Первая атомная станция в мире

Калининская АЭС

Условно включена в четверку самых больших АЭС на российской территории с показателем мощности 4 тысячи мегаватт.

Построена в северной части Тверской области возле населенного пункта Удомля. Располагающаяся прямо возле озера с одноименным названием, она не испытывает перебоев с охлаждающей жидкостью. Конструктивно состоит из 4-х энергетических блоков с реакторами ВВЭР-1000, по 1000 МВт. Они поэтапно вводились в действие в 1984, 1986, 2004 и 2011 годах.

По высоковольтным ЛЭП электричество передается в Тверь и другие большие города – Москву, Санкт-Петербург, Владимир. Такой широкий охват стал реально осуществим, благодаря удачному географическому положению установки.

Энергетические блоки, используемые в АЭС, относятся к самым эффективным и безопасным, что существенно улучшает производительность их работы. Оборудование станции постоянно модернизируется, позволяя увеличить производство электроэнергии и существенно продлить эксплуатационный ресурс энергоблоков. Так, в 2016 году на 3-м энергоблоке был заменен конденсатор турбины. На данных блока такая операция была проведена впервые и успешно завершилась. Калининская АЭС находится в хорошем техническом состоянии и может эксплуатироваться до 2038 года.

Экономическое значение


Доля атомной энергетики в общем производстве электроэнергии в различных странах.

В 2014 году ядерная энергия обеспечивала 2,6 % всей потребляемой человечеством энергии. Ядерный сектор энергетики наиболее значителен в промышленно развитых странах, где недостаточно природных энергоресурсов — во Франции, на Украине, в Бельгии, Финляндии, Швеции, Болгарии и Швейцарии. Эти страны производят от 20 до 76 % (во Франции) электроэнергии на АЭС.

В 2013 году мировое производство ядерной энергии выросло впервые с 2010 года — по сравнению с 2012 годом произошёл рост на 0,5 % — до 6,55 млрд МВт ч (562,9 млн тонн нефтяного эквивалента). Наибольшее потребление энергии атомных станций в 2013 году составило в США — 187,9 млн тонн нефтяного эквивалента. В России потребление составило 39,1 млн тонн нефтяного эквивалента, в Китае — 25 млн тонн нефтяного эквивалента, в Индии — 7,5 млн тонн.

Согласно отчёту Международного агентства по атомной энергии (МАГАТЭ), на конец 2016 года насчитывалось 450 действующих ядерных энергетических (то есть производящих утилизируемую электрическую и/или тепловую энергию) реакторов в 31 стране мира (кроме энергетических, существуют также исследовательские и некоторые другие).

Примерно половина мирового производства электроэнергии на АЭС приходится на две страны — США и Францию. США на АЭС производят только 1/8 своей электроэнергии, однако это составляет около 20 % мирового производства.

Абсолютным лидером по использованию ядерной энергии являлась . Единственная Игналинская АЭС, расположенная на её территории, вырабатывала электрической энергии больше, чем потребляла вся республика (например, в 2003 году в Литве всего было выработано 19,2 млрд кВт⋅ч, из них — 15,5 Игналинской АЭС). Обладая её избытком (а в Литве есть и другие электростанции), «лишнюю» энергию отправляли на экспорт.
Однако, под давлением ЕС (из-за сомнений в её безопасности — ИАЭС использовала энергоблоки того же типа, что и Чернобыльская АЭС), с 1 января 2010 года эта АЭС была окончательно закрыта (предпринимались попытки добиться продолжения эксплуатации станции и после 2009 года, но они не увенчались успехом[источник не указан 682 дня]), сейчас[когда?] решается вопрос о строительстве на той же площадке АЭС современного типа.

Объёмы производства ядерной электроэнергии по странам


Страны с атомными электростанциями.  Эксплуатируются АЭС, строятся новые энергоблоки.  Эксплуатируются АЭС, планируется строительство новых энергоблоков.  Нет АЭС, станции строятся.  Нет АЭС, планируется строительство новых энергоблоков.  Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется.  Эксплуатируются АЭС, рассматривается сокращение их количества.  Гражданская ядерная энергетика запрещена законом.  Нет АЭС..

Основная статья: Атомная энергетика по странам

За 2016 год суммарно АЭС мира выработали 2477 млрд кВт⋅ч энергии, что составило 10,8 % всемирной генерации электричества.

Мировыми лидерами в производстве ядерной электроэнергии на 2017 год являются:

  • США (804 млрд кВт·ч/год), работает 99 атомных реакторов (20 % от вырабатываемой электроэнергии)
  • Франция (379 млрд кВт·ч/год), 58 реакторов, 71,6%.
  • Китай (210 млрд кВт·ч/год), 39 реакторов, 3,6%.
  • Россия (202,868 млрд кВт.ч /год), 35 реакторов, 18,9%.
  • Южная Корея (141 млрд кВт·ч/год), 24 реактора, 27,1%.
  • Канада (96 млрд кВт·ч/год), 19 реакторов, 14,6%.
  • Украина (85 млрд кВт·ч/год), 15 реакторов, 55,1%.
  • Германия (72 млрд кВт·ч/год), 9 реакторов, 11,6%.
  • Швеция (63 млрд кВт·ч/год), 8 реакторов, 39,6%.
  • Великобритания (65 млрд кВт·ч/год), 15 реакторов, 19,3%.

Примерно половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.

Драйверы рынка атомной энергии

1. Ядерные амбиции Китая

К 2026 году Китай будет обладать самой большой мощностью ядерной энергетики, превосходя США и Францию. К 2025 году Китай собирается добавить 40 ГВт новых ядерных мощностей и еще 40 ГВт в течение 2026–2030 годов. Кроме того, в стране были предложены новые реакторы с еще 200 ГВт общей мощности. Китай также проявил интерес к созданию большого количества небольших плавучих энергоблоков, размещенных на судах, пришвартованных на верфях. Эти дополнительные мощности и растущий интерес Китая к тому, чтобы стать ведущим мировым поставщиком ядерных технологий, будут стимулировать рынок в течение следующих двух десятилетий.

Строительство АЭС в Китае

2. Стремление развивающихся стран к энергетической независимости

Некоторые страны, которые в настоящее время практически не имеют своей ядерной мощности, рассматривают эту технологию как жизнеспособный вариант для повышения своей энергетической независимости и разнообразия своего энергетического портфеля. Турция, Египет, Саудовская Аравия и Беларусь в настоящее время не имеют ядерных энергетических мощностей, но их реакторы находятся на разных стадиях завершения. Турция и Египет стремятся ввести в эксплуатацию около 5 ГВт атомной энергии к 2030 году. Саудовская Аравия будет иметь мощность около 3 ГВт к 2030 году. Стремление к укреплению и диверсификации энергетических портфелей в других странах может привести к дальнейшему повышению интереса к ядерной энергетике.

3. Обязательства и цели по сокращению выбросов

Атомная энергия генерирует электричество посредством реакции деления урана, приводящей к выработке тепла без сжигания какого-либо вещества, что делает её одним из самых экологически чистых источников электричества. Несколько стран под общественным давлением вынуждены сокращать выбросы парниковых газов и взяли на себя обязательства перед международным сообществом по сокращению выбросов. В своих «Национальных обязательствах», представленных после Парижских переговоров по климату в 2015 году, страны обязались значительно сократить свои выбросы, и многие из этих стратегий сокращения выбросов основывались на увеличении чистых источников электроэнергии, что делает ядерную энергетику целесообразным вариантом для достижения этих обязательств.

Запуск первой в мире АЭС

Пуск первой в мире атомной электростанции состоялся 9 мая 1954 года, работала АЭС в холостом режиме. 26 июня 1954 она дала первый электрический ток, был осуществлен энергетический пуск. Какую мощность выдавала первая атомная станция в СССР? Всего 5 МВт – на такой небольшой мощности работала первая атомная электростанция.

Мировое сообщество восприняло новость о том, что первая в мире АЭС была запущена, с гордостью и ликованием. Впервые в мире человек использовал энергию атома в мирных целях, это открывало большие перспективы и возможности для дальнейшего развития энергетики. Физики-ядерщики мира называли запуск Обнинской станции началом новой эры.

За время работы, первая АЭС в мире множество раз выходила из строя, приборы внезапно ломались и давали сигнал для аварийной остановки ядерного реактора. Интересно, что по инструкции, для нового запуска реактора необходимо 2 часа, но работники станции научились заново запускать механизм за 15-20 минут.

Такая быстрая реакция была необходима. И не, потому что подачу электроэнергии не хотелось прекращать, а потому что первая АЭС в мире стала своего рода выставочным экспонатом и почти ежедневно туда приезжали зарубежные ученые, изучавшие работу станции. Показать, что механизм не работает – значит получить большие проблемы.

Безопасность АЭС

В своей книге «Нормальные аварии» Чарльз Перроу говорит, что многочисленные и неожиданные сбои встроены в сложные и плотно связанные системы ядерных реакторов. Такие аварии неизбежны и их нельзя предотвратить. Междисциплинарная команда из Массачусетского технологического института (MIT) подсчитала, что с учетом ожидаемого роста ядерной энергетики в период с 2005 по 2055 годы можно ожидать, по крайней мере, четыре серьезные ядерные аварии

Однако исследование MIT не принимает во внимание улучшения в безопасности с 1970 года. С 1970 года до настоящего времени в мире произошло пять серьезных аварий (повреждения активной зоны): одна на АЭС Три-Майл-Айленд в 1979 году, одна на Чернобыльской АЭС в 1986 году и три на АЭС Фукусима-1 в 2011 году, что соответствует началу эксплуатации Реакторов Второго Поколения

В среднем во всем мире каждые восемь лет происходит одна серьезная авария.

Современные конструкции ядерных реакторов были многократно усовершенствованы с точки зрения безопасности со времени использования ядерных реакторов первого поколения. Атомные электростанции не могут взорваться как ядерная бомба, так как топливо для урановых реакторов не обогащается достаточно, а для ядерного оружия требуется прецизионное взрывчатое вещество, чтобы заставить топливо в достаточно малом объеме дойти до сверхкритического состояния. Большинство реакторов требуют непрерывного контроля температуры, чтобы предотвратить расплавление ядра, что и происходило несколько раз из-за аварии или стихийного бедствия, высвобождая радиацию и делая окружающую среду непригодной для жизни. Электростанции должны быть защищены от кражи ядерного материала (например, для изготовления «грязной» ядерной бомбы) и от нападения военных самолетов (что имело место) или ракет противника, или захваченных террористами самолетов.

Предыстория возникновения АЭС

Она началась с использования атома в военных целях. До того как была построена первая в мире АЭС, многие сомневались в том, что атомную энергию можно направить в мирное русло.

Сначала была создана атомная бомба. Всем известен печальный опыт использования ее в Японии. Потом на полигоне было осуществлено испытание атомной бомбы, созданной советскими учеными.

Спустя некоторое время в СССР начали производить плутоний на промышленном реакторе. Созданы все условия для получения в крупных масштабах обогащенного урана.

Именно в это время, осенью 1949 года, началось активное обсуждение того, как организовать предприятие, на котором атомная энергия будет применяться для выработки электроэнергии и тепла.

Теоретические разработки и создание проекта было возложено на Лабораторию «В». В то время ее возглавлял Д.И. Блохинцев. Ученый совет под руководством И.В. Курчатова предложил ядерный реактор, который работал на обогащенном уране. В качестве замедлителя использовался бериллий. Охлаждение осуществлялось с применением гелия. Рассматривались и другие варианты реакторов. Например, с использованием быстрых и промежуточных нейтронов. Также допускались другие способы охлаждения.

Весной 1950 года вышло постановление Совета министров. В нем значилось то, что необходимо возвести три опытных реактора:

  • первый — уран-графитовый с охлаждением водой;
  • второй — гелий-графитовый, который должен был использовать газовое охлаждение;
  • третий — уран-бериллиевый также с газовым охладителем.

На создание технического проекта отводился остаток текущего года. С использованием этих трех реакторов мощность первой в мире АЭС была около 5000 кВт.

Важные события и даты

Практически все время работы после запуска реактор использовался как исследовательский благодаря наличию петлевых установок и экспериментальных устройств. Обнинская АЭС принимала самое активное участие в следующих проектах:

  • Испытания твэлов для ледокола «Ленин»
  • Полный цикл испытания для 1-го и 2-го блоков Белоярской АЭС, строительство которой началось в 1958 году
  • При помощи экспериментов на Обнинской АЭС создана первая транспортабельная атомная энергетическая установка ТЭС-3
  • Важнейшая экспериментальная база для Ядерных энергетических установок для подводных лодок.
  • Разработка реакторов ФЭИ – БР-5, БР-10 и БОР-60
  • Активное участие в разработке реакторов на быстрых нейронах БН-350, БН-600 и БН-800
  • Производились испытания для космических атомных установок «Топаз» и «Бук», и в 1970 именно на основе этих исследования создали первый в мире реактор-преобразователь «Топаз»
  • Исследовательский реактор БОР-60  и исследовательский реакторы на быстрых нейронах БР
  • Производились эксперименты для Билибинской АЭС, работающей в условиях крайнего севера.
  • Создание нейтронного спектрометра
  • Так же на станции осуществлено более десятка важных открытий и измерений в ядерной отрасли.

Территории, где произошли аварии с выбросом радиации (Россия и СССР)

1957

ЗАТО Озерск, Челябинская об.

Кыштымская авария (ПО «Маяк»)

Тепловой взрыв, приведший к выбросу большого количества высокоактивных отходов и образованию Восточно-Уральского радиоактивного следа

В атмосферу было выброшено около 20 млн кюри радиоактивных веществ. Они выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва. Территория, подвергшаяся радиоактивному загрязнению получила название Восточно-Уральский радиоактивный след (ВУРС).

1982

губа Андреева, Мурманская об.

Авария на хранилище отработавшего ядерного топлива

В воды Баренцева моря вытекло около 700 000 тонн радиоактивных компонентов. Расстояние до Мурманска — 55 км, до границы Норвегии 60 км.

1985

Приморский край

Авария в бухте Чажма на атомной подводной лодки К-431

Привела к 11 гибели людей, сотням облученных и к загрязнению окружающей среды

В эпицентре взрыва уровень радиации составлял 90 000 рентген в час. Сформировался очаг радиоактивного загрязнения дна акватории бухты Чажма площадью около 100 000 м². В непосредственной близости располагается пгт Дунай. Расстояние до крупных городов: Находки и Владивостока — 45 км.

1986

Припять, Киевская об., Украина

Авария на Чернобыльской АЭС

Крупнейшая в мировой истории радиационная авария

В атмосферу было выброшено около 380 млн кюри радиоактивных веществ

1993

г. Северск, Томская об.

Авария на радиохимическом заводе Сибирского химического комбината

6 апреля на заводе РХЗ произошел взрыв парогазовой смеси, в результате которого был разрушен один из аппаратов по экстракции урана и плутония, содержавший раствор нитрата уранила. Часть плутония и других радиоактивных веществ была выброшена в атмосферу. Радиоактивному загрязнению подверглись промышленные территории, хвойный лес и деревня Георгиевка. В это время шёл снег, он захватил часть выброшенных радионуклидов, осадив их на участке в радиусе 9 км. Радиационный фон после взрыва составил до 300 микрорентген в час.

2019

с. Ненокса, Архангельская об.

Авария на морской платформе в акватории Белого моря

Вблизи села Ненокса на военном полигоне прошли неудачные испытания нового оружия, которые закончились гибелью 7 человек, еще 6 участников пострадали. Был зафиксирован кратковременный скачок радиационного фона до 2 мкЗв/ч. Расстояние до ближайшего крупного города: Северодвинск — 30 км.

Общая информация

Новости

4 Февраля 2021Смоленская АЭС помогает воспитывать таланты
3 февраля в «Нейтрино» состоялась торжественная церемония награждения победителей и призёров творческих конкурсов Смоленской АЭС. Работники атомной станции и подрядных организаций, жители города всех возрастов представили на суд жюри свои работы в области литературы и художественного творчества.

1 Февраля 2021Работники Смоленской АЭС поборются за звание «Человек года Росатома-2020»
С 29 января открыта программа номинаций «Человек года Росатома-2020». Восьмой раз на уровне дивизионов и всей атомной отрасли будут чествовать лучших работников за производственные заслуги и профессиональные достижения.

Новости

1 — 2 из 788

Начало | Пред. |

1

|

След. |
Конец

СМОЛЕНСКАЯ АЭС

Расположение: близ г. Десногорска (Смоленская обл)  

Тип реактора: РБМК-1000  

Количество энергоблоков: 3

Смоленская АЭС – градообразующее ведущее предприятие области, крупнейшее в топливно-энергетическом балансе региона. Ежегодно станция выдает в среднем 20 млрд кВтч электроэнергии, что составляет более 75% от общего количества электроэнергии, вырабатываемой энергопредприятиями Смоленщины. На САЭС эксплуатируются три энергоблока с реакторами РБМК-1000. Первая очередь относится ко второму поколению АЭС с реакторами РБМК-1000, вторая – к третьему. 

В 2000 г. Смоленская АЭС заняла 1-е место во всероссийском конкурсе «Российская организация высокой социальной эффективности». В 2007 г. атомной станции первой среди АЭС России, вручен сертификат соответствия системы менеджмента качества международному стандарту ИСО 9001. В 2009 г. получен сертификат соответствия системы экологического менеджмента станции требованиям международного стандарта ИСО 14001. В этом же году САЭС признана лучшей станцией России по направлению «Физическая защита».В 2010 г.итогом безопасной и надежной работы энергоблоков, модернизации и внедрения передовых технологий производства, подготовленности и профессионализма персонала стало признание Смоленской АЭС лидером в корпоративных конкурсах «Лучшая АЭС России по итогам года» и «Лучшая АЭС России по культуре безопасности».В 2011 г. Смоленская АЭС стала победителем в конкурсе «Лучшая АЭС России» по итогам работы за 2010 г. и была признана лучшей АЭС по культуре безопасности. В рамках реализации программы по продлению сроков эксплуатации на САЭС был проведен капитальный ремонт и модернизация энергоблока № 1. В этом же году был подписан Акт приемки в эксплуатацию 1-го пускового комплекса КП РАО. Кроме того, группой высококвалифицированных экспертов в области ядерной безопасности Международного агентства по атомной энергии (МАГАТЭ) на Смоленской АЭС проведена миссия ОСАРТ по проверке соответствия безопасной эксплуатации станции международным стандартам. По результатам проверки дана положительная оценка и отмечен ряд положительных практик, рекомендованных к внедрению на АЭС мира: высокая эксплуатационная надежность энергоблоков, профессиональная подготовка персонала и другие.

В 2013 г. САЭС стала обладателем международного экологического сертификата и золотого знака «International Ecologists Initiative 100% eco quality», подтверждающих экологичность предприятия. В этом же месяце Смоленской АЭС присуждена главная премия международных экологов «Global Eco Brand» в номинации «Лидер социально и экологически ответственного бизнеса».В 2016 г. Смоленская АЭС вошла в число образцовых ПСР-предприятий отрасли и получила статус «Предприятие — Лидер ПСР». А также за надежность и безопасность была признана лидером в корпоративном конкурсе «Лучшая АЭС России по культуре безопасности»; Смоленская АЭС «Лучшая АЭС России» по результатам 2015 года традиционного отраслевого конкурса

В этом же году было принято важное решение – Ростехнадзор выдал лицензии, а на правительственном уровне вышло соответствующее распоряжение о размещении в Смоленской области двух энергоблоков ВВЭР-ТОИ, замещающих мощности действующих блоков, которые подлежат выводу из эксплуатации. 2017 г

Расстояние до города-спутника (г. Десногорск) – 3 км, до областного центра (г. Смоленск) – 150 км.

НОМЕР ЭНЕРГОБЛОКА ТИП РЕАКТОРА УСТАНОВЛЕННАЯ МОЩНОСТЬ, М ВТ ДАТА ПУСКА
1 РБМК-1000 1000 09.12.1982
2 РБМК-1000 1000 31.05.1985
3 РБМК-1000 1000 17.01.1990
Суммарная установленная мощность 3000 МВТ

Преимущества и недостатки использования АЭС

Потребление электроэнергии во всем мире постоянно возрастает. При этом рост потребления увеличивается более ускоренными темпами, чем выработка энергии, а практическое применение современных перспективных технических решений в данной области по многим причинам начнется через несколько лет. Решением данной проблемы становится совершенствование ядерной энергетики и возведение новых атомных электростанций. Можно выделить следующие преимущества эксплуатации атомных электростанций:

  1. Высокая энергоемкость используемого топливного ресурса. При полноценном выгорании один килограмм урана выделяет количество энергии, сопоставимое с результатом сжигания около 50 тонн нефти, либо вдвое больше тонн каменного угля
  2. Способность вторичного применения ресурса после переработки. Расщепленный уран, в отличие от отходов органического топлива, может быть повторно использован для выработки энергии. Дальнейшее развитие атомных электростанций предполагает полноценный переход на замкнутый цикл, что поможет обеспечить отсутствие образования каких-либо вредных отходов
  3. Атомная станция не способствует образованию парникового эффекта. Каждый день атомные электростанции помогают избежать эмиссии около 600 миллионов тонн углекислого газа. Действующие на территории России АЭС каждый год задерживают поступление в окружающую среду более 200 миллионов тонн углекислого газа
  4. Абсолютная независимость от местонахождения источников топлива. Большая удаленность атомной электростанции от месторождения урана никак не влияет на возможность ее функционирования. Энергетический эквивалент ядерного ресурса во много раз больше, в сравнении с органическим топливом, и расходы на его транспортировку минимальны
  5. Невысокая стоимость использования. Для большого числа стран выработка электроэнергии при помощи АЭС не затратнее, чем на других типах электростанций

Несмотря на большое количество положительных сторон эксплуатации атомных электростанций, существует несколько проблем. Основной недостаток заключается в тяжких последствиях аварийных ситуаций, для предотвращения которых электростанции оснащаются довольно сложными системами безопасности с большими запасами и резервированием. Таким образом обеспечивается исключение повреждения центрального внутреннего механизма даже при масштабной аварии.

Большой проблемой для эксплуатации АЭС также является их уничтожение после выработки ресурсов. Стоимость их ликвидации может достигать 20% от всех затрат на их сооружение. Кроме того, по техническим соображениям для атомных электростанций является нежелательным функционирование в маневренных режимах.

Первые атомные электростанции в мире позволили сделать большой шаг в усовершенствовании ядерной энергетики. В современных условиях в России около 17% электроэнергии вырабатывается именно при помощи АЭС. По причине выгоды эксплуатации АЭС многие страны приступают к строительству новых реакторов и рассматривают их как перспективный источник электроэнергии.

История


Исторический обзор статистики строительства атомных электростанций

Впервые цепная реакция ядерного распада была осуществлена 2 декабря 1942 года в Чикагском университете с использованием урана в качестве топлива и графита в качестве замедлителя. Первая электроэнергия из энергии ядерного распада была получена 20 декабря 1951 года в Национальной лаборатории Айдахо с помощью реактора на быстрых нейтронах EBR-I (Experimental Breeder Reactor-I). Произведённая мощность составляла около 100 кВт.

9 мая 1954 года на ядерном реакторе в г. Обнинск была достигнута устойчивая цепная ядерная реакция. Реактор мощностью 5 МВт работал на обогащённом уране с графитом в качестве замедлителя, для охлаждения использовалась вода с обычным изотопным составом. 26 июня в 17:30 энергия, выработанная здесь, стала поступать в потребительскую электросеть Мосэнерго.

Военные корабли США — атомные крейсера «Бейнбридж» и «Лонг Бич», и первый в мире авианосец с ядерным реактором «Энтерпрайз», самое длинное в мире военное судно, в 1964 году во время рекордного кругосветного путешествия, в течение которого они преодолели 49,190 км за 65 дней без дозаправки

В декабре 1954 года в США вошла в строй первая атомная подводная лодка «Наутилус».

В 1956 году в Великобритании начала работу пятидесятимегаваттная АЭС «Calder Hall-1». Далее последовали в 1957 году АЭС Шиппингпорт в США — 60 МВт и в 1959 году АЭС Маркуль во Франции — 37 МВт. В 1958 начала выдавать электроэнергию первая очередь второй советской АЭС — Сибирской, мощностью 100 Мвт, полная проектная мощность которой составляла 600 Мвт. В 1959 году в СССР спущено на воду первое в мире невоенное атомное судно — ледокол «Ленин».

Ядерная энергетика, как новое направление в энергетике, получила признание на проходившей в Женеве в августе 1955 года 1-й Международной научно-технической конференции по мирному использованию атомной энергии, положившей начало международному сотрудничеству в области мирного использования ядерной энергии и ослабившей завесу секретности над ядерными исследованиями, существовавшей со времён Второй мировой войны.

В 1960-х годах в США происходил перевод ядерной энергетики на коммерческую основу. Первой коммерческой АЭС стала «Yankee Rowe» мощностью 250 МВТ, проработавшая с 1960 до 1992 года. Первой атомной станцией в США, строительство которой финансировалось из частных источников, стала АЭС Дрезден.

В СССР в 1964 году вступили в строй Белоярская АЭС (первый блок 100МВт) и Нововоронежская АЭС (первый блок 240МВт). В 1973 году на Ленинградской АЭС в городе Сосновый бор был запущен первый высокомощный энергоблок (1000 МВт). Энергия пущенного в 1972 году в Казахстане первого промышленного реактора на быстрых нейтронах (150 МВт) использовалась для производства электроэнергии и опреснения воды из Каспийского моря.

В начале 1970-х годов существовали видимые предпосылки для развития ядерной энергетики. Потребность в электроэнергии росла, гидроэнергетические ресурсы большинства развитых стран были практически полностью задействованы, соответственно росли цены на основные виды топлива. Ситуацию усугубляло введение эмбарго на поставки нефти арабскими странами в 1973–1974 годах. Предполагалось снижение стоимости строительства АЭС.

Тем не менее, к началу 1980-х годов обозначились серьёзные экономические трудности, причинами которых стали стабилизация спроса на электроэнергию, прекращение роста цен на природное топливо, удорожание, вместо прогнозируемого удешевления, строительства новых АЭС.

Сирена с йодом

Литовские чиновники обнаружили, что борьба со строительством АЭС в Белоруссии не дала результатов. «12% потребляемого в Литве электричества произведено на станции в Островце. За месяц придется заплатить €11 млн», — пожаловался председатель комитета по нацбезопасности и обороне (КНБО) сейма Литвы Лауринас Кащюнас. Он добавил, что электроэнергия БелАЭС свободно проникает в страну из-за того, что Вильнюс так и не согласовал свои действия с соседями из Латвии и Эстонии. «Нынешняя ситуация на руку компаниям, которые живут за счет таких схем. Они делают всё, чтобы затормозить или вообще остановить синхронизацию», — сказал Кащюнас.

Информацию председателя КНБО уточнил министр энергетики Литвы Дайнюс Крейвис. По его словам, часть электричества с БелАЭС республика закупает на латвийской бирже. «Всего речь идет о 77 млн. кВт/ч. За 10 дней придется заплатить €4 млн. Если так всё будет продолжаться, то за год мы потратим на БелАЭС €120 млн

Важно предотвратить это, чтобы не финансировать строительство второго, а в будущем, может быть, и третьего блока станции», — сказал чиновник

Следующая станция атомная4

Вильнюс, Литва

Фото: Global Look Press/Russian Look/Tatiana Morozova

Крейвис пообещал, что к середине февраля Литва представит новую позицию по переговорам с Латвией и Эстонией. «Если мы будем продвигаться такими темпами, то в нынешнем году импортируем в четыре раза больше электричества, чем в 2020 году», — предупредил министр.

Интересно, что при этом в Литве продолжают готовиться к гипотетической аварии на БелАЭС. До конца февраля жителям Вильнюса раздадут 4 млн таблеток йода. МВД республики призвало граждан держать наготове трехдневный запас продуктов с консервами, крупами, растительным маслом, сахаром и водой. Пожарно-спасательный департамент пообещал установить в окрестностях литовской столицы 40 дополнительных сирен.

Заброшенные атомные электростанции России: причины

Нахождение площадки строительства на тектоническом разломе – эту причину указывали официальные источники при консервации строительства АЭС России. Карта сейсмически напряженных территорий страны вычленяет Крым-Кавказ-Копетдагскую зону, Байкальскую рифтовую, Алтайско-Саянскую, Дальневосточную и Приамурскую.

С этой точки зрения строительство Крымской станции (готовность первого блока – 80%) было начато действительно необоснованно. Реальной причиной консервации остальных энергообъектов как дорогостоящих стала неблагоприятная ситуация – экономический кризис в СССР. В тот период были законсервированы (буквально брошены для разворовывания) многие промышленные объекты, несмотря на высокую готовность.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.

Белоярская АЭС

Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.

Курская АЭС

Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции — 4000 МВт.

Ленинградская АЭС

Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий