Расчет цепей с параллельным соединением ветвей

Смешанное соединение приемников энергии

Наиболее широко распространено смешанное соединение приемников электрической энергии. Данной соединение представляет собой сочетание последовательно и параллельно соединенных элементов. Общей формулы для расчёта данного вида соединений не существует, поэтому в каждом отдельном случае необходимо выделять участки цепи, где присутствует только лишь один вид соединения приемников – последовательное или параллельное. Затем по формулам эквивалентных сопротивлений постепенно упрощать данные участи и в конечном итоге приводить их к простейшему виду с одним сопротивлением, при этом токи и напряжения вычислять по закону Ома. На рисунке ниже представлен пример смешанного соединения приемников энергии

Пример смешанного соединения приемников энергии.

В качестве примера рассчитаем токи и напряжения на всех участках цепи. Для начала определим эквивалентное сопротивление цепи. Выделим два участка с параллельным соединением приемников энергии. Это R1||R2 и R3||R4||R5. Тогда их эквивалентное сопротивление будет иметь вид

В результате получили цепь из двух последовательных приемников энергии R12R345 эквивалентное сопротивление и ток, протекающий через них, составит

Тогда падение напряжения по участкам составит

Тогда токи, протекающие через каждый приемник энергии, составят

Последовательное соединение — потребитель

Последовательное соединение потребителей не всегда удобно, поскольку при отключении одного из них ток прекращается во всей цепи и одновременно отключаются все потребители.

Последовательное соединение потребителей.

Последовательным соединением потребителей называется такое соединение, при котором через все потребители проходит один и тот же ток.

При последовательном соединении потребителей они включаются в цепь поочередно друг за другом без разветвлений проводов между ними. Форма линий, обозначающих при этом соединительные провода, не играет роли, и потому схема цепи при одном и том же типе соединения может выглядеть по-разному.

Последовательное ( а и параллельное ( б соединение потребителей.

При последовательном соединении потребителей их общее сопротивление равно сумме сопротивлений отдельных потребителей; величина тока в любой точке цепи одинакова, а напряжение между различными точками замкнутой цепи различное.

При последовательном соединении потребителей ( сопротивлений) величина тока в любой точке цепи одинакова, и напряжение на зажимах каждого потребителя зависит от величины сопротивления и тока в нем.

Тем не менее последовательное соединение потребителей приходится применять в том случае, когда напряжение источника тока превышает нормальное напряжение, на которое рассчитан потребитель.

Векторная диаграмма ( и и графики мгновенных значений и, /, р ( б цепи, а прг резонансе напряжений.

Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений.

Совершенно иначе обстоит дело при последовательном соединении потребителей, при котором изменение сопротивления одного из них тотчас же влечет за собой изменение напряжения на других связанных с ним потребителях. При выключении или обрыве электрической цепи в одном из потребителей и в остальных последовательно включенных потребителях прекращается ток. Отсюда видно, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном ( номинальном) напряжении всегда включаются параллельно.

Следовательно, второе свойство цепи с последовательным соединением потребителей состоит в том, что напряжения на последовательно соединенных потребителях распределяются прямо пропорционально величинам их сопротивлений.

Принципиальная схема работы аппарата СТ-2М по телеграфному каналу Р-401 М.

Итак, четвертое свойство цепи с последовательным соединением потребителей состоит в том, что ее общее сопротивление равно сумме сопротивлений потребителей.

Как распределяются токи, напряжения и мощности при последовательном соединении потребителей.

Для чего соединять несколько аккумуляторов

Основные причины, по которым аккумуляторы объединяют в сборки, можно свести к следующим:

  1. Уменьшить омические потери (или потери тепла при передаче электроэнергии) путем увеличения сопротивления системы. Сила тока и сопротивление обратно пропорциональны друг другу, а чем слабее ток, тем меньше потери.
  2. Собрать батарею, подходящую для питания приборов с более высокими диапазонами напряжений.
  3. Увеличить емкость аккумулятора.
  4. Увеличить и мощность, и напряжение.

Одним словом, создают АКБ, которая подходит под конкретные нужды. Проще и удобнее комбинировать имеющиеся под рукой аккумуляторы, чем покупать десятки различных батарей. А в некоторых случаях это банально дешевле.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны. Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение

Гораздо чаще в электрических цепях применяется параллельное соединение резисторов, отличающихся наличием общих точек, где соединяются начала и концы каждого элемента. Данный вид соединения характеризуется собственными физическими свойствами.

Основными из них являются следующие:

  • Каждый из подключенных резисторов, обладает одинаковым напряжением: U = U1 = U2 = U3. То есть, напряжение в параллельном соединении на каждом участке будет одно и то же.
  • Общая проводимость резисторов, соединенных параллельно, включает в себя сумму проводимостей каждого отдельного сопротивления, выраженную соотношением: 1/R = 1/R1 + 1/R2 + 1/R3 = R1R2 + R1R3 + R2R3/R1R2R3. Здесь R является эквивалентным или равнодействующим сопротивлением всех трех резисторов. Оно может полностью заменить их, без изменения величины силы тока в цепи. Значение эквивалентного сопротивления можно вычислить путем сложения проводимостей каждого участка. В результате, получится общая проводимость. Обратная ей величина и будет фактически общим сопротивлением.
  • Существуют и особенности эквивалентной проводимости, когда используется параллельное соединение. Она составляет сумму проводимостей всех отдельно взятых ветвей. В этом случае при параллельном соединении сопротивление эквивалентное будет всегда ниже самого маленького сопротивления, включенного параллельно.
  • соотношения касаются не только трех резисторов, соединенных параллельно, но и любого количества сопротивлений, соединенных этим способом. Этот способ широко используется в схемах радиотехнической аппаратуры. Параллельное включение двух и более резисторов используется при наличии слишком большой силы тока в цепи. В этом случае единственный резистор может перегреться и выйти из строя. Ярким примером служат электрические лампы освещения, включенные параллельно. Выключение ходя бы одной из них никак не повлияет на работу остальных ламп.

Мощность при паралл ельном соединение

При паралл ельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных паралл ельно, определяется следующим образом: P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при паралл ельном подключении резисторов: P1 = U 2 /R1 = 100 2 /200 = 50 Вт; P2 = U 2 /R2 = 100 2 /100 = 100 Вт; P3 = U 2 /R3 = 100 2 /51 = 195,9 Вт; P4 = U 2 /R4 = 100 2 /39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1234 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и паралл ельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

Физика. Последовательное и параллельное соединение проводников. Центр онлайн-обучения «Фоксфорд»Физика. Последовательное и параллельное соединение проводников. Центр онлайн-обучения «Фоксфорд»

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна сопротивлению этого участка.

Выполняется для металлов и электролитов.

Закон Джоуля – Ленца.

Дж. Джоуль (1841—1843) Э. X. Ленц (1842—1843) независимо друг от друга экспери­ментально установили

В электрической цепи происходит преобразование энергии упорядоченного движения заряженных частиц в тепловую. Согласно з-ну сохранения энергии работа тока равна количеству выделившегося тепла.

Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток:

Работа и мощность электрического тока.

Работа электрического тока:

Мощность электрического тока (работа в единицу времени):

В электричестве иногда применяется внесистемная единица работы – кВт . ч (киловатт-час).

1 кВт . ч = 3,6 . 10 6 Дж.

Виды соединения проводников.

Последовательное соединение.

1. Сила тока во всех последовательно соединенных участках цепи одинакова:

I1=I2=I3=. =In=.

2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке:

U=U1+U2+. +Un+.

3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка:

R=R1+R2+. +Rn+.

Если все сопротивления в цепи одинаковы, то:

R=R1 . N

При последовательном соединении общее сопротивление увеличивается (больше большего).

Параллельное соединение.

1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках.

2. Напряжение на всех параллельно соединенных участках цепи одинаково:

U1=U2=U3=. =Un=.

3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению):

Если все сопротивления в цепи одинаковы, то:

При параллельном соединении общее сопротивление уменьшается (меньше меньшего).

4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках:

5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+. +Pn+.

6. Т.к. силы тока во всех участках одинаковы, то: U1:U2. Un. = R1:R2. Rn.

Для двух резисторов: – чем больше сопротивление, тем больше напряжение.

4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках:

A=A1+A2+. +An+.

т.к. .

5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках:

P=P1+P2+. +Pn+.

6. Т.к. напряжения на всех участках одинаковы, то:

Для двух резисторов: – чем больше сопротивление, тем меньше сила тока.

“>

Как рассчитать сложные схемы соединения резисторов

Сложные схемы рассчитываются путем группировки по параллельному и последовательному способу соединения.

Перед нами сложная схема – задача рассчитать общее сопротивление:

  1. R2, R3, R4 объединим в последовательную группу – применим формулу R2,3,4 = R2+R3+R4.
  2. R5 и R2,3,4 – параллельно соединенные резисторы, рассчитаем R5,2,3,4 = 1/ (1/R5+1/R2,3,4).
  3. R5,2,3,4, R1, R6 опять объединяем в последовательную группу – суммируя величины, получаем Rобщ = R5,2,3,4+R1+R6.

Для больших схем существуют специальные методы, облегчающие расчет. Один из таких методов – эквивалентное преобразование «треугольника» в «звезду». Такая система расчета применяется в том случае, когда невозможно по схеме определить последовательное или параллельное подключение резисторов.

Преобразование «звезда-треугольник»

Для соединения резистивных элементов, кроме вышеописанных способов, существует несколько других видов соединения:

  • «звезда» – соединение трех ветвей с одним общим узлом;
  • «треугольник» – соединение ветвей схемы в виде треугольника, сторонами которого служат ветви, вершины представляют узлы.

Эквивалентность замены предполагает стабильность токов, входящих в каждый узел, при одинаковых напряжения между одноименными узлами «треугольника» и «звезды».

Сопротивление резистора луча «звезды» равно произведению сопротивлений резисторов прилегающих сторон «треугольника», деленному на сумму сопротивлений резисторов трех сторон «треугольника».

RA = RAB RAC/(RAB+RAC+RDC).

Сопротивление резисторов сторон «треугольника» равно сумме произведения сопротивлений резисторов двух прилегающих лучей «звезды», деленного на сопротивление третьего луча.

RAB=(RARB+RARC+RBRС)/RC

О разнице подключения звезда и треугольник читайте здесь.

Типы проводников

Электрический ток — упорядоченное движение свободных носителей заряда, на которые воздействует электромагнитное поле. При протекании тока по веществу происходит взаимодействие потока заряженных частиц с узлами кристаллической решетки, при этом часть кинетической энергии частицы превращается в тепловую энергию. Иными словами, частица «ударяется» об атом, а затем снова продолжает движение, набирая скорость под действием электромагнитного поля.

Последовательное и параллельное соединение резисторовПоследовательное и параллельное соединение резисторов

Процесс взаимодействия частиц с узлами кристаллической решетки называется электрической проводимостью или сопротивлением материала. Единицей измерения является Ом, а определить его можно при помощи омметра или расчитать. Согласно свойству проводимости, вещества можно разделить на 3 группы:

  1. Проводники (все металлы, ионизированный газ и электролитические растворы).
  2. Полупроводники (Si, Ge, GaAs, InP и InSb).
  3. Непроводники (диэлектрики или изоляторы).

Проводники всегда проводят электрический ток, поскольку содержат в своем атомарном строении свободные электроны, анионы, катионы и ионы. Полупроводники проводят электричество только при определенных условиях, которые влияют на наличие или отсутствие свободных электронов и дырок. К факторам, влияющим на проводимость, относятся следующие: температура, освещенность и т. д. Диэлектрики вообще не проводят электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда. При выполнении расчетов каждый радиолюбитель должен знать зависимость сопротивления от некоторых физических величин.

Однокомпонентные и двухкомпонентные клеи

Однокомпонентный состав

Клей выпускается в таре небольшого объема — наличие отвердителя прямо в составе клея позволяет добиться его застывания в процессе работы. Именно поэтому его не рекомендуется использовать при значительных объемах работы, однако склеивание мелких трещин и герметизация швов однокомпонентному клею «по плечу».

Двухкомпонентные клеи

Упаковка содержит 2 емкости: в одной имеется однокомпонентная смесь, в другой отвердитель. Перед тем, как начать работать, необходимо смешать смеси используя при этом инструкцию. Отличительным преимуществом двухкомпонентных смесей является возможность смешивания в процессе работ.

Область применения карбида кальция

Карбид кальция используют при проведении автогенных работ и освещения, а также в производстве ацетиленовой сажи и продуктов органического синтеза, из которых главным является синтетический каучук.

Карбид кальция применяют в производстве цианамида кальция, из которого получают удобрения, цианистые соединения. Карбид кальция используют для получения карбидно-карбамидного регулятора роста растений, изготовления порошкового карбидного реагента.

Из 1 кг технического карбида получается от 235 до 285 л ацетилена в зависимости от его сорта и грануляции: чем чище и крупнее карбид кальция, тем большее количество ацетилена он даёт при разложении.

Для разложения 1 кг карбида кальция теоретически требуется 0,56 л воды. Практически берут от 5 до 20 л воды с целью лучшего охлаждения ацетилена и обеспечения безопасности при работе. Скорость разложения карбида кальция водой зависит от его чистоты, грануляции, температуры и чистоты воды. Чем чище карбид кальция, меньше размер его кусков, выше температура и чище вода, тем больше скорость.

Плотности различных веществ

Ключевые особенности

Существуют две основные разновидности колонок:

Это звук самых обыкновенных колонок, которые можно беспроблемно подключить к любому компьютеру или ноутбуку. Они имеют 1 порт (если с сабвуфером, то 2) и дают звук среднего качества, хотя стандартный пользователь вряд ли поймёт разницу.

Колонки такого типа выдают потрясающе чистый звук наивысшего качества, но подключить их уже гораздо сложнее. Более того, встроенной звуковой карты будет недостаточно для воспроизведения такого звука. Причина даже не в нехватке мощности или характеристик, а в количестве портов (для цифрового звука необходимы специальные разъёмы).

Подключение динамиков любого типа осуществляется простым подсоединением штекеров в соответствующие гнёзда. Также, если колонки качественные, необходимо подключить блок питания в розетку или сетевой фильтр. Это необходимо, потому что питания в разъёмах компьютера будет недостаточно для работы серьёзной акустической системы.

Последовательное соединение проводников

Схема последовательного соединения подразумевает, что они включаются в определенной последовательности один за другим. Причем сила тока во всех из них равна. Данные элементы создают на участке суммарное напряжение. Заряды не накапливаются в узлах электроцепи, поскольку в противном случае наблюдалось бы изменение напряжения и силы тока. При постоянном напряжении ток определяется значением сопротивления цепи, поэтому при последовательной схеме сопротивление меняется в случае изменения одной нагрузки.

Недостатком такой схемы является тот факт, что в случае выхода из строя одного элемента остальные также утрачивают возможность функционировать, поскольку цепь разрывается. Примером может служить гирлянда, которая не работает в случае перегорания одной лампочки. Это является ключевым отличием от параллельного соединения, в котором элементы могут функционировать по отдельности.

Последовательная схема предполагает, что по причине одноуровневого подключения проводников их сопротивление в любой точки сети равно. Общее сопротивление равняется сумме уменьшения напряжений отдельных элементов сети.

При данном типе соединения начало одного проводника подсоединяется к концу другого. Ключевая особенность соединения состоит в том, что все проводники находятся на одном проводе без разветвлений, и через каждый из них протекает один электроток. Однако общее напряжение равно сумме напряжений на каждом. Также можно рассмотреть соединение с другой точки зрения – все проводники заменяются одним эквивалентным резистором, и ток на нем совпадает с общим током, который проходит через все резисторы. Эквивалентное совокупное напряжение является суммой значений напряжения по каждому резистору. Так проявляется разность потенциалов на резисторе.

Последовательное соединение

Этот способ подразумевает, что все приборы, входящие в состав электроцепи, связываются между собой проводами так, что во фрагменте цепи, где происходит включение, отсутствуют какие-либо узелки. При последовательном соединении проводников значение токовой силы в разных участках будет иметь одно и то же значение. Это связано с тем, что в безузловой цепи электронный заряд идет по одному и тому же проводнику. Чтобы вычислить общий показатель цепного напряжения, нужно сложить данные по всем фрагментам цепи:

U = U1 + U2 +…+Un.

При объединении аккумуляторных или гальванических единиц в одну батарею последовательный способ поможет увеличить рабочее напряжение.

Резисторы

Общее сопротивление цепи с последовательно связанными резисторами высчитывается по тому же правилу, что и напряжение: оно равно сумме показателей для каждого элемента.

Катушка индуктивности

Когда дроссели соединены последовательно так, чтобы магнитное поле каждой катушки не накладывалось на соседние дроссели, общая индуктивность такого соединения будет равна сложенным параметрам всех катушек:

L = L1+L2 +…+Ln.

Электрический конденсатор

Когда несколько конденсаторов соединяется между собой в цепь, соотношение их емкостей может быть описано такой формулой:

1/С = 1/С1 +1/С2 +…+ 1/Cn.

Мемристивность цепи оценивается как сумма показателей всех подсоединенных компонентов:

M = M1 +M2 +… + Mn.

Выключатели

Если несколько таких устройств подсоединены в цепь последовательно, она будет замкнутой только при замыкании всех устройств. Если хоть один переключатель разомкнуть, цепь также размыкается. При выходе из строя какого-либо устройства остальные тоже перестанут функционировать. Это правило распространяется и на цепь из нескольких розеток.

Для домашней разводки проводов

Хотя данный способ потенциально мог бы принести потребителю определенные выгоды (экономия проводников, упрощение подключения заземления), на практике для подключения бытовых электроприборов он не используется. Это связано с тем, что неисправность одного из устройств приводит к прекращению функционирования остальных. Этот пример можно проиллюстрировать на елочной гирлянде: в ней используется именно рассматриваемый тип соединения, в случае перегорания какой-либо из ламп остальные затухают. Именно поэтому электроприборы в домашнюю сеть всегда подключаются параллельно.

Важно! При принятии решения соединить последовательно несколько устройств целесообразно составить таблицу их мощностей и оценить на предмет величины перепадов. Если подключить в одну электроцепь, например, нагреватель воды с большой мощностью, потребляющий много энергии, и маломощный прибор вроде старого приемника, более мощный прибор не сможет работать

Практическое использование последовательной схемы

Для замены кабелей

Если соединить несколько кабелей в одну линию, в случае перегорания какого-либо из элементов ток будет пропадать на всей протяженности конструкции. Поэтому подключение параллельных проводников является более практичным вариантом. Его применяют в качестве замены толстого провода, подходящего для высокомощных нагрузок. Когда такого провода нет в наличии, подключают серию более тонких, в сумме они переносят ток, эквивалентный одному толстому. Нужные сечения находят расчетным путем, опираясь на данные о потерях напряжения. Такие конструкции широко применяются при обустройстве электролиний большой протяженности.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется паралл ельное соединение резисторов, а для делителей напряжения – последовательное.

На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения – паралл ельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Характеристики параллельной цепи

Основные характеристики параллельной цепи перечислены ниже:

Сила тока в параллельной цепи

Согласно закону Ома, I = U / R. Это подразумевает, что каждый резистор в этой цепи будет потреблять ток от источника. Следовательно, общий ток, потребляемый от источника, равен сумме токов ветвления, и ток, протекающий в каждом тракте, зависит от сопротивления ветви. Тем не менее, напряжение остается неизменным и создает разность потенциалов на его клеммах.

Общий ток (It) может быть рассчитан с использованием уравнения,

Давайте рассмотрим, что параллельная цепь построена с двумя резисторами (R1 и R2) с разными значениями (10 Ом и 5 Ом) соответственно. Напряжение 10V подается через резисторы , в результате тока 1А , проведенной от батареи через R1 и R2, который получен из уравнения I = U / R.

Следовательно, два тока ветвления в цепи составляют 1А и 2А, которые суммируют до 3А.

Сопротивления в параллельной цепи

Общее сопротивление любого количества резисторов рассчитывается по уравнению,

Взаимное значение R1 = 1/R1 = 1/10 = 0,1

Взаимное от R2 = 1/R2 = 1/5 = 0,2

Сумма обратных выше = 0,3

R t = 1 / 0,3 = 3,33 Ом

Мощность в параллельной цепи

Как только общий ток и приложенные значения напряжения известны, мощность может быть рассчитана с использованием уравнения P = UI . В приведенном выше примере, приложенное напряжение U = 10В и I = 3A, P = 10×3 = 30 Вт

Электрические цепи. Последовательное и параллельное соединения проводников

Подробности
Просмотров: 346

«Физика – 10 класс»

Как выглядит зависимость силы тока в проводнике от напряжения на нём?
Как выглядит зависимость силы тока в проводнике от его сопротивления?

От источника тока энергия может быть передана по проводам к устройствам, потребляющим энергию: электрической лампе, радиоприёмнику и др. Для этого составляют электрические цепи различной сложности.

К наиболее простым и часто встречающимся соединениям проводников относятся последовательное и параллельное соединения.

Последовательное соединение проводников.

При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочерёдно друг за другом. На рисунке (15.5, а) показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления R1 и R2. Это могут быть две лампы, две обмотки электродвигателя и др.

Сила тока в обоих проводниках одинакова, т. е.

I1 = I2 = I.         (15.5)

В проводниках электрический заряд в случае постоянного тока не накапливается, и через любое поперечное сечение проводника за определённое время проходит один и тот же заряд.

Напряжение на концах рассматриваемого участка цепи складывается из напряжений на первом и втором проводниках:

U = U1 + U2.

Применяя закон Ома для всего участка в целом и для участков с сопротивлениями проводников R1 и R2, можно доказать, что полное сопротивление всего участка цепи при последовательном соединении равно:

R = R1 + R2.         (15.6)

Это правило можно применить для любого числа последовательно соединённых проводников.

Напряжения на проводниках и их сопротивления при последовательном соединении связаны соотношением

Параллельное соединение проводников.

На рисунке (15.5, б) показано параллельное соединение двух проводников 1 и 2 сопротивлениями R1 и R2. В этом случае электрический ток I разветвляется на две части. Силу тока в первом и втором проводниках обозначим через I1 и I2.

Так как в точке а — разветвлении проводников (такую точку называют узлом) — электрический заряд не накапливается, то заряд, поступающий в единицу времени в узел, равен заряду, уходящему из узла за это же время. Следовательно,

I = I1 + I2.         (15.8)

Напряжение U на концах проводников, соединённых параллельно, одинаково, так как они присоединены к одним и тем же точкам цепи.

В осветительной сети обычно поддерживается напряжение 220 В. На это напряжение рассчитаны приборы, потребляющие электрическую энергию. Поэтому параллельное соединение — самый распространённый способ соединения различных потребителей. В этом случае выход из строя одного прибора не отражается на работе остальных, тогда как при последовательном соединении выход из строя одного прибора размыкает цепь. Применяя закон Ома для всего участка в целом и для участков проводников сопротивлениями R1 и R2, можно доказать, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных проводников:

Отсюда следует, что для двух проводников

Напряжения на параллельно соединённых проводниках равны: I1R1 = I2R2. Следовательно,

Обратим внимание на то, что если в какой-то из участков цепи, по которой идёт постоянный ток, параллельно к одному из резисторов подключить конденсатор, то ток через конденсатор не будет идти, цепь на участке с конденсатором будет разомкнута. Однако между обкладками конденсатора будет напряжение, равное напряжению на резисторе, и на обкладках накопится заряд q = CU

Рассмотрим цепочку сопротивлений R — 2R, называемую матрицей (рис. 15.6).

На последнем (правом) звене матрицы напряжение делится пополам из-за равенства сопротивлений, на предыдущем звене напряжение тоже делится пополам, поскольку оно распределяется между резистором сопротивлением R и двумя параллельными резисторами сопротивлениями 2R и т. д. Эта идея — деления напряжения — лежит в основе преобразования двоичного кода в постоянное напряжение, что необходимо для работы компьютеров.

Следующая страница «Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников»»

Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока – Физика, учебник для 10 класса – Класс!ная физика

Электрический ток. Сила тока —
Закон Ома для участка цепи. Сопротивление —
Электрические цепи. Последовательное и параллельное соединения проводников —
Примеры решения задач по теме «Закон Ома. Последовательное и параллельное соединения проводников» —
Работа и мощность постоянного тока —
Электродвижущая сила —
Закон Ома для полной цепи —
Примеры решения задач по теме «Работа и мощность постоянного тока. Закон Ома для полной цепи»

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий