Ответы на любые вопросы

Удостоверение электрика

По результатам итоговых испытаний электрику выдается специальное удостоверение электрика, в котором указывается присвоенная ему группа по электробезопасности а также оценка его квалификации по пятибалльной шкале. Квалификацию электрика необходимо подтверждать каждые пять лет, кроме того, возможно проведение внеочередной проверки на квалификацию, к примеру, с целью повысить разряд и(или) группу по электробезопасности. Следует отметить, что электрик, имеющий 2-5 группу допуска, при проведении работ, соответствующих данному диапазону групп, обязательно должен иметь при себе удостоверение.

В словаре Полная акцентуированная парадигма по А. А. Зализня

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети. Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей. Организации-поставщики прокладывают специальные трассы для организации сетевого распределения электроэнергии, используя при этом разные виды кабелей.

Зачем нужен электрический ток?

Критерии выбора безопасной электрофурнитуры и кабелей

Выбор кабелей

Старая проводка повсеместно выполнялась алюминиевой. Время доказало всю непрактичность и ненадежность использования столь хрупкого и мягкого металла в электротехнике. Поэтому прокладывать нужно медные провода, их и покупайте. Длину кабеля узнаете, если измерите рулеткой все планируемые каналы для него (нанесите длины на схему).

Что касается марки кабелей, то для жилых помещений пригоден негорючий кабель марки ВВГ НГ. Если в квартиру подведен заземляющий контур, то для розеток покупайте трёхжильный кабель с сечением от 2,5 квадратных миллиметра, для светильников можно взять 2х жильный кабель марки ВВГ с сечением от 1,5 кв. миллиметра. Для кухонной электропроводки используется трехжильный кабель с сечением от 4 кв. мм.

Вообще, подбор сечений медных кабелей для проводки квартир регламентирован ПУЭ и зависит от токовой нагрузки. Усредненные же показатели таковы, что за номинальную квартирную токовую нагрузку принимается 16 Ампер, которой соответствует сечение кабеля 2,5 кв. мм. Но, с теперешним уровнем технического прогресса можно ожидать только увеличения количества электроприборов. Поэтому вот вам совет – берите медный кабель с сечением 4 кв. мм. Он выдержит токовую нагрузку в 25 Ампер, ваша проводка не будет греться и прослужит очень долго.

Может Вас заинтересует статья Подключаем кухонную вытяжку к электросети

Внимание! Если электропроводка в квартире – это ее кровеносная система, то вводной кабель можно смело назвать ее артерией. Выбирайте его ответственно

Выбор электрофурнитуры

Выбирая розетки и выключатели, как правило, ориентируются на их функциональность и эстетичность. Но соблюдение норм электробезопасности при их монтаже является определяющим параметром выбора. Что имеется ввиду? Распространенная ныне внутренняя посадка розеток и выключателей еще не гарантирует безопасность их использования.

Надёжность электрофурнитуры обеспечивает конструкция ее крепёжных элементов. Если они изготовлены из мягкого металла, в процессе затяжки винтов они деформируются. Воткнув вилку в такую слабозакрепленную розетку, и затем, доставая ее назад, вы вытащите её вместе с розеткой и оголёнными контактами.

С выключателями несколько другая история. Вы ничего не дергаете, лишь нажимаете. Поэтому основа безопасности выключателя – в степени защиты его клавиш, которые должны быть выполнены из качественного полимера, что отражается на его цене.

Еще одно из важных звеньев электрофурнитуры — контактная группа. Приобретая дешевые изделия, вы рискуете получить электрофурнитуру со слабым функционалом. При затяжке проводников крепежи из тонкого металла образуют слабый контакт, что приводит к подгоранию. К тому же, в дешёвых розетках и выключателях на крепежах часто «слетает» резьба.

«Штепсельные розетки, устанавливаемые в квартирах, жилых комнатах общежитий, а также в помещениях для пребывания детей в детских учреждениях, должны иметь защитное устройство, автоматически закрывающее гнезда штепсельной розетки при вынутой вилке» (ПУЭ п. 7.1.49).

Как работает электричество, электризация

Положительный и отрицательный ионы

Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.

Электризация

Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.

Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.

Электризация

Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.

Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.

Электризация трением

А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.

Электризация металла

Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.

Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.

Статическое электричество

Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.

В рассмотренных примерах получают так называемое статическое электричество.

Электрическая сила

В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?

Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.

Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.

Формула закона Кулона

Сопротивление

Свойство материала проводника препятствовать прохождению электрического тока, называется электрическим сопротивлением. При движении по проводнику свободные электроны взаимодействуют на своём пути с атомами и другими электронами. Это приводит к потере ими части своей энергии. Можно сказать, что электрон испытывает сопротивление своему движению. Различные материалы имеют различное атомное строение. Соответственно, они оказывают различное сопротивление электрическому току. Сопротивление измеряется омметром. За единицу измерения сопротивления принят один «ом» (Ом). Это очень маленькое сопротивление. Для удобства работы применяются следующие величины измерения: ом (Ом, 1Ом), килоом (кОм, 1000 Ом), мегаом (Мом, 1000000 Ом). На схемах и в формулах сопротивление обозначается буквой «R» (эр). 

Сила тока, напряжение и сопротивление – взаимосвязанные величины, которые влияют друг на друга. Такую зависимость хорошо показывает закон Ома для участка цепи. Он гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Его можно записать в виде формулы  I = U/R.

Прямая пропорция показывает, что если увеличить в несколько раз напряжение, то ток увеличится во столько же раз. Обратная пропорция показывает, что если увеличить в несколько раз сопротивление, то ток уменьшится во столько же раз. 

Электробезопасность

Нет такого человека, который в настоящее время не использовал бы различные электроприборы. При всей пользе электрического тока существует опасность его воздействия на организм людей. Ещё в XVIII веке итальянский врач, физиолог и физик Луиджи Гальвани (1737 – 1798 гг.) открыл феномен сокращения мышц мёртвой лягушки от воздействия электрического тока. Он предположил, что любой живой организм для управления мышцами сам вырабатывает «животное электричество». Заслуги учёного не остались без внимания. Его называют отцом современной электрофизиологии. В последующем учёные доказали, что мозг является генератором электрической активности (были открыты биотоки мозга). Если сказать проще, то мозг использует свои импульсы для управления мышцами, передавая их по нервам. 

Естественно, что любой внешний электрический ток, протекая через организм человека, нарушает работу биотоков мозга. Ток как бы блокирует импульсы мозга и не даёт сокращаться мышцам. Это очень чревато для живого организма. Например, из-за остановки мышц лёгких человек прекращает дышать (наступает асфиксия), а при несокращающихся мышцах сердца останавливается кровообращение. Иногда бывает, что человек попадает под действие электрического тока и сам освободиться от него не может. Рукой взялся за оголённый электрический провод, а бросить не получается. То есть, посылаемый мозгом к мышце руки соответствующий импульс, не может превысить действие внешнего источника электрического тока. 

Для защиты людей на производстве есть целый раздел техники безопасности – электробезопасность. Специальные люди должны проводить соответствующие инструктажи, где подробно указаны меры электробезопасности на конкретном рабочем месте. В домашних условиях такого нет, но все бытовые электроприборы выпускаются с соответствующим классом защиты от поражения электрическим током. Бояться нечего, нужно просто пользоваться исправными бытовыми электроприборами и применять их только по назначению. При соблюдении мер безопасности электричество всегда будет хорошим помощником в вашей жизни. 

«Золотой век» электроэнергии

Под свои нужды человек приспособил законы Вселенной относительно недавно. А произошло это примерно два века назад, когда изобретатель по фамилии Вольт
разработал первый аккумулятор, способный на длительное время сохранять заряд достаточной мощности.

Должна быть доступна достаточная мощность, особенно во время пиковой нагрузки. Этот термин означает максимальную мощность, которая создает максимальную нагрузку в течение короткого периода времени в энергосистеме. Например, такие периоды происходят утром, когда промышленность и домашние хозяйства покупают свою технику.

Альтернативные источники энергии

В то же время некоторые домохозяйства даже генерируют собственную электроэнергию, что стало возможным, например, путем использования возобновляемых источников энергии с использованием фотогальваники. В дополнение к возможности установки таких солнечных элементов на собственной крыше, самодостаточный источник питания также может быть реализован с помощью так называемой комбинированной теплоэлектростанции.

Попытки использовать ток себе во благо имеют древнюю историю. Археологические раскопки показали, что еще в римских святилищах, а потом и в первых христианских храмах были кустарные «батарейки» из меди, которые давали минимальное напряжение. Такая система подключалась к алтарю или его оградке и как только верующий прикасался к сооружению, он тут же получал «божественную искру
». Скорее это изобретение одного умельца, чем повсеместная практика, но факт любопытный, в любом случае.

Однако выработка электроэнергии не обязательно означает, что это производство электрической энергии на электростанции или подобное. Выработка электроэнергии также может осуществляться с помощью так называемых источников напряжения. Наиболее известным примером этого является аккумулятор. В качестве одноразовой батареи или в качестве перезаряжаемой батареи она содержит электрическое напряжение заряженного состояния, с которым может работать разнообразное электрооборудование.

Акустическая энергия может использоваться с новой конструкцией в широком диапазоне частот для выработки электроэнергии. Солнечный свет, тепло, движение и ветер являются наиболее часто используемыми источниками энергии для автономного источника питания без подключения к сети. Но даже из звуковых волн могут быть по крайней мере небольшие токи с несколькими милливаттами. Этого достаточно для работы датчиков или микросхем памяти. Ученые из Университета Чунцина, чтобы «пожинать» акустическую энергию более эффективно, теперь создали генератор, который впервые генерирует электричество от звуковых волн в другом частотном диапазоне.

Двадцатый век стал периодом расцвета электроэнергии
:

  1. Появлялись не только новые виды генераторов и аккумуляторов, но и разрабатывались уникальные концепции добычи этой самой энергии.
  2. Электрические приборы за несколько десятилетий плотно вошли в жизнь каждого человека на планете.
  3. Не осталось стран, кроме наименее развитых, где не были бы построены электростанции
    и проведены линии электропередач
    .
  4. Весь дальнейший прогресс опирался на возможности электричества и устройств, которые от него работают.
  5. Эпоха компьютеризации сделала человека зависимым от тока, в прямом смысле этого слова.

Рисунок: Прототип акустического генератора. Используя штамп, резонансное поведение в звуковой камере изменяется таким образом, что звук генерирует вибрации из широкого диапазона частот и, наконец, ток через пьезоэлемент. Как и другие концепции для мини-электростанций, пьезоэлектрические элементы отвечают за выработку электроэнергии с помощью акустических генераторов. Если кинетическая энергия не доступна, небольшие токи также могут собираться посредством вибраций, вызванных звуковыми волнами. Сяо Пэн и его коллеги установили пьезоэлемент из титаната цирконата свинца на тонком диске.

Электробезопасность

Предупреждение по электробезопасности

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • »безопасным» считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • »минимально ощутимый» человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
  • пороговым »неотпускающим» называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
  • »фибрилляционным порогом» называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Современное электричество

Сегодня без электричества трудно представить существование человечества. К тому же с ростом технологических мощностей одним из актуальных вопросов становится ‒ откуда брать электричество. Поэтому в мире строятся и работают множество различных электростанций. Не считая солнечные, все остальные производят электрический ток с помощью генераторов, а вот вращаются эти генераторы благодаря различным силам.

Принцип работы различных видов электростанций:

  • гидроэлектростанция – вращение происходит за счет прохождения потока воды через турбину (лопасти);
  • ветряная электростанция – вращение происходит за счет ветра, раскручивающего лопасти пропеллера;
  • теплоэлектростанция – сжигается топливо, нагревая воду и превращая ее в пар. В свою очередь, пар под давлением проходит через турбину и вращает лопасти, а вращение передается генератору;
  • атомная электростанция – принцип тот же, что и у тепловой, только вода нагревается не сгоранием топлива, а замедленной ядерной реакцией.

Вот откуда в наш дом приходит электричество. Правда на своем пути стремительные электроны проходят еще много различных установок, электрических станций и подстанций, где преобразовывается напряжение, распределяется мощность и др. Объяснить для детей откуда берется электричество можно проще, сказав, что это невидимая сила, получаемая из самой природы – течения рек, дуновения ветра, огня. При этом обязательно нужно предупредить, что электрический ток – опасен и не прощает шалостей, поэтому от розеток лучше держаться подальше.

Кто изобрел электричество

Изобретение электричества в 19 веке стало возможным благодаря открытиям целой плеяды великих ученых. В 1752 году Бен Франклин провел свой эксперимент с воздушным змеем, ключом и штормом. Это просто доказало, что молния и крошечные электрические искры — это одно и то же.

Эксперимент Бена Франклина

Итальянский физик Алессандро Вольта обнаружил, что определенные химические реакции могут производить электричество, а в 1800 году он создал гальванический элемент, раннюю электрическую батарею, вырабатывающую постоянный электроток. Он также выполнил первую передачу тока на расстояние, связав положительно и отрицательно заряженные разъемы и создав между ними напряжение. Поэтому многие историки считают, что 1800 — это год изобретения электричества.

В 1831 году электричество стало возможно использовать в технике, когда Майкл Фарадей создал электродинамо, решившее на практике проблему генерирования постоянного электротока. Довольно простое изобретение с использованием магнита, перемещавшегося внутри катушки из медного провода, создавал небольшой ток, протекающий через провод. Оно помогло американцу Томасу Эдисону и британскому ученому Джозефу Свону, каждому в отдельности, примерно в одно время в 1878 году изобрести лампу накаливания. Сами лампочки для освещения были изобретены другими исследователями, но лампа накаливания была первым практичным устройством, дававшем свет в течение нескольких часов подряд.

Русский ученый и инженер А. Н. Лодыгин

В 1800-х и в начале 1900-х годов, сербско-американский инженер, изобретатель и мастер электротехники Никола Тесла стал одним из авторов зарождения коммерческого электричества. Он работал совместно с Эдисоном, сделал много революционных разработок в области электромагнетизма и хорошо известен своей работой с двигателями переменного тока и многофазной системой распределения энергии.

Обратите внимание! Русский ученый и инженер А. Н. Лодыгин изобрел и запатентовал в 1874 г. лампу освещения, где функцию нити накаливания выполнял угольный стержень, размещенный в вакуумной среде сосуда, изготовленного из стекла

Это были первые лампочки освещения в России. Только через 16 лет в 1890-х гг. он применил нить из тугоплавкого металла — вольфрама.

Однозначно нельзя заявить в каком году появился свет. Несмотря на то, что многие историки считают что лампочка была изобретена американцем Эдисоном, тем не менее первая лампа с платиновой нитью накаливания в вакуумном стеклянном сосуде была изобретена в 1840 изобретателем из Англии Де ла Рю.

Дополнительная информация. Российскому ученому П. Н. Яблочкову россияне были благодарны за возникновение электродуговой лампы и хотя ресурс ее работы не превышал 4 часов, осветительный прибор широко использовался на территории Зимнего дворца почти 5 лет.

Электродуговая лампа П.Н.Яблочкова

Можно ли производить электричество про запас?

На сегодняшний день не существует оптимального способа длительного хранения электричества, хотя специалисты всего мира работают над этим вопросом. Особенно активно проблему начали обсуждать в последние годы с развитием альтернативной энергетики.

Сейчас система генерации электричества предусматривает выработку энергии в соответствии со спросом на нее. Говоря простым языком, специальные диспетчерские пункты анализируют нагрузку в сети. Если она снижается, соответственно сокращается и выработка электричества.

Геотермальная электростанция в Исландии работает на основе энергии подземных источников

Даже если предположить, что в один момент спрос на электричество резко пропал, а его выработано слишком много, то вся «лишняя» энергия распределяется среди других потребителей, которые в ней нуждаются.

На практике же на электростанциях регулируется количество произведенного электричества путем снижения расхода топлива либо подачи воды на турбину. Это позволяет экономить ресурс самой турбины, а также объем источника энергии.

Проблема восполняемых источников состоит в отсутствии регулярного доступа к ним. Например, энергию Солнца можно использовать не круглый год, как и запасы воды, уровень которых является сезонным. Именно поэтому накопление и хранение энергии стало особенно актуальным.

Некоторые варианты хранения энергии уже используются, но не в крупных промышленных масштабах. Например, гидроаккумуляторы работают следующим образом. При излишке электричества с его помощью наполняют водой два резервуара. Когда спрос на него возрастает, используют этот запас воды.

Накопители энергии сжатого воздуха (принцип работы, как и у гидроаккумуляторов)

В современной электроэнергетике пока не предусмотрены способы накопления и длительного хранения электричества. Объем его производства строго соответствует спросу и текущему использованию. На электростанциях регулируется интенсивность подачи источника энергии (воды, тепла и т.д.) для повышения или понижения выработки.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий