0b11011
};
byte derevo = {
 0b00000, 0b00000, 0b00000, 0b11011, 0b11011, 0b11011, 0b01100, 0b01100
};
byte kamen = {
 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b00000, 0b01110, 0b11111
};
byte ptica = {
 0b00100, 0b00101, 0b01111, 0b11111, 0b10100, 0b00100, 0b00000, 0b00000
};

void setup() {
 pinMode (10, OUTPUT); // подключаем пьезодинамик
 pinMode (A1, INPUT);     // подключаем кнопку
 analogWrite(A1, LOW);
 LCD.init();                        // инициализация LCD дисплея
 LCD.backlight();              // включение подсветки дисплея

 // создаем символы дракончика, дерева, камня и птицы
 LCD.createChar(0, dracon);
 LCD.createChar(1, derevo);
 LCD.createChar(2, kamen);
 LCD.createChar(3, ptica);

 // начинаем игру: выводим надпись GO!
 LCD.setCursor(7, 0);
 LCD.print("GO!");
 delay(400);
 tone(10, 600);
 delay(100);
 noTone(10);
 LCD.clear();
}

void loop() {
  // первоначальное положение дракончика и препятствия
  byte d = 1;
  byte x = 15;
  byte y = 1;
  // выбираем препятствие, которое появится, рандомно
  byte i = random (1, 4);
  if (i == 3) y = 0;
  else y = 1;

  while (x > 0) {
    // очищаем экран и выводим номер уровня
    LCD.clear();
    LCD.setCursor(0, 0);
    LCD.print(level);

    // считываем данные с кнопки и учитываем количество циклов в прыжке
    // если дакончик находится в прыжке долго - возвращаем его вниз
    if (digitalRead(A1) == LOW) d = 1;
    if (digitalRead(A1) == HIGH) d = 0;
    if (p > 3) d = 1;

    // выводим дракончика в нужной строке
    LCD.setCursor(4, d);
    LCD.print(char(0));
    // выводим препятствие
    LCD.setCursor(x, y);
    tone(10, 50);
    LCD.print(char(i));
    noTone(10);

    // если дракончик наткнулся на препятствие выводим надпись GAME OVER!
    if (x == 4 && y == d) {
      delay(400);
      tone(10, 50);
      delay(100);
      noTone(10);
      delay(100);
      tone(10, 20);
      delay(300);
      noTone(10);
      LCD.clear();
      delay(200);
      LCD.setCursor(3, 0);
      LCD.print("GAME OVER!");
      delay(600);
      LCD.clear();
      delay(400);
      LCD.setCursor(3, 0);
      LCD.print("GAME OVER!");
      delay(600);
      LCD.clear();
      LCD.setCursor(3, 1);
      LCD.print("LEVEL: ");
      LCD.print(level);
      delay(400);
      LCD.setCursor(3, 0);
      LCD.print("GAME OVER!");
      delay(3000);
      LCD.clear();

      // начинаем игру заново, обнулив уровень игры
      LCD.setCursor(7, 0);
      LCD.print("GO!");
      delay(400);
      tone(10, 600);
      delay(100);
      noTone(10);
      LCD.clear();

      level = 0;
      pause = 400;
      p = 0;
      y = 1;
      x = 0;
      break;
    }

    // если дракончик прыгнул, издаем звук
    if (d == 0) { tone(10, 200); delay(100); noTone(10); }
    else { delay(100); }

    // если дракончик не столкнулся, то меняем положение препятствия
    // начинаем считать сколько циклов дракончик находится в прыжке
    delay(pause);
    x = x - 1;
    p = p + 1;
    if (p > 4) p = 0; 
 }

  // переходим на следующий уровень и сокращаем время задержки
  tone(10, 800);
  delay(20);
  level = level + 1;
  pause = pause - 20;
  if (pause < 0) pause = 0;
}

Подключение платы LCD Shield к Arduino

Подключение шилда очень простое – нужно попасть ножками в соответствующие разъемы платы ардуино и аккуратно совместить их. Ничего дополнительно подсоединять или припаивать не надо. Нужно помнить и учитывать тот факт, что часть пинов зарезервированы для управления дисплеем и кнопками и не может быть использована для других нужд! Для удобства подключения дополнительного оборудования на плате выведены дополнительные разъемы 5В и GND к каждой контактной площадке аналоговых пинов. Это, безусловно, упрощает работу с датчиками. Также можно подключать цифровые устройства через свободные пины 0-3 и 11-13. Подключив шилд, мы можем работать с экраном и кнопками на нем так же, как с отдельными устройствами, учитывая только номера пинов, к которым припаяны соответствующие контакты.

Технические характеристики LCD Keypad Shield

LCD Keypad Shield имеет следующие характеристики :

  • Работа дисплея: в 4 битном режиме
  • 5 активных кнопок и 1 кнопка перезагрузки контроллера
  • Максимально разрешение экрана 16×2
  • Для питания шилда необходимо 5 Вольт
  • Частота обновления экрана до 5 Гц

При подключении shielda к Arduino пины «4», «5», «6», «7», «8», «9» будут задействованы для управления LCD дисплея. На аналоговый пин «0» считываются сигналы с кнопок, которые различаются за счет резисторов разного сопротивления. Для управления яркостью и подсветкой шилда используется цифровой пин «10».

Ниже на фотографии показана схема соединения самого шилда. Эта схема нам поможет разобраться в том, как работает LCD Keypad Shield.

Загрузка рисунков

На TFT LCD дисплее 2.8″ дюйма есть встроенный слот для micoSD карты. Этот слот можно использовать для загрузки изображений! Предварительно отформатируйте карту в FAT32 или FAT16 ( более детально особенности работы SD карты с Arduino отображены здесь).

В большинстве скетчей-примеров SD карта не будет работать. Необходимо ее предварительно инициализировать.

Если вы пользуетесь Arduino Mega, внесите некоторые правки в файл SD/utility/Sd2Card.h. Надо снять тег комментария со строки #define MEGA_SOFT_SPI 1. Благодаря этому для обмена данными с SD картой, Arduino Mega сможет использовать те же пины, что и классические Arduino. Для тестировки можете загрузить это изображение тигра: Download this tiger bitmap and save it to the microsd card!

Запустите Arduino IDE и выберите скетч tftbmp_shield. Загрузите его на Arduino и вуаля! На экране отобразится следующее:

Для загрузки подойдут изображения, размер которых меньше 240х320 пикселей. Рисунки надо сохранять в 24-битном BMP формате. Даже если изначально рисунок не имел 24 бита, пересохраните его, так как это самый легкий формат для чтения с помощью Arduino. Можно поворачивать рисунки с использованием процедуры setRotation().

Технические характеристики LCD Keypad Shield

LCD Keypad Shield имеет следующие характеристики :

  • Работа дисплея: в 4 битном режиме
  • 5 активных кнопок и 1 кнопка перезагрузки контроллера
  • Максимально разрешение экрана 16×2
  • Для питания шилда необходимо 5 Вольт
  • Частота обновления экрана до 5 Гц

При подключении shielda к Arduino пины «4», «5», «6», «7», «8», «9» будут задействованы для управления LCD дисплея. На аналоговый пин «0» считываются сигналы с кнопок, которые различаются за счет резисторов разного сопротивления. Для управления яркостью и подсветкой шилда используется цифровой пин «10».

Ниже на фотографии показана схема соединения самого шилда. Эта схема нам поможет разобраться в том, как работает LCD Keypad Shield.

Скетч для экрана на Arduino LCD shield

Для работы с LCD экранами обычно используют популярную библиотеку LiquidCrystal . На этапе инициализации создается объект класса LiquidCrystal, в конструкторе которого мы указываем пины с подключенными контактами экрана. Для нашего шилда требуется использовать такой вариант: LiquidCrystal lcd(8, 9, 4, 5, 6, 7); Последовательность аргументов конструктора:

Ничего сложного в работе с объектом нет. В setup() мы инициализируем объект, указывая ему количество символов и строк:

Для вывода информации на дисплей используем метод print():

Текст выведется в место текущего нахождения курсора (в начале работы скетча это первая строка и первый символ). Для указания произвольного положения курсора можно использовать функцию setCursor( , ):

Arduino Motor Shield

Данный шилд ардуино очень важен в робототехнических проектах, т.к. позволяет подключать к плате Arduino сразу обычный и серво двигатели. Основная задача шилда – обеспечить управление устройствами потребляющими достаточно высокий для обычной платы ардуино ток. Дополнительным возможностями платы является функция управления мощностью мотора (с помощью ШИМ) и изменения направления вращения.  Существует множество разновидностей плат motor shield. Общим для всех них является  наличие в схеме мощного транзистора, через который подключается внешняя нагрузка,   теплоотводящих элементов (как правило, радиатора), схемы для подключения внешнего питания, разъемов для подключения двигателей и пины для подключения к ардуино.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий