Точный фазоуказатель на светодиодах

Какие есть приборы для проверки

Существуют два способа выполнения проверки фаз:

  • прямой. Метод, при котором проверка производится на вводах электроприборов, находящихся под рабочим электронапряжением. Обычно его применяют для приборов до 110 кВ;
  • косвенный. Метод, при котором процесс проводится на вторичном электронапряжении. Такую проверку обычно выполняют при наличии напряжения от 110 кВ и выше.

Схема фазировки трансформаторов с установкой перемычки

Приборов, используемых при проверке, не так много. Среди них популярны:

  • вольтметры. Обычно применяются в приборах с напряженностью до 1 кВ. Они подключаются непосредственно к выводам оборудования или частям устройств, которые проводят ток. Что касается точности, то она от таких приборов не требуется;
  • фазоуказатель. Следования фаз и их порядок определяют индукционными фазоуказателями. Они состоят из нескольких катушек, внутри которых расположены ферромагнитные сердечники и диск из алюминия. Принцип действия аппарата схож с действием электродвигателя асинхронного типа. При подключении его к трехфазной сети все катушки начинают вращения электромагнитного поля вокруг них. Из-за этого начинает вращаться диск, что показывает последовательность фаз сети.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Определение индикаторной отверткой

Одним из наиболее простейших способов определения нуля и фазы является использование для этих целей индикаторной отвертки.

Для осуществления данного процесса необходимо придерживаться следующего алгоритма действий:

  1. Первоначально потребуется отключить автомат, от которого происходит питание линии электросети на месте проверки.
  2. Провести зачистку обоих проверяемых проводников, достаточно снять не более 1-2 см. изоляционного слоя.
  3. После этого оба проводника разводятся друг от друга на безопасное расстояние, поскольку после подачи напряжения их случайное соприкосновение может стать причиной короткого замыкания.
  4. Можно приступать к идентификации фазного проводника. Для этого включается автоматический автомат, который подает напряжение, после этого необходимо будет взять индикаторную отвертку и прикоснуться к металлической области, расположенной возле основания рукояти.
  5. Категорически не допускается прикасаться к любым частям индикаторной отвертки, расположенным ниже рукояти, поскольку это вызовет удар электрическим током.
  6. Прикоснуться инструментом к одному из проверяемых проводов, при этом не нужно убирать палец с металлической области.
  7. Загорание лампочки, входящей в конструкцию отвертки, свидетельствует о том, что проводник является фазным. Соответственно второй провод – это нуль. Если загорание лампочки не произошло, наоборот, проводник был нулем, а второй является фазой.

Особенности прямой последовательности фаз

Это также называется способом асимметричных компонентов. Подробнее, элемент определения асимметричных электронных компонентов. Он основан на разложение несимметричной системы на 3 симметричные: прямая, обратная, нулевая.

Где применяется прямая последовательность фаз:

  1. Метод используется для определения асимметричных порядков действия электроэнергетических компонентов.
  2. Данный способ применяют некоторые элементы РЗиА. Например, на этом построен принцип действия трансформатора напряжения при последовательности в ноль. Основан принцип на суммировании значений напряжения во всех фазах.
  3. Для 3-фазных транспортных ЛЭП, в итоге получается матрица точных собственных направлений.

Этот способ определения удачно применяется, чтобы рассчитать несимметричные режимы 3-фазной линии, либо возникновения замыкания цепи. Фазоуказатель помогает определить прямую последовательность фаз, что нужно для работы некоторых устройств. При необходимости, можно легко изменить последовательность фаз.

Коротко о фазометре

Для проведения измерений фазометр подключается к цепям напряжения, которые выступают опорной точкой, и токовой цепи, которая показывает положение измеряемого вектора. При работе в 3-х фазной сети может потребоваться подключение ко всем фазам.

Особенность современных приборов заключается в упрощенном принципе применения, поэтому разобраться с особенностями и тонкостями использования фазометра не составит труда даже малоопытному специалисту.

Измерение производится для двух фаз, после чего последняя фаза вычисляется на базе сложения векторов. Кроме того, фазометр часто применяется для измерения косинуса «фи», о чем упоминалось в начале статьи.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки. Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Правильный порядок фаз

Правильный порядок фаз выглядит следующим образом: Поскольку оба светодиода управляются дополнительными выходами одного и того же триггера, может гореть только один светодиод. Для правильной последовательности фаз это будет зеленый — высокое состояние на выходе Q триггера A и, соответственно, низкое состояние на выходе из Q. Для обратной фазовой последовательности имеем обратную ситуацию на триггерах A и красный включенный светодиод.

Давайте посмотрим, как выглядит напряжение фазы S и T, если мы рассматриваем фазу R в качестве опорного напряжения:

Восходящий фронт на входе генератора CLK триггера A будет переписываться на выход Q текущего состояния в момент на входе D. Как видите на диаграмме, этот вход подключается к фазе S.

Полезное: Конденсаторный сварочный аппарат для аккумуляторов

Процесс синхронизации генерируется из фазы (входа) системы T.

При правильной последовательности фаз (как на рисунке выше) нарастающий фронт будет происходить, когда H-состояние будет достигнуто на входе D спуска A.

Когда изменяется последовательность фаз S и T, состояние L спуска A находится в состоянии L.

Указатель правильности чередования фаз TKF-12 от SonelУказатель правильности чередования фаз TKF-12 от Sonel

Проведение фазировки на напряжении 35 и 110 кВ

Для фазировки на напряжении 35 и 110 кВ используется указатель напряжения типа УВНФ-35-110. Его конструкция аналогична конструкции указателя УВНФ.

Отличительной особенностью схемы являются полистирольные конденсаторы ПОВ-15, заменившие собой резисторы. Параметры схемы подобраны так, что указатель стал нечувствителен к напряжению фазы относительно земли при согласном включении. Эта отстройка от действия рабочего напряжения обеспечила четкую избирательность указателя к напряжению одноименных и разноименных фаз.

В фазировочный комплект указателя входят одна общая рабочая трубка и две рабочие трубки (каждая рабочая трубка применяется при фазировки на своем напряжении — 35 или 110 кВ). Изоляция соединительного провода усилена. Изолирующие штанги рассчитаны для работы под напряжением в установках до 110 кВ.

Также для фазировки линий 35-110 кВ применяется указатель, в котором использован принцип сравнения падений напряжений на двух одинаковых делителях напряжения, собранных из резисторов. Применена компенсация емкости измерительной схемы на землю.

Он состоит из двух стеклопластиковых трубок, внутри которых помещены резисторы типа КЭВ-100. Применяются два комплекта резисторов: один комплект для фазировки в установках 110 кВ, другой — в установках 35 кВ. Сопротивление резисторов каждой трубки первого комплекта 400 МОм и дополнительного резистора 150 кОм, второго — 200 МОм и дополнительного 150 кОм. Точки отбора напряжения от резисторов соединяются между собой экранированным проводом, в рассечку которого включен выпрямитель на диодах и микроамперметр. Измерительная часть схемы экранирована. Экран и концы дополнительных резисторов при фазировке заземляются.

895

Закладки

Последние публикации

Умные розетки EKF сделают бытовые устройства управляемыми

Вчера, в 23:46

13

Управляемые удлинители для умного дома от EKF

Вчера, в 23:45

13

Однофазные многотарифные счетчики электроэнергии SKAT 115 от EKF

Вчера, в 23:44

16

Новые модемы EKF для беспроводной передачи данных

Вчера, в 23:42

14

Новые компактные миниклеммы STB от EKF для проводников разных сечений

Вчера, в 23:42

13

Расширение линейки ЯТП от EKF с тремя автоматическими выключателями

Вчера, в 23:41

15

Официальный мерч EKF для электриков

Вчера, в 23:40

17

Обучение EKF в феврале

Вчера, в 23:39

15

«ЗЭТО» продолжает совершенствовать выпускаемую продукцию

Вчера, в 11:32

29

Промышленный контроллер Devlink-С1000 сертифицирован в Республике Казахстан

3 февраля в 18:23

39

Самые интересные публикации

Новая газотурбинная ТЭЦ в Касимове выдаст в энергосистему Рязанской области более 18 МВт мощности

4 июня 2012 в 11:00

160819

Выключатель элегазовый типа ВГБ-35, ВГБЭ-35, ВГБЭП-35

12 июля 2011 в 08:56

36114

Выключатели нагрузки на напряжение 6, 10 кВ

28 ноября 2011 в 10:00

24485

Элегазовые баковые выключатели типа ВЭБ-110II

21 июля 2011 в 10:00

16573

Признаки неисправности работы силовых трансформаторов при эксплуатации

29 февраля 2012 в 10:00

15064

Распределительные устройства 6(10) Кв с микропроцессорными терминалами БМРЗ-100

16 августа 2012 в 16:00

14983

Оформляем «Ведомость эксплуатационных документов»

24 мая 2017 в 10:00

13635

Правильная утилизация батареек

14 ноября 2012 в 10:00

13477

Проблемы в системе понятий. Отсутствие логики

25 декабря 2012 в 10:00

11352

Расчет сетей по потерям напряжения

27 февраля 2013 в 10:00

9549

Контроль фазировки при помощи фазоуказателей

Осуществить контроль фазировки (порядка чередования и одноименности фаз) можно с помощью простого фазоуказателя ФУ 2, который состоит из трех обмоток и вращающегося при проверке алюминиевого диска. Прибор действует по принципу асинхронного двигателя и применяется следующим образом:

  • к выводам подключают 3 провода от источника напряжения;
  • диск начинает вращение;
  • если направление вращения совпадает с направлением стрелки на приборе, то порядок чередования прямой;
  • вращение в противоположную относительно направления стрелки сторону указывает на обратное чередование.

Спросом также пользуется серия портативных фазоуказателей TKF, которая имеет следующие преимущества:

  • компактность и простота в использовании (прибор не требует дополнительного источника питания);
  • удобная светодиодная индикация результатов измерений — три светодиода отвечают за информацию о наличии напряжения на каждой фазе, еще два, R и L, указывают собственно направление чередования фаз;
  • полнофункциональность.

Что такое фаза: определяемся в значении

Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.

Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.

Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.

Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.

В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.

Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.

В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.

Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.

Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.

За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.

Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.

В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.

Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.

Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.

Как посчитать площадь потолка с калькулятором?

Простой фазоуказатель

Нередко при подключении электрических устройств, питающихся от трехфазного напряжения, бывает необходимо знать порядок расположения фаз. Под правильной фазировкой подключения понимается положение когда по отношению к проводу, условно принятому за фазу А, положительный максимум напряжения наступает сначала в фазе В, затем в С, после чего снова в А, и т.д., как это показано на рис. 1.18.

Если при подключении асинхронного трехфазного электромотора нужное направление вращения можно получить, поменяв местами любые два подходящих провода, то эксперименты при подключении схемы мощного электропривода без соблюдения заданной фазировки могут привести к его повреждению.

Простое устройство, схема которого приведена на рис. 1.19, позволяет легко определить последовательность фаз. В отличии от фазоуказателя промышленного изготовления, данное не содержит вращающихся частей и имеет меньшие габариты, что более удобно. Кроме того, он работает в любом положении. Светящаяся лампа (одна из двух) покажет, к какому проводу фазоуказателя подключена фаза В. Если же светятся одновременно две лампы, то это говорит об отсутствии соединения в цепи А.

Работа устройства основана на использовании свойств комплексного значения сопротивления конденсатора (фазовый сдвиг проходящего через него напряжения).

Подробно принцип работы данного устройства и его математическое обоснование описано в литературе . В случае если проводимости цепей конденсатора и лампы на частоте 50 Гц выбраны

одинаковыми, то в результате векторного сложения напряжения в цепи R1-HL1, подключенной к фазе В, будет действовать напряжение 1,411ф, а в цепи фазы С 0,411ф, где 11ф фазное напряжение в проводах. Но так как используемые лампы обладают нелинейным сопротивлением, которое в десятки раз выше в нагретом состоянии, то светиться будет только одна лампа, которая подключена к фазе В.

В конструкции применены конденсаторы С1, С2 типа К73-17 на 630 В, резисторы R1…R4 типа МЛТ-2 (с рассеиваемой мощностью не менее 2 Вт). Их сопротивление может быть 7,5 кОм или 8,2 кОм. Лампы HL1, HL2 любые малогабаритные (индикаторные) на рабочее напряжение 28 В и мощностью 2,8 Вт (сопротивление лампы около 50 Ом).

При использовании указанных деталей схема конструктивно легко помещается в диэлектрической (пластмассовой) коробке с размерами 65x60x25 мм, рис. 1.20. Из нее выходят три толстых провода

с острыми концами. В качестве контактных проводов лучше использовать изолированные одножильные (медные) с сечением 2,5…4 мм кв., например типа ПВ-3. Они обеспечат достаточную жесткость для прижима к то ко про водящим цепям. А в случае необходимости легко изгибаются в нужном направлении. Это позволяет проводить измерение только одной рукой.

Для удобства использования фазоуказателя лампы HL1 и HL2 лучше располагать рядом с соответствующим контактным проводом. В этом случае место, где будет светиться индикаторная лампа, соответствует фазе В.

Аналогичное по принципу работы устройство, но более малогабаритное, можно собрать по схеме, показанной на рис. 1.21. В ней в качестве индикаторов фазы ” В” могут использоваться две одинаковые неонки любого типа. Электрическая схема содержит больше радиоэлементов, но все они малогабаритные, так как работают при меньшем токе, что позволяет использовать малогабаритные резисторы (меньшей мощности).

Резистор R3 не является обязательным, но он позволяет исключить сохранение на конденсаторах С1, С2 остаточного заряда (аналогично его можно установить и на схеме рис. 1.19).

Конденсаторы подойдут любого типа с допустимым обратным напряжением не менее чем 500 В, например К42У-2 на 630 В.

При изготовлении устройства может потребоваться подбор номиналов резисторов R2 и R5 для того чтобы исключить одновременное свечение индикаторов.

Литература: И.П. Шелестов – Радиолюбителям полезные схемы, книга 3.

Tweet Нравится

  • Предыдущая запись: Стереоусилитель с электронной регулировкой громкости на TDA7057AQ (2х8Вт)
  • Следующая запись: Усилитель сигнала вызова сотового телефона (с печатной платой)

Чем отличается ток от напряжения? (2)
Связь тока и напряжения (0)
ИСТОЧНИК ПИТАНИЯ ДЛЯ АВТОМОБИЛЬНОГО РАДИОПРИЕМНИКА (0)
ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АККУМУЛЯТОРА (0)
ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ ЛИТИЙ-НОННОГО ЭЛЕМЕНТА КОНТРОЛЛЕР ЗАРЯДНОГО УСТРОЙСТВА (0)
ОГРАНИЧИТЕЛЬ ЗАРЯДНОГО TOKA АККУМУЛЯТОРА (0)
ИНДИКАТОР НАПРЯЖЕНИЯ АККУМУЛЯТОРНОЙ БАТАРЕИ ПРОСТАЯ СХЕМА (0)

Удар тока при касании раковины

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий