Что такое альтернативная энергетика, ее основные виды и сферы применения

Меры безопасности

При установке виниловых потолков, как мы уже писали, используется тепловая пушка и газовый баллон, от которого эта пушка работает. Это оборудование представляет повышенную опасность. Поэтому при работе во избежание взрыва следует соблюдать все меры безопасности:

  • используйте только те газовые баллоны, срок службы которых еще не вышел. На клейме обязательно должны быть дата проверки и выпуска;
  • заправка баллона производится на специализированной станции, где его проверят на годность и наполнять строго по весу. Автозаправочные газовые станции для этих целей не подходят;
  • неисправную газовую пушку тоже нельзя использовать;
  • обязательно следует перед работой проверить целостность шланга, соединения шланга с баллоном и пушкой на вентиле, чтобы нигде не было утечки газа;
  • ни в коем случае нельзя направлять включенную газовую пушку на баллон с газом.

Надеемся, наши советы помогут сделать ваше жилье комфортней и красивей, а следующие видео пригодятся в работе.

Биогаз – это древнейший тренд!

Ученые достаточно быстро обратили внимание на опыт Древнего Китая и Индии, где еще до нашей эры люди начали использовать метан, полученный при перегнивании домашних отходов. Тогда его использовали чаще всего для приготовления пищи

Потери газа были очень большими, но для упрощения домашней работы его хватало. Кстати говоря, в этих странах подобные решения активно используют и по сей день. Таким образом, биогаз как нетрадиционный источник энергии имеет большие перспективы, если подойти к вопросу с использованием современных технологий.

Была предложена технология переработки стоков животноводческих предприятий, в результате которой на выходе получался чистый метан. Проблема ее развития в том, что создавать подобные предприятия можно только в регионах с развитым животноводством. Кроме того, перспективы увеличения добычи биогаза тем ниже, чем больше на сельскохозяйственных предприятиях используется антибиотиков и моющих средств: даже небольшое их количество тормозит брожение, в результате чего весь навоз покрывается плесенью.

Солнечная энергетика

Солнце является главным источником всех жизненных процессов на Земле, относится к альтернативным источникам. Его возобновляемая энергия может в неисчерпаемых количествах преобразовываться в электрическую или тепловую. Область науки и производства, которая занимается этим, называется солнечная энергетика (гелиоэнергетика).

Солнечные электростанции вырабатывают электроэнергию с помощью солнечных коллекторов, фотоэлектрических преобразователей. Крупнейшая фотоэлектрическая станция в штате Калифорния, США имеет мощность не менее 550 МВт:

С каждым годом возрастает количество станций. За последние 10 лет производство фотоэлектрических панелей увеличилось более чем в шесть раз.

Оборудование и конструкции станций просты в монтаже и удобны в обслуживании. Однако степень развития науки и техники на сегодняшний день не позволяют добиться экономически выгодной отдачи от их работы. К тому же установки занимают огромные площади, батареи стоят больших денег. Тем не менее, мировые инвестиции в развитие этого вида возобновляемой энергии достигли 26 млрд долларов в год.

2015

В России рынок альтернативной энергетики все еще не развит. В 2015 году по данным ФСГС объем установленных мощностей объектов ВИЭ составил 906,3 МВт, из которых более половины приходится на Республику Крым (электростанции были введены до вхождения в состав РФ). По данным Минэнерго на начало 2016 году установленные мощности составили примерно 70 МВт, из которых подавляющее большинство составляют солнечная энергетика.

В 2015 году в России был принят ряд поправок в законодательство о развитии возобновляемых источников энергии, о которых в течение 2-х лет говорили участники рынка. Государственная поддержка, принятая в 2013 году, реально оказала влияние на развитие рынка солнечной энергетики – подавляющее большинство крупных солнечных электростанций было введено в 2015 году и планируется к вводу на ближайшие годы.

На момент написания отчета в Росси действовало 5 относительно крупных ветряных электростанции, большая часть из которых работала в пол силы, из них две были введены в 2014-2015гг. в рамках государственной поддержки. Также действует 6 солнечных электростанций, введенных также в рамках государственной программы развития, совокупные установленные мощности в несколько раз превышают ветряные электростанции.

Другие сегменты альтернативной энергетики в России, как и в мире, практически не развиты. В России действует несколько электростанций, действующих на основе биогаза, мощностью которых не превышает 500 КВт, и установлены они на сельскохозяйственных агрокомплексах. Крупнейшая биогазовая электростанция была запущена в 2012 году в Белгородской области («Лучки»), именно данная область является наиболее перспективным регионом для возведения биогазовых электростанций. Сегмент геотермальной энергетики представлен 4-я электростанциями, три из которых входят в холдинг «Русгидро». Наиболее крупная – «Мутновская ГеоЭС», мощностью 50 МВт. Сегмент малой гидроэнергетики в России также почти не развит, крупнейший игрок на данном рынке «Русгидро», которая в рамках государственной стратегии развития ВИЭ получила поддержку на строительство нескольких малых ГЭС, которые будут введены в эксплуатацию уже в 2017 году. Сегмент приливной энергетики представлен всего одной электростанций в Мурманской области мощностью всего 1,7 МВт. Также уже несколько лет планируется строительства нескольких приливных электростанций.

Мозг. Возобновляемые источники энергииМозг. Возобновляемые источники энергии

Перспективы

Перспективы использования возобновляемых источников энергии связаны с их экологической чистотой, низкой стоимостью эксплуатации и ожидаемым топливным дефицитом в традиционной энергетике.

По оценкам Европейской комиссии к 2020 году в странах Евросоюза в индустрии возобновляемой энергетики будет создано 2,8 миллионов рабочих мест. Индустрия возобновляемой энергетики будет создавать 1,1 % ВВП.

Перспективы в России

Россия может получать 10 % энергии из ветра. По сравнению с США и странами ЕС использование возобновляемых источников энергии (ВИЭ) в России находится на низком уровне. Сложившуюся ситуацию можно объяснить доступностью традиционных ископаемых энергоносителей. Один из основных барьеров для строительства крупных электростанций на ВИЭ — отсутствие положения о стимулирующем тарифе, по которому государство покупало бы электроэнергию, производимую на основе ВИЭ (feed-in tariff).

В 2017 году администрация городского округа Химки запустила проект по созданию Центра альтернативной энергетики, который будет разрабатывать новые схемы обеспечения электроэнергией промышленных предприятий и городского хозяйства. Центр будет организован на базе расположенного на Ленинградском шоссе дилерского центра садово-парковой техники Юнисоо.

Принцип действия и применение солнечных батарей в частном доме

Физическое явление, на котором основан принцип работы этого источника энергии – фотоэффект. Солнечный свет, попадая на её поверхность, высвобождает электроны, что создает избыточный заряд внутри панели. Если подключить к ней аккумулятор, то благодаря зарнице в количестве зарядов в цепи появится ток.

Принцип работы солнечной батареи заключается в фотоэффекте

Конструкции, способные улавливать и преобразовывать энергию солнца, многочисленны, разнообразны и постоянно улучшаются. Для множества народных умельцев совершенствование этих полезных конструкций превратилось в отличное хобби. На тематических выставках такие энтузиасты охотно демонстрируют множество полезных идей.

Чтобы сделать солнечные батареи, необходимо приобрести монокристаллические или поликристаллические фотоэлементы, поместить их в прозрачный каркас, который фиксируют прочным корпусом

Основа солнечной батареи — специальные кристаллы, которые улавливают энергию. В домашних условиях такие элементы изготовить невозможно, их придется приобретать

Кристаллы очень хрупкие, обращаться с ними нужно осторожно. Чтобы сделать солнечную батарею, необходимо:

  1. Изготовить каркас для солнечных батарей из прозрачного материала, например, оргстекла.
  2. Сделать корпус из металлического уголка, фанеры и т. п.
  3. Аккуратно спаять кристаллические элементы в схему.
  4. Поместить фотоэлементы в каркас.
  5. Выполнить монтаж корпуса.

Вообще существует два вида фотоэлементов: монокристаллические и поликристаллические. Первые более долговечны и имеют КПД около 13%, а вторые быстрее выходят из строя, их КПД несколько ниже — менее 9%. Однако монокристаллические фотоэлементы хорошо работают лишь при стабильном потоке солнечной энергии, в облачный день их эффективность становится значительно ниже. А вот поликристаллические элементы переносят капризы погоды гораздо лучше.

Полученное электричество можно использовать для питания бытовой техники или же для обогрева помещения при помощи технологии теплого пола. Но энергия солнца пригодна не только для выработки электрической энергии. С помощью солнечной энергии можно нагревать воду. Об этом в следующем разделе статьи. Итак, преимущества этого источника энергии:

  • неиссякаемость;
  • отсутствие каких-либо отходов или шумов в процессе производства энергии;
  • автономность;
  • относительно дешевое техническое обслуживание;
  • прогрессивность;

Недостатки этой технологии таковы:

  • высокая стоимость самих панелей и наладочных работ;
  • небольшое загрязнение планеты выбросами при производстве;
  • дорогие аккумуляторные батареи;
  • низкий КПД панелей, и, как следствие, необходимость их большого количества.

Видео: изготовление солнечной батареи своими руками

Солнечная батарея своими рукамиСолнечная батарея своими руками

Готовые батареи размещают, разумеется, на самой солнечной стороне крыши. При этом следует предусмотреть возможность регулирования наклона панели. Например, во время снегопадов панели следует размещать практически вертикально, иначе слой снега может помешать работе батарей или даже повредить их.

Бурибаевская солнечная электростанция (СЭС)

В связи с широким распространением возобновляемых источников энергии в России стали вводить все больше солнечных электростанций. Бурибаевская СЭС была построена в 2015 году близ села Бурибай республики Башкортостан. Введена в эксплуатацию компанией Авелар Солар Технолоджи в конце октября 2015 года. Первая мощность составила 10 МВт. Вторую такую же ввели в эксплуатацию в декабре 2016 года.

Для Башкирии эта СЭС стала первой. Сегодня она входит в список 7 солнечных электростанций общей мощностью 59 МВт. На оптовый рынок электроэнергии Бурибаевская СЭС была выведена в начале марта 2016 года. Основные характеристики электростанции:

  • всего на объекте установлено 176 тыс. солнечных модулей, произведенных на заводе компании Hevel Solar;
  • СЭС занимает площадь в 40 Га;
  • 70% комплектующих были произведены на российских предприятиях;
  • в пасмурную погоду вырабатывает 20-25% энергии от установленной мощности, в зимнее время – до 70%.

Франция

На установленную мощность приходится 4,6 ГВт. Процент от общемировой солнечной генерации – 3,3%. Большее количество солнечной энергии во Франции производится на маленьких станциях, подключенных к электрической сети.

С учетом Национального плана развития ВИЭ Франция к 2015 году планирует довести мощность солнечной электростанции до 3000 МВт, а к 2020 году до 5400 МВт. К 2012 году первая часть программы уже реализована.

8. Великобритания

Предел мощности – 3,4 ГВт. На долю в общей солнечной генерации приходится 2,4 %. Великобритания – это одна из европейских стран, которая за последний год увеличила темпы развития солнечной энергетики.

В 2014 году в стране была принята «Стратегия развития солнечной энергетики», с учетом которой к 2020 году запланировали довести мощность электростанций до 20 ГВт.

Ветроэнергетика

Ветер является старым, хорошо испробованным источником возобновляемой энергии. Примеры его применения в ветряных мельницах и на парусных судах известны каждому школьнику.

Ветроэнергетика специализируется на превращении силы ветра в механическую, тепловую и электрическую форму энергии. Ветрогенераторы сегодня производятся различной мощности, которая зависит от площади, охватываемой лопастями турбины. Генераторы производства лидера в этой сфере фирмы Vestas из Дании, достигают в высоту более 110 метров.

Чтобы эффективнее улавливать мощные воздушные потоки, ветряные генераторы удобнее всего устанавливать либо на побережье, либо в открытом море. На расстоянии в 10 и более километров от берега сооружают на сваях целые ветряные электростанции. Они практически не потребляют традиционное топливо.

Ветроэлектростанция в открытом море

Работать аппараты начинают при скорости ветра 3 м/с, для оптимальной работы требуется 15 м/с. При сильных порывах выше 25 м/с генератор необходимо отключать, чтобы устройство не вышло из строя. Требование определенного диапазона скоростей – один из недостатков ветряной системы.

Другим существенным недостатком этого вида получения электричества являются высокая стоимость, превышающая затраты в угольной энергетике, и необходимость выделения под ветровые установки большого объема земель. Жужжащий звук, который издают работающие турбины, плохо переносится людьми, вынужденными жить по соседству с ними.

Несмотря на это, по объемам вырабатываемой электроэнергии ветроэнергетика занимает второе место после гидроэнергетической отрасли. Её роль и значение признается во всем мире.

Использование возобновляемых источников электричества в виде ветрогенераторов и солнечных станций позволяет решить проблемы с доставкой электроэнергии в удаленные, труднодоступные районы Севера. А учитывая их исключительную экологическую чистоту, эти виды возобновляемых источников энергии могут быть востребованы в густонаселенных регионах с плохой окружающей средой.

Соблюдение техники безопасности

Практичная альтернативная энергетика: виды

Альтернативные источники энергии – это разнообразные перспективные способы получения, а также передачи полученной электроэнергии. При этом такие источники энергии, возобновляемые, и приносят минимальный вред окружающей среде. К таким источникам энергии относятсясолнечные панели и солнечные станции.

Они в свою очередь подразделяются на 3 типа получения энергии с помощью:

  • Фотоэлементов;
  • Солнечных панелей;
  • Комбинированных вариантов.

Популярно использование систем зеркал, которые нагревают воду до высоких температур, в результате чего получается пар, который, проходя через систему труб, крутит турбину. Ветряки и ветряные станции дают ток за счет энергии ветра, который крутит специальные лопасти, соединенные с генераторами.

Популярно использование энергии волн, а также приливов и отливов.

Из геотермальных источников горячая вода широко используется для вырабатывания электроэнергии. Интересно использование кинетической энергии в некоторых помещениях, например, в спортивных залах, где движущиеся части тренажеров соединены с помощью тяг с генераторами, которые, в результате движения людьми, вырабатывают электроэнергию.

На этот раз все серьезно с альтернативной энергией

Альтернативная энергетика звучит как способ получения энергии из альтернативных источников и выход из положения во многих случаях. Ветряные мельницы и солнечные батареи едва ли кажутся способами производства достаточного количества электроэнергии для питания занятого, развивающегося мира, как это делают сейчас печи и паровые турбины.

Автомобили на батарейках пока занимают единицы процентов. Но сторонники новых альтернатив настроены серьезно. Хотя многие заинтересованы в экологических выгодах, их главный мотив-деньги. Они вкладывают свои деньги в идеи, которые, по их мнению, сделают их большие суммы больше. И для того, чтобы альтернативы могли это сделать, они должны быть одновременно такими же дешевыми, как (или дешевле), и такими же простыми в использовании, как (или проще) то, что они заменяют.

Что касается замены нефти, то дешевизна внезапно перестает быть проблемой. Биотопливо или аккумуляторы, которые будут питать автомобили в альтернативном будущем, должны превзойти бензин по сегодняшним ценам.

Конечно, сегодняшние цены-это не завтрашние, цена на нефть может упасть, но так же упадут и цены на биотопливо, поскольку инновации улучшают урожай, производственные процессы и топливо.

Электрическая энергия, между тем, останется дешевле бензиновой энергии почти в любом обозримом будущем, и завтрашние электромобили будет так же легко наполнить током из розетки, как сегодняшние бензином из автозаправки.

В отличие от автомобилей, работающих на водородных топливных элементах, которые были запущены серийно, автомобили на аккумуляторных батареях не нуждаются в новых трубах для доставки своей энергии. Существующая сеть, усовершенствована для более эффективного использования своих электростанций и должна быть достаточно развитой инфраструктурой.
Главное-это природа этих электростанций.

Термоядерная энергия

Это предел мечтаний многих современных физиков. Работа по обузданию термоядерной реакции начались еще в 50-х годах прошлого века, но до сих пор действующий реактор так и не был получен. Впрочем, новости с этих фронтов достаточно оптимистичные: ученые предполагают, что в следующие 20-30 лет они все-таки смогут создать действующий прототип.

Кстати, а почему это направление науки так важно? Дело в том, что при слиянии двух атомов водорода или гелия образуется в сотни тысяч раз больше энергии, чем если бы распалось несколько тысяч ядер урана! Запасы трансурановых элементов велики, но они постепенно истощаются. Если же использовать для выработки энергии водород, его запасов только на нашей планете хватит на сотни тысяч лет

Представьте себе компактный реактор, который без дозаправки может работать несколько десятков лет, полностью обеспечивая электричеством огромную инопланетную базу! Термоядерный нетрадиционный источник энергии – это практический шанс для всего человечества, дающий возможность начать широкое освоение Космоса.

К сожалению, недостатков у технологии очень много. Во-первых, до сих пор нет ни одного мало-мальски рабочего прототипа, а прорывы в этом направлении были очень и очень давно. С тех пор мало слышно о каких-то реальных успехах.

Во-вторых, при слиянии легких ядер образуется огромное количество легких нейтронов. Даже грубые расчеты показывают, что элементы реактора всего за пять лет станут настолько радиоактивными, что их материалы начнут разрушаться, полностью дегенерировав. Словом, технология эта крайне несовершенна, а ее перспективы все еще туманны. Впрочем, даже если верны хотя бы грубые подсчеты, то данный нетрадиционный альтернативный источник энергии наверняка может стать настоящим спасением для всей нашей цивилизации.

Бельгия

Установленная мощность равняется 2,8 ГВт. На долю в общемировой генерации приходится 2%. Правительство планирует к 2025 году полностью отказаться от ядерной энергии.

Солнечная энергетика является направлением альтернативной энергетики, которое основано на непосредственном применении солнечных лучей с целью получения энергии в определенном виде. Солнечная энергетика использует возобновляемые источники энергии и является экологически чистой. В процессе ее производства не выделяются вредные отходы.

Производство энергии при помощи таких станций согласовывается с концепцией распределенного производства энергии. Гелиотермальная энергетика – это процесс нагревания поверхности, которая поглощает солнечные лучи, предусматривая последующее распределение и применение тепла.

К особым видам станций относят солнечные системы концентрирующего типа. В таких установках лучи при помощи системы линз и зеркал фокусируются в концентрированный луч света. Он является источником тепловой энергии для нагрева рабочей жидкости.

https://www.youtube.com/watch?v=FofY-n0gj_U

Волновая энергетика

Процесс выработки электричества из волн происходит в результате преобразования энергии прилива. В основе большинства электростанций такого типа находится бассейн, который организуется или в ходе отделения устья реки, или за счет перекрытия залива плотиной. В образованном барьере устраиваются водопропускные отверстия с гидротурбинами. По мере изменения уровня воды во время приливов происходит вращения турбинных лопастей, что и способствует выработке электричества. Отчасти этот вид энергетики схож с принципами работы гидроэлектростанциями, но сама механика взаимодействия с водным ресурсом имеет существенные отличия. Волновые станции могут использоваться на побережьях морей и океанов, где уровень воды поднимается до 4 м, позволяя вырабатывать мощность до 80 кВт/м. Недостаток таких сооружений связан с тем, что водопропускные сооружения нарушают обмен пресной и морской воды, а это негативно сказывается на жизни морских организмов.

Измерительные трансформаторы

Измерительные трансформаторы используют главным образом для подключения электроизмерительных приборов к цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказываются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т. е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электроустановок от аварийных режимов.

Измерительные трансформаторы подразделяют на два типа – трансформаторы напряжения и трансформаторы тока. Трансформаторы напряжения служат для включения вольтметров, а также других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов. Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сотен вольт-ампер; они рассчитаны для совместной работы со стандартными приборами (амперметрами на 1; 2; 2,5 и 5 А, вольтметрами на 100 и 100 Ц3 В).

Трансформатор напряжения (рис. 11, б) выполняют в виде двухобмоточного понижающего трансформатора. Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют. Условное обозначение трансформатора напряжения такое же, как двухобмоточного трансформатора. Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что

U1 = U2K,

где K – коэффициент трансформации.

Поскольку ток холостого хода создает в трансформаторе некоторое падение напряжения, преобразование напряжения происходит с некоторой погрешностью по значению и фазе.

В зависимости от значения допускаемых погрешностей стационарные трансформаторы напряжения подразделяют на три класса точности: 0,5; 1 и 3; а лабораторные – на четыре класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса соответствует значению относительной погрешности по фазе при номинальном напряжении U1ном.

Трансформатор тока (рис. 11, а) выполняют в виде двухобмоточного повышающего трансформатора или в виде проходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку. Первичной обмоткой трансформатора служит медный стержень, проходящий внутри изолятора.

Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором ток I1 во много раз больше тока холостого хода I, и с достаточной степенью точности можно считать, что

I1 = I2 / K.

В действительности из-за наличия тока холостого хода в рассматриваемом трансформаторе между векторами этих токов первичной и вторичной обмоток имеется некоторый угол, отличный от 180°, что создает относительную токовую (амплитудную) и угловую погрешность.

В зависимости от значения допускаемых погрешностей трансформаторы тока подразделяют на пять классов точности: стационарные – на классы 0,2; 0,5; 1; 3 и 10; лабораторные – на классы 0,01; 0,02; 0,05; 0,1; 0,2. Приведенные цифры соответствуют допускаемой для данного класса токовой погрешности при номинальном значении тока.

а                                                                                                                                         б

Рис. 11. Трансформаторы: а – трансформаторы тока; б – трансформаторы напряжения на 220 кВ

Просмотров: 767

Чем заменить

Заменить диод диодом Шоттки вполне возможно, лишь бы подходил по основным характеристикам, напряжение и ток. А вот обратная замена нежелательна. Дело в том, что Шоттки в силу своих характеристик, меньше греются. При такой замене он быстро выйдет из строя. Конечно если проанализировать схему, то можно подобрать аналог с запасом по мощности.

Три метода проверки диодов ШОТКИ УЛЬТРАФАСТ ВЫПРЯМИТЕЛЬНЫХ СИЛОВЫХТри метода проверки диодов ШОТКИ УЛЬТРАФАСТ ВЫПРЯМИТЕЛЬНЫХ СИЛОВЫХ
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий