Электронные предохранители и ограничители постоянного и переменного тока

Ограничитель мощности и его принцип работы

Устройство постоянно анализирует рабочий процесс нагрузки электролинии. В случае скачка мощности, ограничитель мгновенно обесточивает поврежденную линию. После истечения установленного времени устройство автоматически возобновляет подачу питания. Если данный показатель придет в норму раньше установленного времени, ограничитель также автоматически подключит линию.

В функции измерительного блока входит установление показаний электрической энергии по токовой характеристике и напряжению. Результат передается в логический блок, где сопоставляется две величины – показатели потребляемой энергии и критические показатели.

В случае если показатель подходит к максимально допустимому значению здесь вступает в работу исполнительный блок и отключает данную электролинию. После срабатывания ограничителя необходимо отключить мощный электроприбор и линия снова заработает.

Настройка порога срабатывания, времени отключения, а также времени возврата к рабочему состоянию осуществляется при помощи потенциометров. На выводах устройства скомпонованы два комплекта контактов – для подачи питания и управления включением и отключением прибора. Некоторые экземпляры оснащены функцией подсоединения исключительно нагрузок, относящихся к приоритетным. При этом неприоритетные потребители не подсоединяются.

Ограничитель мощности ОМ-310Ограничитель мощности ОМ-310

Управление индуктивной нагрузкой

При управлении индуктивной нагрузкой, такой как электродвигатель, или
при наличии помех в сети напряжение может стать достаточно большим,
чтобы симистор самопроизвольно открылся. Для борьбы с этим явлением в
схему необходимо добавить снаббер — это сглаживающий конденсатор и
резистор параллельно симистору.

Снаббер не сильно улучшает ситуацию с выбросами, но с ним лучше, чем
без него.

Керамический конденсатор должен быть рассчитан на напряжение,
большее пикового в сети питания. Ещё раз вспомним, что для 230 В — это
325 В. Лучше брать с запасом.

Типичные значения: , .

Есть также модели симисторов, которым не требуется снаббер. Например,
BTA06-600C.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25

Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

  Способы защиты электрической сети квартиры или дома от скачков напряжения

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ

Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение – действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 – 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что транзистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через
затвор не идёт, затвор образует с подложкой паразитный
конденсатор. Когда транзистор открывается или закрывается, этот
конденсатор заряжается или разряжается через вход ключевой схемы. И
если этот вход подключен к push-pull выходу микросхемы, через неё
потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение , максимальный ток через сток и
сопротивление сток — исток у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Преимущества активного ограничения тока

Активное ограничение тока поддерживает ток светодиодов на постоянном безопасном уровне в течение тех периодов, когда уровень солнечной освещенности превосходит средний, и панели генерируют напряжения, превышающие VMP. Кроме того, даже при выходе из строя одной светодиодной цепочки, остальные продолжат работать без каких-либо проблем. Это также позволяет, используя более мощные 20-ваттные фотогальванические панели, питать несколько светодиодных ламп, которые можно отдельно включать или выключать по мере необходимости. Несмотря на изменяющуюся нагрузку, схема ограничения тока гарантирует, что токи светодиодов каждой панели не превысят установленного для них значения.

Схемы включения транзисторов

Обычно биполярный транзистор всегда используется в прямом включении – обратная полярность на КЭ переходе ничего интересного не дает. Для прямой схемы подключения есть три схемы включения: общий эмиттер (ОЭ), общий коллектор (ОК), и общая база (ОБ). Все три включения показаны ниже.

Они поясняют только сам принцип работы – если предположить, что рабочая точка каким-то образом, с помощью дополнительного источника питания или вспомогательной цепи установлена. Для открывания кремниевого транзистора (Si) необходимо иметь потенциал ~0,6 В между эмиттером и базой, а для германиевого хватит ~0,3 В.

Как работает ТРАНЗИСТОР Реально | Самое понятное объяснение! Ч1Как работает ТРАНЗИСТОР Реально | Самое понятное объяснение! Ч1

Общий эмиттер

Напряжение U1 вызывает ток Iб, ток коллектора Iк равен базовому току, умноженному на β. При этом напряжение +E должно быть достаточно большим: 5 В-15 В. Эта схема хорошо усиливает ток и напряжение, следовательно, и мощность. Выходной сигнал противоположен по фазе входному (инвертируется). Это используется в цифровой технике как функция НЕ.

Если транзистор работает не в ключевом режиме, а как усилитель малых сигналов (активный или линейный режим), то при помощи подбора базового тока устанавливают напряжение U2 равным E/2, чтобы выходной сигнал не искажался. Такое применение используется, например, при усилении аудиосигналов в усилителях высокого класса, с низкими искажениям и, как следствие, низким КПД.

Общий коллектор

По напряжению схема ОК не усиливает, здесь коэффициент усиления равен α ~ 1. Поэтому эта схема называется эмиттерный повторитель. Ток в цепи эмиттера получается в β+1 раз больше, чем в цепи базы. Эта схема хорошо усиливает ток и имеет низкое выходное и очень высокое входное сопротивление.

Тут самое время вспомнить о том, что транзистор называется трансформатором сопротивления. Эмиттерный повторитель имеет свойства и рабочие параметры, очень подходящие для пробников осциллографов. Здесь используют его огромное входное сопротивление и низкое выходное, что хорошо для согласования с низкоомным кабелем.

Общая база

Эта схема отличается наиболее низким входным сопротивлением, но усиление по току у нее равно α. Схема с общей базой хорошо усиливает по напряжению, но не по мощности. Ее особенностью является устранение влияния обратной связи по емкости (эфф. Миллера). Каскады с ОБ идеально подходят в качестве входных каскадов усилителей в радиочастотных трактах, согласованных на низких сопротивлениях 50 и 75 Ом. Каскады с общей базой очень широко используются в технике СВЧ и их применение в радиоэлектронике с каскадом эмиттерного повторителя очень распространено.

Что такое ограничитель мощности тока?

Если ответить на этот вопрос с точки зрения функций, это устройство — своего рода фильтр поступающего напряжения в дом. С точки зрения конструктивных особенностей, ограничитель мощности — это немного модифицированный автоматический выключатель максимального тока, поэтому этот способ контроля и управления источником питания отличается высокой надежностью, точностью и высоким уровнем безопасности.

Самый простой тип ограничителя мощности — это просто выключатель максимального тока. С помощью данного устройства можно запрограммировать определенную величину мощности тока, при превышении которой выключатель просто отключит электрическую цепь, но при этом останется подключенным к ней.

Большинство современных ограничителей мощности устроены немного сложнее, поскольку через определенное время у них также есть система повторного включения цепи. Реализация такого решения не требует слишком сложной конструкции ограничителя, но делает устройство более универсальным и полезным. При рассмотрении вопроса о покупке ограничителя мощности следует иметь в виду, что этот тип контрольного и защитного оборудования нельзя использовать для цепей, в которых имеются устройства, требующие выдачи значительного пускового тока, включая люминесцентные лампы,

Отличаются ли трехфазный ограничитель мощности и однофазный ограничитель мощности друг от друга? С точки зрения принципа действия — нет, но значения отключений и внешней конструкции могут отличаться из-за специфики тока и большей мощности устройств, подключенных к источнику питания.

Ограничение тока генератора

В автомобильных генераторах важно контролировать не только величину выдаваемого напряжения, но и отдаваемый в нагрузку ток. Если превышение первого может привести к выходу из строя осветительного оборудования, тонких обмоток устройств, а также перезарядке аккумулятора, то второй – повредить обмотку самого генератора

Отдаваемый ток увеличивается тем больше, чем больше нагрузки подключается на выходе генератора (за счет уменьшения общего сопротивления). Для предотвращения этого применяют ограничитель силы тока электромагнитного типа. Принцип действия его основан на включении в цепь возбуждающей обмотки генератора дополнительного сопротивления в случае возрастания электричества.

Конструкция №2. Активный ограничитель тока

Резисторы в схеме на Рисунке 1 можно заменить активными цепями ограничения тока. В данной конструкции мы используем две 12-вольтовые солнечные панели, последовательное соединение которых позволяет управлять более длинными цепочками светодиодов, чтобы получать больше света

Обратите внимание, что если такой вариант окажется более выгодным, вместо двух 12-вольтовых фотогальванических панелей можно использовать одну 24-вольтовую панель

Расчеты параметров этой схемы показывают следующее:

Число светодиодов в цепочке равно

Округление в меньшую сторону дает 11 светодиодов.

Число светодиодных цепочек равно

(округляем до 3).

Ток каждой цепочки

Рисунок 4. Схема 20-ваттной солнечной дневной лампы с активным ограничением тока.

Как видно из Рисунка 4, схема ограничения тока состоит из мощного транзистора Q1 (TIP31C). Светодиодная Цепочка A подключена к коллектору транзистора Q1. Ток смещения Q1 поступает через резистор R1. В цепь эмиттера включен токоизмерительный резистор R2. Падение напряжения на R2 управляет транзистором Q2. Когда оно достигает 0.6 В, транзистор открывается. Это уменьшает напряжение базы Q1, и ток ограничивается до уровня

На Рисунке 5 показана конструкция 20-ваттной дневной лампы. Чтобы получить 11 светодиодов в каждой цепочке, мы используем две печатные платы, включенные последовательно. На первой печатной плате установлено 5 светодиодов с суммарной номинальной мощностью 5 Вт. На второй плате смонтирована цепочка из 7 светодиодов с суммарной номинальной мощностью 7 Вт.

Рисунок 5. Матрица светодиодов для 20-ваттной дневной лампы.

При последовательном соединении двух плат число светодиодов в цепочке становится равным 12, поэтому один светодиод надо закоротить. Фотография на Рисунке 6 показывает, каким образом это можно сделать, чтобы уменьшить длину цепочки до 11 светодиодов.

Рисунок 6. Один из светодиодов был намеренно закорочен, чтобы
сократить число светодиодов в цепочке до 11.
 
Рисунок 7. Крупный план платы, на которой видны три схемы ограничения тока.
 
Рисунок 8. 20-ваттная солнечная дневная лампа с активным ограничением тока, готовая
к использованию.

Ограничитель с обратной связью

Такая же простая диодная форма ограничения тока может быть включена в цепи питания, которые используют обратную связь для определения фактического выходного напряжения и обеспечивают более точно регулируемый выход. Если точка измерения выходного напряжения принимается после последовательного токового резистора, то падение напряжения может быть исправлено на выходе.

Эта схема обеспечивает гораздо лучшее регулирование, чем регулятор прямого эмиттера, также может учитывать падение напряжения в резисторе с токовым пределом, если имеется достаточное падение напряжения на транзисторе в цепи источника питания. Выходное напряжение можно также отрегулировать, чтобы получить требуемое значение с помощью переменного резистора. Диодная форма ограничения тока может быть легко интегрирована в схему питания. Кроме того, это дешёво и удобно.

Схемы электронных предохранителей

На представленных схемах отображаются наиболее простые автоматические защитные средства от токовых перегрузок. В основе устройства этих приборов лежат полевые транзисторы, обладающие начальным током, который не может быть превышен. Необходимая величина тока задается путем подбора определенного транзистора.

На схеме 1 используется элемент марки КП302А, указывающий на максимальное значение тока 30-50 мА. Для того чтобы повысить это значение, необходимо включить параллельно сразу несколько транзисторов.

Схема 2 работает с использованием обычных биполярных транзисторов с минимальным коэффициентом передачи тока 80-100. Путь входного напряжения начинается в резисторе R1, далее проходит через транзистор VT1, открывая его. Режим насыщения транзистора способствует уходу большей части напряжения к выходу. Если ток не превышает пороговое значение, в этом случае транзистор VT2 остается закрытым и светодиод HL1 светиться не будет. В схеме 2 резистор R3 является датчиком тока.

В случае падения напряжения транзистор VT1 закроется, ограничивая, таким образом, прохождение тока через нагрузку. Элемент VT2, наоборот, будет открыт, с одновременным включением светодиода. Номиналы элементов, указанных на схеме 2, соответствуют току короткого замыкания с напряжением 0,7 вольт, сопротивлением 3,6 Ом и силой тока 0,2 – 0,23 ампера.

На схеме 3 в электронном предохранителе в качестве ключа используется полевой транзистор VT1 повышенной мощности. Срабатывание защиты происходит при токе, зависящем от соотношения резистивных элементов. Важную роль играет величина сопротивления датчика тока, последовательно включаемого в цепь вместе с полевым транзистором. После того как защита сработала, повторное подключение нагрузки происходит путем нажатия кнопки SA1.

Расчет мощности рассеивания


Условные обозначения резисторов на схемах

В любом из вариантов при выборе электрического сопротивления цепи следует устанавливать несколько меньший ток, чтобы продлить срок службы светодиода. Чтобы предотвратить повреждение нагревом, изделие применяют в рекомендованном температурном диапазоне. Для Epistar 1W HP – от -40°C до +80°C. При необходимости – применяют монтаж на специализированном радиаторе «звезда». Это дополнение увеличивает эффективную площадь рассеивания тепла.

Для точного подбора оценивают рассеиваемую мощность резистора: P = I2 * R = (0,35)2 * 7,57 = 0,1225 * 7,57 ≈0,93 Вт. Запас по этому параметру делают не менее 20-25%. Номинала 1 Вт недостаточно, поэтому выбирают следующий номинал в стандартном ряду – 2Вт.

Экономичность собранной схемы проверяют отношением Uc/Uи = 2,35/5 = 0,47 (47%). Итоговый результат показывает, что более половины электроэнергии в данном случае используется впустую. На самом деле показатель еще хуже, так как не вся мощность потребления расходуется светодиодом на излучение в видимой части спектра. Значительная часть – электромагнитные волны ИК диапазона.

Достоинства и недостатки

Помимо возможности отключения избыточной мощности ограничитель мощности обладает целым рядом дополнительных характеристик. Они уникальны и очень полезны. Он помогает не только следить за не превышением мощности, но и повышать безопасность энергосети, следить за безопасностью эксплуатируемого оборудования.

К достоинствам можно отнести наличие следующих технических характеристик у ограничителей:

Он следит не только за активной частью мощности, которую дают обычные электронагреватели и другие активные потребители. Он отслеживает также и реактивную составляющую потребления, которую дают электродвигатели. Реактивную мощность невозможно отследить другими устройствами.

Рабочие характеристики этого аппарата не зависят от температуры окружающей среды, он работает с одинаковой точностью в широком диапазоне температур. В отличие от него автоматический выключатель может длительное время не срабатывать при пониженных температурах, создавая при этом опасные перенапряжения в сети.

Это устройство обладает цветовой индикацией. В самых простых устройствах один светодиод показывает наличие избыточной нагрузки, в более совершенных устройствах производится индикация текущей потребляемой мощности на цифровом дисплее, которая дает текущую информацию о нагрузке в сети и другие параметры.

При превышении заданного уровня потребления электроэнергии потребитель отключается не мгновенно, а в соответствии с некоторой задержкой, которая выставляется вручную. Это позволяет пропускать короткие пиковые нагрузки и не давать работать сети с большими длительными нагрузками. Например, выставив нужное время можно дать время мощному электрочайнику вскипятить воду, но не допустить более длительных нагрузок.

На нем можно выставлять значение потребления, на которое он будет срабатывать. Для установки новых значений по нагрузке не требуется покупка новых приборов. Благодаря этому можно следить за отсутствием хищений электроэнергии.

Это устройство включает нагрузку самостоятельно по истечении заданного времени. Это время выставляется на устройстве вручную. Выполняется так называемое автоматическое повторное включение. Благодаря этому нет необходимости открывать электрический щит при каждом срабатывании. Это очень удобно не только для потребителей, но и для снабжающих организаций. Они могут ограничивать доступ к электрическому щиту, так как включение электричества осуществляется автоматически по истечении определенного времени.

Ограничитель не выполняет функции по отключению сети. Он измеряет ток, проходящий через силовую линию, и подает управляющие сигналы на пускатели, которые управляют системой. Поэтому нет необходимости создавать дополнительные разрывы в сети.

Ограничители потребления могут выполнять функцию по защите трехфазных электродвигателей при обрывах фазы, могут контролировать не симметрию токов и реагировать на неё. Дополнительной функцией является защита от некачественного напряжения. В этом случае он контролирует питающее напряжение всех трех фаз. Аппарат может выполнять функцию устройства защитного отключения (УЗО). При этом он контролирует токи уходящие из системы в землю.

К недостаткам этого устройства можно в первую очередь можно отнести его дороговизну. Он существенно дороже обыкновенного автомата. Сам ограничитель не может производить отключение и включение нагрузок с большими токами. Вместе с ним необходимо устанавливать магнитные пускатели или контакторы.

Ограничитель подает небольшой ток на управляющие катушки пускателя и он осуществляет включение или выключение силовой линии. Стоимость электромонтажных работ дополнительно увеличивается на стоимость этого оборудования. Кроме того необходимо регулярно следить за исправностью пусковых устройств, так как в них есть движущиеся части.

И наконец, стоит отметить, что эти аппараты требуют дополнительного пространства в электрическом щите. В силу этих причин потребители по собственному желанию редко устанавливают подобное оборудование. Оно в большинстве случаев устанавливается по требованию поставщиков электроэнергии в соответствии с согласованными проектами по подключению.

УСТРОЙСТВО ДИОДНОГО ОГРАНИЧИТЕЛЯ ТОКА

Основа прибора – полевой транзистор с p-n переходом и n-каналом. Напряжение затвор-исток определяет ток стока. При соединении затвора с истоком ток через транзистор равен начальному току стока, который течет при напряжении насыщения между стоком и истоком. Поэтому для нормальной работы диодного ограничителя тока напряжение, приложенное к выводам должно быть больше некоторого значения, равного напряжению насыщения полевого транзистора.

Полевые транзисторы имеют большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные ограничители тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком. Для уменьшения тока ограничения и увеличения динамического сопротивления в истоковую цепь включается резистор автоматического смещения, задающий обратное смещение затвора.

При изменении напряжения приложенного между стоком и истоком от насыщения до пробоя ток почти не изменяется. Для получения тока ограничения требуемой величины сопротивление R резистора вычисляется по формуле:

где: Uси нас. – напряжение насыщения сток-исток Iогр – величина ограничения тока Icток. нач. – начальный ток стока

При разработке ограничителя тока на основе полевого транзистора напряжение насыщения сток-исток можно получить из выходной характеристики полевого транзистора, начальный ток стока – справочная величина.

Выходная характеристика полевого транзистора с p-n переходом КП312А и n-каналом.

При смене полярности напряжения диодный ограничитель тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных ограничителей тока может достигать сто миллиампер.

Цвет

Обычные титановые кольца обладают приятным серебристым оттенком и на взгляд непрофессионала ничем не отличаются от аналогов из платины или белого золота. Серые кольца, матовые или глянцевые, идеально подходят любителям минимализма и современности. Такое украшение отлично впишется в любой гардероб.

При желании на титан легко можно напылить золото. В этом случае обручальное кольцо напоминает классическое, отличаясь лишь большей прочностью и лёгкостью. Подобное решение придётся по душе любителям традиций, а также парам, которые не могут себе позволить чистое золото по причинам финансового или медицинского характера, например, из-за аллергии.

Если вы креативны и молоды, то стоит воспользоваться свойством титана менять цвет

Фиолетовые, алые, синие кольца, одного оттенка или с узорным градиентом, смотрятся очень необычно и ярко, привлекая внимание к своему владельцу. Подобное украшение не нуждается в декоре для того, чтобы выглядеть стильно, но при желании можно добавить как гравировку, так и драгоценные камни

Особняком стоят чёрные кольца, на которые отважится далеко не всякая пара. Тем не менее подобное решение уже долго не теряет позиций на модном Олимпе, подтверждая статус бесконечно элегантного.

Интересным дополнением для чёрных титановых колец станет россыпь камней – как алмазная крошка, так и более яркие варианты, к примеру, небольшие рубины. Для нежных мечтательных особ возможны ажурные переплетающиеся формы, а также добавление вставок из деликатного перламутра. Выглядят такие кольца романтично, при этом сочетание мощного титана и хрупкого перламутра на символическом уровне читается как соединение мужского и женского начала в браке, что подкупает красотой концепта.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий