Тепловая мощность

Содержание

Второй вариант.

(см. рисунок 4).

Абсолютная влажность воздуха или влагосодержание наружного воздуха — dH„Б“, меньше влагосодержания приточного воздуха — dП

dH„Б“ П г/кг.

1. В этом случаи необходимо охлаждать наружный приточный воздух — (•) Н на J-d диаграмме, до температуры приточного воздуха.

Процесс охлаждения воздуха в поверхностном воздухоохладителе на J-d диаграмме будет изображаться прямой линией НО. Процесс будет происходить с уменьшением теплосодержания — энтальпии, уменьшением температуры и увеличением относительной влажности наружного приточного воздуха. При этом влагосодержание воздуха остаётся неизменным.

2. Для того чтобы попасть из точки — (•) О, с параметрами охлаждённого воздуха в точку — (•) П, с параметрами приточного воздуха, необходимо воздух увлажнить паром.

При этом температура воздуха остаётся неизменной — t = const, и процесс на J-d диаграмме будет изображаться прямой линией — изотермой.

Принципиальная схема обработки приточного воздуха в тёплый период года — ТП, для 2-го варианта, случай а, смотри на рисунок 5.

(см. рисунок 6).

Абсолютная влажность воздуха или влагосодержание наружного воздуха — dH„Б“, больше влагосодержания приточного воздуха — dП

dH„Б“ > dП г/кг.

1. В этом случаи необходимо «глубоко» охлаждать приточный воздух. Т. е. процесс охлаждения воздуха на J — d диаграмме вначале будет изображаться прямой линией с постоянным влагосодержанием — dН = const, проведённой из точки с параметрами наружного воздуха — (•) Н, до пересечения с линией относительной влажности — φ = 100%. Полученная точка называется — точка росы — Т.Р. наружного воздуха.

2. Далее процесс охлаждения от точки росы пойдет по линии относительной влажности φ = 100% до конечной точки охлаждения — (•) О. Численное значение влагосодержания воздуха с точке (•) О равно численному значению влагосодержания воздуха в точке притока — (•) П.

3. Далее необходимо нагреть воздух от точки — (•) О, до точки приточного воздуха — (•) П. Процесс нагревания воздуха будет происходить с постоянным влагосодержанием.

Принципиальная схема обработки приточного воздуха в тёплый период года — ТП, для 2-го варианта, случай б, смотри на рисунок 7.

Т2Е35=0,87;

Конвекторные обогреватели для отопления домов

Потребляемая мощность конвекторного обогревателя не может быть снижена относительно расчетной, однако начнёт совпадать с ситуацией, смоделированной при помощи компьютерных программ. Конвекторы хороши на замену радиаторам центрального отопления, чтобы вешать под подоконники. Это обусловлено и формой приборов, и кронштейнами на корпусе.

Уместно напомнить, что выступ подоконника не должен превышать 5 см над стеной, иначе поток теплого воздуха не сумеет эффективно нагревать помещение.

Деревянные заметно прогреваются, начинают функционировать в качестве обогревателей, поднимая температуру сквозняков. Упомянули, что утечки зависят прямо пропорционально от разницы температур по обе стороны плоскости. С нашей стороны стены начинают прогреваться радиатором:

  • Выкидываем деньги на улицу (расчетный режим обеспечивается неполностью).
  • Точка росы отодвигается наружу, что полезно для здания, но не всегда нужно.

Не преграждайте путь потокам воздуха, и мощность обогревателя будет максимально полно отдаваться комнате.Рассмотрим от чего зависит мощность. В паспорте указываются ватты, считаем, что такое значение и передается комнате. В реальности измерения проводят в нормальных условиях – температура 20ºС, влажность в области 50%, стандартное давление. При падении температуры комнаты, мощность, отдаваемая горячим телом, растет пропорционально разнице. Работает закон, описывающий теплопотери.

Если обогреватель масляный, спираль будет работать при щадящих режимах, если обеспечен отвод тепла. Чтобы понять момент, вспомните ветродувки. У них спирали обдуваются вентилятором для интенсификации передачи тепла, чтобы нихром не сгорел на воздухе. Не можем поменять тепловой эффект тока (слабо зависит от температуры), но за счет правильной эксплуатации обогревателя режимы станут щадящими, прибор прослужит дольше. Чтобы понять, представьте, что произойдёт, если ветродувку накрыть полотенцем. Пожар! Кстати, на конвекторных нельзя сушить вещи. Пожар, возможно, не случится, но прибор прослужит меньше.

Чем мощнее прибор, тем важнее правильно установить, настроить и эксплуатировать. Тем опаснее нарушать условия работы. Потребляемая мощность масляного обогревателя не меняется от микроклимата помещений, если поставить на солнце, температура поверхности будет расти, пока разница не составит ровно столько, сколько было при нормальных условиях измерения. К примеру, в лаборатории 20ºС, на солнцепеке 60. Тогда при переходе в новое место поверхность радиатора станет горячее на 40 градусов. Насколько это хорошо или плохо для прибора, решайте самостоятельно. Не забывайте, масло закипает при температуре выше 100ºС, потом горит.

Тест обогревателей | Какой экономит деньги?Тест обогревателей | Какой экономит деньги?

Воздух внутри масляного обогревателя служит подушкой тепловому расширению жидкости. Гарь оседает на ТЭНе, температура спирали поднимется до критической, термопредохранитель на корпусе может не сработать, потому что температура масла будет в принципе стандартной. В результате потребуется замена ТЭНа. Новый ТЭН нужно завальцевать, среднестатистический мастер-ремонтник с этим не справится.

Читателям важно понять: если при нарушении инструкции немедленных последствий не видно, значит, просто появятся позже. Второе: чем выше потребляемая мощность обогревателя, тем важнее соблюдать правила безопасности – последствия тяжелее, а наступят быстрее

Самый экономичный обогреватель инфракрасный, не греет стены, а дает тепло помещению, предметам. Это и хорошо, и плохо. Что связано с изменением положения точки росы. Причем это касается поверхности стены. Масляный обогреватель, наоборот, часто греет чуть дольше, нежели необходимо. Идеален для маленьких помещений, но в больших приведет к потерям финансов. На вопрос, какой обогреватель потребляет больше, ответ один — масляный. Зато хорош, чтобы вещи сушить. При этом необходимо располагать одежду так, чтобы не перекрывать доступ воздуха в камеру с сенсорами, а режим по мощности выбирать мягкий.

Мощность котла для квартир

При расчете отопительного оборудования для квартир можно пользоваться нормами СНиПа. Использование этих норм еще называют расчетом мощности котла по объему. СНиП задает требуемое количество тепла на обогрев одного кубического метра воздуха в типовых постройках:

  • на обогрев 1м 3 в панельном доме требуется 41Вт;
  • в кирпичном доме на м 3 идет 34Вт.

Зная площадь квартиры и высоту потолков, найдете объем, затем, умножив на норму в узнаете мощность котла.

Расчет мощности котла не зависит от типа используемого топлива

Для примера посчитаем требуемую мощность котла для помещений в кирпичном доме площадью 74м 2 с потолками 2,7м.

  1. Вычисляем объем: 74м 2 *2,7м=199,8м 3
  2. Считаем по норме сколько нужно будет тепла: 199,8*34Вт=6793Вт. Округляем и переводим в киловатты, получаем 7кВт. Это и будет необходимая мощность, которую должен выдавать тепловой агрегат.

Несложно посчитать мощность для такого же помещения, но уже в панельном доме: 199,8*41Вт=8191Вт

В принципе, в теплотехнике округляют всегда в большую сторону, но можно принять во внимание остекление ваших окон. Если на окнах энергосберегающие стеклопакеты, можно округлять в меньшую сторону. Считаем, что стеклопакеты хорошие и получаем 8кВт

Считаем, что стеклопакеты хорошие и получаем 8кВт.

Выбор мощности котла зависит от типа здания — для обогрева кирпичных требуется меньше тепла, чем панельных

Далее нужно, так же как и в расчете для дома, учесть регион и необходимость подготовки горячей воды. Актуальна и поправка на аномальные холода. Но в квартирах большую роль играет расположение комнат и этажность

Принимать во внимание нужно стены, выходящие на улицу:

  • Одна наружная стена — 1,1
  • Две — 1,2
  • Три — 1,3

После того, как учтете все коэффициенты, получите достаточно точное значение, на которое можно опираться при выборе техники для отопления. Если хотите получить точный теплотехнический расчет, его нужно заказывать в профильной организации.

Есть еще один метод: определить реальные потери при помощи тепловизора — современного прибора, который покажет к тому же места, через которые утечки тепла идут более интенсивно. Заодно сможете устранить и эти проблемы и улучшить теплоизоляцию. И третий вариант — воспользоваться программой-калькулятором, который посчитает все вместо вас. Нужно только выбрать и/или проставить требуемые данные. На выходе получите расчетную мощность котла. Правда, тут есть определенная доля риска: непонятно насколько верные алгоритмы заложены в основу такой программы. Так что все-таки придется еще хотя-бы приблизительно просчитать для сравнения результатов.

Так выглядит снимок тепловизора

Надеемся, у вас теперь есть представление о том, как рассчитать мощность котла. И вас не путает, что это газовый котел. а не твердотопливный, или наоборот.

По результатам обследования можно устранить утечки тепла

Возможно, вас заинтересуют статьи о том, как рассчитать мощность радиаторов и выбор диаметров труб для системы отопления. Для того чтобы иметь общее представление об ошибках, которые часто встречаются при планировании системы отопления смотрите видео.

Накопительные водонагреватели (бойлеры)

Без физико-математических формул бытовой расчёт описывается следующим образом: за 1 час 1 кВт нагревает 860 литров на 1 К. Для более точного определения времени нагревания, мощностных характеристик, объёма используется универсальная формула, из которой потом выводятся остальные результаты:

Эта формула состоит из нескольких и отражает целый ряд параметров, учитывая при этом фактор теплопотерь. (При малых мощностных характеристиках и большом объёме этот фактор становится более существенным, однако в бытовых нагревателях этим учётным значением чаще пренебрегают):

Nfull – мощностные характеристики нагревательного элемента,

Qc – теплопотери водонагревательной ёмкости.

  1. c= Q/m*(tк-tн)
    • С – удельная теплоёмкость,
    • Q – количество теплоты,
    • m – масса в килограммах (либо объём в литрах),
    • tк  и tн  (в °С) – конечная и начальная температуры.
  2. N=Q/t
    • N – мощностные характеристики нагрева.
    • t — время нагревания в секундах.
  3. N = Nfull — (1000/24)*Qc

Упрощенные формулы с постоянным коэффициентом:

  • Расчёт мощности ТЭНа для нагрева воды нужной температуры:
    W= 0,00117*V*(tк-tн)/T
  • Определение времени,  необходимого для нагревания воды в водонагревателе:
    T= 0,00117*V*(tк-tн)/W

Составляющие формул:

  • W (в кВТ) –  мощностная характеристика ТЭНов (нагревательного элемента),
  • Т (в часах) – время нагрева воды,
  • V (в литрах) – объем бака,
  • tк  и tн  (в °С) – конечная и начальная температуры (конечная – обычно 60°C).

Часто объём приравнивают к массе (m). Тогда определение мощности ТЭНа будет производиться по формуле: W= 0,00117*m*(tк-tн)/T. Формулы считаются упрощёнными, ещё и потому что в них не учитывается:

  • фактическая мощность электросети,
  • температура окружающей среды,
  • конструктивные особенности и потенциальные теплопотери бака,
  • рекомендации некоторых производителей, относительно tн (порядка 5-8 °С летом и 15-18 °С – зимой).

При покупке устройства надо принимать во вниание, что относительно низкие мощностные характеристики накопительных водонагревателей по сравнению с проточными ещё не гарантируют финансовую экономию. Накопительные меньше «забирают», но из-за того, что работают дольше, больше и расходуют. Для финансовой экономии более надёжной стратегией будет общее снижение водопотребления за счёт установки различного вида экономителей (http://water-save.com/) и строгий учёт водорасхода.

Какой нагревательный элемент в электрических тепловых пушках наиболее эффективный?

Как выбрать тепловую пушку для дачи по типу нагревательного элемента? Существуют три типа нагревательных элементов, каждый из которых имеет свои преимущества и недостатки:

  • Спираль.
  • ТЭН.
  • Керамическая пластина.

Тепловые пушки со спиральным нагревательным элементом имеют открытую металлическую спираль, которая греется за счет прохождения электрического тока. Это самый простой вариант нагревателя. Спираль довольно быстро нагревается и хорошо отдает тепло, проходящему через нее воздуху. Также устройства со спиральным элементом самые дешевые из всех, представленных на рынке. Однако срок службы спирали относительно невелик, а ее высокий нагрев и открытый формат создает дополнительные сложности в соблюдении требований безопасности. Помимо этого, спираль сжигает пыль, за счет чего появляется неприятный запах.

ТЭН представляет собой спиральный элемент, установленный внутри трубки. По сути, это та же спираль, только не открытого, а закрытого типа. В отличие от обычной спирали она не сжигает пыль и меньше сушит воздух. Можно сказать, что устройства с тэном – это золотая середина в плане качества обогрева и цены. Подавляющее большинство устройств, которые представлены на рынке, оснащены тэнами.

Керамические пластины позволяют добиться максимально высокого КПД при относительно невысокой рабочей температуре. Они не палят пыль и не сушат воздух. При этом сама по себе керамика довольно прочная и долговечная. Единственным минусом устройств с керамическим нагревателем является высокая стоимость (многое зависит от производителя).

Устройство с каким из трех нагревателей купить? Если бюджет ограничен, но нужна хорошая пушка, берите с ТЭНом – он не палит пыль и хорошо греет. Например, можно купить ЗУБР ЗТП-М1-3000 мощностью 3 кВт

Если же вопрос цены стоит не так остро, обратите внимание на модели с керамическим нагревателем — лучшее КПД без побочных эффектов. С открытой спиралью брать не советуем

Расчет мощности калорифера

Для расчета производительности калорифера сначала вычисляют его тепловую мощность, затем определяют сечение и высчитывают расход теплоносителя. Для определения тепловой мощности используют следующую формулу: Qт = LхPвхCв (tвн – tнар), где:

Приточные воздушные и противопожарные клапаны для вентиляции

Qт – это тепловая мощность водяного нагревательного прибора;

  • Cв – показатель по СНиП, обозначающий удельную теплоемкость воздушных масс;
  • Рв – тоже параметр из СНиП, характеризующий плотность воздуха;
  • (tвн — tнар) – показатель разницы между температурой внутри здания и за его пределами.

В последнем пункте при определении наружной температуры берут усредненные показатели самых холодных пяти дней года для данного региона. При вычислении внутренней температуры учитывают санитарные нормы для помещений конкретного назначения.

Самые читаемые статьи

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

  оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3

Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Расчет тепловой мощности от объема помещения

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Плюсы и минусы отопления с калорифером

Система обогрева дома, основывающаяся на подаче прогретого до установленной температуры воздуха непосредственно в дом, представляет особый интерес для владельцев собственного жилья.

Такая конструкция отопительной системы состоит из следующих важных узлов:

  • калорифера, выступающего в роли теплогенератора, подогревающего воздух;
  • каналов (воздуховодов), по которым поступают нагретые воздушные массы в дом;
  • вентилятор, направляющий хорошо прогретый воздух по всему объему помещения.

Преимуществ у системы такого типа много. К ним относится и высокий КПД, и отсутствие вспомогательных элементов для теплообмена в виде радиаторов, труб, и возможность объединить ее с климатической системой, и малая инерционность, в результате чего прогрев больших объемов происходит очень быстро.

Для многих домовладельцев недостатком является то, что монтаж системы возможен только одновременно со строительством самого дома и затем дальнейшая модернизация ее невозможна.

Минусом является и такой нюанс, как обязательное наличие резервного питания и потребность в регулярном техническом обслуживании.

У нас на сайте есть более подробные материалы по устройству воздушного отопления в доме и коттедже. Рекомендуем вам ознакомиться с ними:

  • Воздушное отопление своими руками: все про воздушные системы отопления
  • Как устроить воздушное отопление загородного дома: правила и схемы сооружения
  • Расчет воздушного отопления: основные принципы + пример расчета

Необходимые компоненты

Калькулятор расчета мощности тэна для нагрева воды

Предложенный калькулятор, исходя из емкости бака водонагревателя, начальной и конечной (требуемой) температуры воды и времени нагрева позволяет выполнить расчет необходимой электрической мощности ТЭНа с достаточной степенью точности, на которую влияет конструктивные особенности ТЭНа и фактическое напряжение электросети.

При напряжении в сети ниже Uраб нагревателя (например, в результате падения напряжения в линии) очевидно, что его работа будет менее эффективна и снижение температуры греющей поверхности увеличит длительность нагрева воды до требуемой температуры.

Результат расчета не означает, что обязательного использования ТЭНа такого номинала: полученная мощность может быть набрана несколькими параллельно соединенными нагревательными элементами.

Обратите внимание, что расчет производится без учета возможных потерь тепла электроводонагревателей в окружающую среду, возникающих ввиду самых разных факторов, начиная от конструкции бойлера и заканчивая состоянием (наличием) теплоизоляции. https://www.youtube.com/embed/3J0cn4itM5w

Как выбрать мощность газового котлаКак выбрать мощность газового котла

Выбор места установки

Вернее, вопрос стоит не так: какой из конвекторов подойдет для исполнения ваших пожеланий. Если вы хотите приблизить внешний вид помещения к стандартному, можно под окна повесить прямоугольные настенные конвекторы. Немного больше внимания привлекают модели, которые можно установить под потолком, но зато они недоступны для детей и домашних животных — они не смогут обжечься или «отрегулировать» по-своему. Способ монтажа тут одинаковый — на кронштейны закрепленные на стене. Отличается только форма кронштейнов.

Место под установку электроконвектора выбираете любое. Желательно только чтобы он не был закрыт мебелью

Если вам хочется, чтобы отопительные приборы не были видны — выбирать придется между плинтусными моделями и внутрипольными. Тут существует большая разница в установке: плинтусные просто поставили и включили в сеть, а под внутрипольные придется делать в полу специальные выемки — их верхняя панель должна находится на одном уровне с чистовым полом.В общем, без капитального ремонта их не установишь.

Это встраиваемые в пол конвекторы. Они тоже бывают электрические

Как регулировать мощность ТЭНа?

  1. Термостатом. В этом случае ТЭНы выключаются при достижении заданной температуры и включаются при падении температуры ниже заданного предела.
  2. Регулятором. В этом случае происходит плавная регулировка мощности.

Термостатов на рынке великое множество, регуляторов тоже. Для этого используют симмисторные регуляторы мощности (аналогичные диммерам для регулирования яркости ламп). Вам нужно выбрать с запасом по мощности. Т.е. если у вас ТЭНы суммарно потебляют 3000 Ватт, то нужно регулятор 4000 Ватт и больше, лучше 5000

Также на регуляторе должен быть радиатор, обратите на это внимание, чем больше радиатор — тем лучше (в магазинах пишут «3500 Ватт» и они без радиатора и держут по факту всего 300 ватт)

Также вы можете понижать мощность ТЭНов другими способами — установив выключатель и отключать один из ТЭНов. Дополнительно можно поставить диод — он заставит ТЭН работать в половине от мощности. Т.е. схема такая:

  1. Устанавливаем на каждый из ТЭНов выключатель.
  2. Параллельно выключателю одного из ТЭНов ставим диод.
  3. Ставим общий выключатель (автомат, например) на оба ТЭНа.

Тогда работает это так:

  1. Включены оба выключателя — максимальная мощность двух тэнов (100%).
  2. Выключен выключатель (тот который без диода) — работает 1 ТЭН на полную мощностью (50%).
  3. Выключен выключатель параллельно которому диод установлен, а второй выключатель включен — работает 1 ТЭН на полную мощность, а второй на половину, итого 75% от всей мощности (полтора ТЭНа).
  4. Выключены оба выключателя — работает только 1 ТЭН на половину мощности (25% от всей мощности).

Вот еще идея как сделать регулятор:

Регулятор мощности для самогонного аппарата. Нагрев ТЭНомРегулятор мощности для самогонного аппарата. Нагрев ТЭНом

Есть готовое решение, например, gt10000w, обычно это безымянные приборы китайского производства, лучше выбирайте сами в интернете, по запросу в поиске «Регулятор мощности для ТЭНа 5000 кВт» (ну или какая у вас мощность указывайте).

Источник

Журнал

Расчет количества секций радиаторов отопления по объему

Чаще всего используется значение, рекомендованное СНиП, для домов панельного типа на 1 куб.метр объема требуется 41 Вт тепловой мощности.

Если у Вас квартира в современном доме, со стеклопакетами, утепленными наружными стенами и откосами из гипсокартона. то для расчета уже используется значение тепловой мощности 34вт на 1куб.метр объема.

Пример расчета количества секций:

Комната 4*5м, высота потолка 2,65м

Получаем 4*5*2,65=53 куб.м Объем комнаты и умножаем на 41вт. Итого, требуемая тепловая мощность для обогрева: 2173Вт.

Исходя из полученных данных, не трудно рассчитать количество секций радиаторов. Для этого необходимо знать теплоотдачу одной секции, выбранного Вами радиатора.

Допустим: Чугунный МС-140, одна секция 140Вт Global 500,170Вт Sira RS, 190Вт

Тут следует заметить, что производитель или продавец, часто указывает завышенную теплоотдачу, рассчитанную при повышенной температуре теплоносителя в системе. Поэтому ориентируйтесь на меньшее значение, указанное в паспорте на изделие.

Продолжим расчет: 2173 Вт делим на теплоотдачу одной секции 170Вт, получаем 2173Вт/170Вт=12,78 секций. Округляем в сторону целого числа, и получаем 12 или 14 секций.

Этот метод, как и следующий является приблизительным.

Расчет количества секций радиаторов отопления по площади помещения

Является актуальным для высоты потолков помещения 2,45-2,6 метра. Принимается равным, что для обогрева 1кв.метра площади достаточно 100Вт.

То есть для комнаты 18 кв.метров, требуется 18кв.м*100Вт=1800Вт тепловой мощности.

Делим на теплоотдачу одной секции: 1800Вт/170Вт=10,59, то есть 11 секций.

В какую сторону лучше округлить результаты расчетов?

Комната угловая или с балконом, то к расчетам добавляем 20% Если батарея будет устанавливаться за экраном или в нишу, то потери тепла могут достигать 15-20%

Но в то же время, для кухни, можно смело округлить в меньшую сторону, до 10 секций. Кроме того, на кухне, очень часто монтируется электрический теплый пол. А это минимум 120 Вт тепловой помощи с одного квадратного метра.

Точный расчет количества секций радиаторов

Определяем требуемую тепловую мощность радиатора по формуле

Qт= 100ватт/м2 х S(помещения)м2 х q1 х q2 х q3 х q4 х q5 х q6 х q7

Где учитываются следующие коэффициенты:

Вид остекления (q1)

Тройной стеклопакет q1=0,85

Двойной стеклопакет q1=1,0

Обычное(двойное) остекленение q1=1,27

Теплоизоляция стен (q2)

Качественная современная изоляция q2=0,85

Кирпич (в 2 кирпича) или утеплитель q3= 1,0

Плохая изоляция q3=1,27

Отношение площади окон к площади пола в помещении (q3)

Минимальная температура снаружи помещения (q4)

Количество наружных стен (q5)

Тип помещения над расчетным (q6)

Обогреваемое помещение q6=0,8

Отапливаемый чердак q6=0,9

Холодный чердак q6=1,0

Высота потолков (q7)

100 вт/м2*18м2*0,85 (тройной стеклопакет)*1 (кирпич)*0,8 (2,1 м2 окно/18м2*100%=12%)*1,5(-35)* 1,1(одна наружная)*0,8(обогреваемое,квартира)*1(2,7м)=1616Вт

Плохая теплоизоляция стен увеличит это значение до 2052 Вт!

количество секций радиатора отопления: 1616Вт/170Вт=9,51 (10 секций)

Мы рассмотрели 3 варианта расчета требуемой тепловой мощности и на основании этого получили возможность расчета необходимого количества секций радиаторов отопления. Но тут следует отметить, что для того чтобы радиатор выдал паспортную мощность его следует правильно установить. Как это сделать правильно или проконтролировать не всегда грамотных работников ЖЭКа, читайте в следующих статьях на официальном сайте Школы ремонта Remontofil

О тепловой энергии простым языком!

. энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С. Какая нужна мощность источника тепла, чтобы сделать это за 1 час. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Преимущества и недостатки радиаторов из чугуна

Радиаторы чугунные изготавливаются при помощи литья. Чугунный сплав отличается однородным составом. Такие отопительные приборы широко используются как для центральных отопительных систем, так и для систем автономного отопления. Размеры чугунных радиаторов могут быть разными.

Среди преимуществ чугунных радиаторов можно отметить:

  1. возможность использования для теплоносителя любого качества. Подходят даже для теплоносителя с высоким содержанием щелочей. Чугун – материал прочный и растворить либо поцарапать его непросто;
  2. устойчивость к коррозионным процессам. Такие радиаторы могут выдержать температуру теплоносителя до +150 градусов;
  3. отличные теплоаккумулирующие свойства. Спустя час после отключения отопления чугунный радиатор будет излучать 30% тепла. Поэтому чугунные радиаторы идеально подходят для систем с нерегулярным нагревом теплоносителя;
  4. не требуют частого ухода. А связано это преимущественно с тем, что сечение у радиаторов из чугуна достаточно большое;
  5. длительный срок эксплуатации – порядка 50 лет. Если теплоноситель высокого качества, то радиатор может прослужить и столетие;
  6. надежность и прочность. Толщина стенок таких батарей большая;
  7. высокое излучение тепла. Для сравнения: биметаллические обогреватели передают 50% тепла, а радиаторы из чугуна – 70% тепла;
  8. на чугунные радиаторы цена вполне приемлема.

Среди недостатков можно выделить:

  • большой вес. Только одна секция может иметь вес около 7 кг;
  • монтаж следует производить на предварительно подготовленную, надежную стену;
  • радиаторы надо покрывать краской. Если через время необходимо покрасить батарею вновь, старый слой краски в обязательном порядке шкурят. В противном случае теплоотдача снизится;
  • повышенный расход топлива. Один сегмент батареи из чугуна содержит раза в 2-3 больше жидкости, нежели другие виды батарей.

Проверка диодного мостика

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий