Содержание
- 1 Нахождение в природе
- 2 Особенности изготовления
- 3 Что такое регулятор мощности
- 4 Принцип работы тиристора
- 5 Как сделать стабилизатор тока для светодиодов самостоятельно
- 6 Преимущества многоступенчатого регулятора
- 7 От чего зависит сила тока?
- 8 Пролог
- 9 Выносной регулятор
- 10 Применение симисторных регуляторов в быту
- 11 Измерение сварочного тока
- 12 Как сайлентблоки влияют на управление автомобилем?
- 13 Пример стабилизации напряжения на LM317
- 14 Разновидности реле регуляторов
- 15 Модели переменного тока
Нахождение в природе
Кларк ниобия — 18 г/т. Содержание ниобия увеличивается от ультраосновных (0,2 г/т Nb) к кислым породам (24 г/т Nb). Ниобию всегда сопутствует тантал. Близкие химические свойства ниобия и тантала обусловливают совместное их нахождение в одних и тех же минералах и участие в общих геологических процессах. Ниобий способен замещать титан в ряде титансодержащих минералов (сфен, ортит, перовскит, биотит). Форма нахождения ниобия в природе может быть разной: рассеянной (в породообразующих и акцессорных минералах магматических пород) и минеральной. В общей сложности известно более ста минералов, содержащих ниобий. Из них промышленное значение имеют лишь некоторые: колумбит-танталит (Fe, Mn)(Nb, Ta)2O6, пирохлор (Na, Ca, TR, U)2(Nb, Ta, Ti)2O6(OH, F) (Nb2O5 0 — 63 %), лопарит (Na, Ca, Ce)(Ti, Nb)O3 ((Nb, Ta)2O5 8 — 10 %), иногда используются эвксенит, торолит, ильменорутил, а также минералы, содержащие ниобий в виде примесей (ильменит, касситерит, вольфрамит). В щелочных — ультраосновных породах ниобий рассеивается в минералах типа перовскита и в эвдиалите. В экзогенных процессах минералы ниобия и тантала, являясь устойчивыми, могут накапливаться в делювиально-аллювиальных россыпях (колумбитовые россыпи), иногда в бокситах коры выветривания. Концентрация ниобия в морской воде 1⋅10−5 мг/л.
Месторождения
Месторождения ниобия расположены в США, Японии, России (Кольский полуостров), Бразилии, Канаде.
Страна | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Австралия | 160 | 230 | 290 | 230 | 200 | 200 | 200 | ? | ? | ? | ? | ? |
Бразилия | 30 000 | 22 000 | 26 000 | 29 000 | 29 900 | 35 000 | 40 000 | 57 300 | 58 000 | 58 000 | 58 000 | 58 000 |
Канада | 2,290 | 3,200 | 3,410 | 3,280 | 3,400 | 3,310 | 4,167 | 3020 | 4380 | 4330 | 4420 | 4400 |
Демократическая Республика Конго | ? | 50 | 50 | 13 | 52 | 25 | ? | ? | ? | ? | ? | ? |
Мозамбик | ? | ? | 5 | 34 | 130 | 34 | 29 | ? | ? | ? | ? | ? |
Нигерия | 35 | 30 | 30 | 190 | 170 | 40 | 35 | ? | ? | ? | ? | ? |
Руанда | 28 | 120 | 76 | 22 | 63 | 63 | 80 | ? | ? | ? | ? | ? |
Всего в мире | 32 600 | 25 600 | 29 900 | 32 800 | 34 000 | 38 700 | 44 500 | 60 400 | 62 900 | 62 900 | 62 900 | 63 000 |
Особенности изготовления
Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.
Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.
Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:
- паяльник;
- мультиметр;
- припой;
- пинцет;
- кусачки;
- флюс;
- технический спирт;
- соединительные медные провода.
Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.
При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать
Что такое регулятор мощности
Самые первые прототипы устройств, позволяющих уменьшать проводимую к нагрузке мощность, были разработаны с учетом закона Ома. На этом принципе и основано функционирование реостата. Его можно подключать последовательно и параллельно нагрузке. При изменении сопротивления реостата можно регулировать его мощность.
Что собой представляет регулятор мощности
При подключении реостата к нагрузке ток распределяется между ними. В зависимости от способа подключения можно контролировать разные параметры: при параллельном — разницу потенциалов, а при последовательном — напряжение и силу тока. Реостаты различаются в зависимости от использованного в их конструкции материала: металла, керамики, угля или жидкости.
При использовании реостата поглощенная им энергия никуда не исчезает, а преобразуется в тепло. При большом количестве энергии целесообразно использовать системы охлаждения, чтобы температура устройства не была слишком высокой. Отводят тепло обычно с помощью обдува или погружая резистор в масло.
Такие простейшие реостаты широко применяются, но есть один значимый недостаток — невозможность использовать его в мощных электрических цепях. Поэтому резисторы применяются только в бытовых целях (к примеру, такие есть в конструкции радио).
Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки
Все полупроводниковые устройства сделаны на переходах или слоях (n-p, p-n). Простой диод — 1 переход и 2 слоя. Биполярный транзистор — 2 перехода и 3 слоя (трехфазный). А при добавлении четвертого слоя как раз и образуется стабилизатор мощности — тиристор. При соединении 2 тиристоров встречно-параллельно получается симистор.
Принцип работы тиристора
Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.
Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.
При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится – светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.
В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки – он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.
Как сделать стабилизатор тока для светодиодов самостоятельно
Изготовление стабилизатора для светодиодов своими руками осуществляется несколькими способами. Новичку целесообразно работать с простыми схемами.
На основе драйверов
Понадобится выбрать микросхему, которую трудно выжечь – LM317. Она будет выполнять роль стабилизатора. Второй элемент – переменный резистор с сопротивлением в 0,5 кОм с тремя выводами и ручкой регулировки.
Сборка осуществляется по следующему алгоритму:
- Припаять проводники к среднему и крайнему выводу резистора.
- Перевести мультиметр в режим сопротивления.
- Замерить параметры резистора – они должны равняться 500 Ом.
- Проверить соединения на целостность и собрать цепь.
На выходе получится модуль с мощностью 1,5 А. Для увеличения тока до 10 А можно добавить полевик.
Стабилизатор для автомобильной подсветки
Стабилизатор L7812
Для работы потребуется линейный прибор в виде микросхемы L7812, две клеммы, конденсатор 100n (1-2 шт.), текстолитовый материал и трубка с термоусадкой. Изготовление производится пошагово:
- Выбор схемы под L7805 из даташита.
- Вырезать из текстолита нужный по размеру кусок.
- Наметить дорожки, делая насечки отверткой.
- Припаять элементы так, чтобы вход был слева, а выход – справа.
- Сделать корпус из термотрубки.
Стабилизирующее устройство выдерживает до 1,5 А нагрузки, монтируется на радиатор.
Преимущества многоступенчатого регулятора
Стандартному регулятору напряжения, даже с генератором высокой мощности, требуется до 7 часов на зарядку глубоко разряженных тяговых аккумуляторов. Как правило столько времени на зарядку никогда не бывает. В результате аккумуляторы недозаряжаются, электрическая система работает ниже своих возможностей и аккумуляторы выходят из строя из-за сульфатации.
Высоконагруженный генератор и многоступенчатый выносной регулятор напряжения, сокращают время зарядки аккумуляторов глубокого разряда вдвое. Если аккумуляторную батарею заряжают до 80% емкости, то время зарядки уменьшается до 1-1,5 часов в день. Эффективность электрической системы и срок службы аккумуляторов возрастает, а количество проблем с электричеством на борту уменьшается. Возникающая экономия в течении месяца окупает затраты на новое оборудование.
Технические характеристики внешних регуляторов Sterling Power
Pro Reg BW | Pro Reg DW | Pro Reg D | |
Рабочее напряжение, В | 12 | 12/24 | 12/24 |
Рекомендуемая мощность генератора, А.
Со встроенным регулятором/без регулятора |
350/150 | 450/150 | 600/400 |
Использование со встроенным регулятором или отдельно | Да | Да | Да |
Плавный запуск генератора | Да | Да | Да |
Типы заряжаемых аккумуляторов | 4 | 4 | 4 |
Четырехступенчатая зарядка постоянным током | Да | Да | Да |
Датчик температуры аккумуляторов | Да | Да | Да |
Датчик температуры генератора | Нет | Да | Да |
Дистанционное управление | Нет | Да | Да |
Встроенный охлаждающий вентилятор | Нет | Нет | Да |
Класс защиты | IP67 | IP67 | |
Габаритные размеры, мм | 120 х 80 х 45 | 160 х 96 х 55 | 180 х 90 х 55 |
Вес, кг | 0.4 | 0.6 | 0.5 |
Вместо того чтобы приобретать зарядный генератор, можно повысить производительность уже установленного. Внешний регулятор напряжения замещает встроенный регулятор генератора, выполняет программу трехступенчатой зарядки и превращает генератор в мощное зарядное устройство. Максимальный выходной ток в этом случае ограничен мощностью установленного генератора.
Зарядное устройство постоянного тока, работающее от генератора решает те же задачи. Но в отличии от внешнего регулятора напряжения установить такое устройство сможет даже не специалист и оно подходит для двигателей оснащенных электронными блоками управления.
От чего зависит сила тока?
Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:
- Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
- Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
- Напряженности магнитного поля. Чем она больше, тем выше напряжение.
- Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
- Мощности усилия, которое передается на ротор.
- Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
- Конструкции источника питания.
- Диаметра проводов статора и якоря, числа ампер-витков.
- Параметров генератора — рабочего тока, напряжения, частоты и скорости.
Пролог
Я уже описывал конструкцию Некоторые радиолюбители приспособили этот регулятор напряжения для управления яркостью осветительных ламп. При правильном подборе элементов, регулятор позволяет управлять мощностью ламп накаливания и даже оборотами асинхронных двигателей, но всё же не так хорошо, как бы этого хотелось.
В связи с ремонтом подобных регуляторов, я испытал одну из схем, которая оказалось более помехоустойчивой и простой в настройке, чем описанная ранее.
Но, расскажу обо всём по порядку.
Так вот, пришлось мне ремонтировать электропроводку вдали от родного дома. А именно, нужно было поменять выключатели с регуляторами мощности, или, как их там называют, диммеры (Dimmer).
В магазине новые выключатели с индикацией и регулировкой мощности стоили слишком дорого (45$ до налога). Так что, было решено временно заменить их более дешёвыми и менее функциональными выключателями, а неисправные диммеры отремонтировать. Ну, а так как на месте не было ни радиодеталей, ни необходимого инструмента, пришлось привести их домой. Вот в связи с этими мытарствами и родилась статья.
Приехав домой, я первым делом купил на местном радиорынке симисторы подходящей мощности BT139-800 всего по 0,65$ за штуку и вычертил электрическую схему диммера.
Выносной регулятор
ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Читать дальше». Нередко случается у водителей такое
Запаливаются щётки генерирующего устройства. Регулятор встроен вместе с щётками. Приходится менять всё вместе. И тут совет от знатоков: лучше поставь внешний регулятор, чем встроенный. Уж больно не хвалят модели, выпущенные в последнее время
Нередко случается у водителей такое. Запаливаются щётки генерирующего устройства. Регулятор встроен вместе с щётками. Приходится менять всё вместе. И тут совет от знатоков: лучше поставь внешний регулятор, чем встроенный. Уж больно не хвалят модели, выпущенные в последнее время.
Хорошо, думаешь, поставлю внешний, только как его подключать? Оказывается, есть удобная схема, которая позволяет легко всю эту модернизацию осуществить.
Некоторые важные моменты:
нельзя путать фишки на регуляторе под номерами 67 и 15 (первая должна соединяться с генерирующим устройством, а вторая – идти на предохранители);
Вот как выглядит схема подключения
На нижнем фото видим схему, которая показывает подключение уже встроенного реле регулятора.
Она подходит для подключения на «пятёрки», «семёрки», ВАЗ 2104, если ГУ установлено от ВАЗ «копейки». Как видим, реле регулятор выносного типа подключается посредством двух выводов. 15-й вывод идет на предохранитель.
Второй вывод 67 соединяется с генератором. Провод соединяется с фишкой от щёток.
Также реле выносного типа должно соединяться с массой – любой частью кузова.
Реле – это не что иное, как выключатель, служащий для смыкания и отключения отдельных зон электрической цепи, происходящих при конкретных показателях электровеличин. Реле машины иначе называют коммутатором нагрузочного напряжения, и это верно на все 100 процентов. Когда ГУ, вентилятор или стартер потребляет тока больше, чем нужно, реле срабатывает.
Реле состоит из магнита электрического типа, якоря и переключателя. Электромагнитом выступает в данном случае трос, обвитый вокруг индуктора с магнитным стержнем, а якорем – особая пластина, управляющая контактами.
Как только электрическое напряжение проходит сквозь обмотку магнита, возникает электрическое поле. Специальный толкатель прижимает якорь к сердечнику и, тем самым, переключаются контакты.
Внимание. Известно два типа реле, применяемых на автомобилях ВАЗ
Это неконтактное реле-регулятор и МЭР (электрический). Именно схема последнего реле показана на картинке ниже.
Неконтактное реле или НЭРР представляет собой достаточно новый агрегат, не требующий никаких дополнительных корректировок или регулирования. Что касается МЭР, то это прибор старого образца, изготовление которого в настоящее время приостановлено.
Итак, ВРН или регулятор встроенный представляет собой устройство, состоящее из микросхемы, транзистора и корпуса с щётками. Если выходит из строя встроенный регулятор, то его заменяют на новый, либо устанавливают выносной.
Внешний регулятор легко инсталлировать, если следовать строго инструкции.
Модернизация подразумевает демонтаж и разбор генерирующего устройства.
Применение симисторных регуляторов в быту
Подобные устройства применяются в быту везде, где есть необходимость плавно изменять мощность прибора или инструмента. В целом, работает такая схема по принципу снижения сетевого напряжения 230 В. А если напряжение питания электроприбора уменьшать, то пропорционально будет изменяться и его мощность.
А вот если уменьшить мощность такого паяльника, то перечисленные проблемы исчезнут. Сделать это можно путем снижения напряжения его питания с 230 В до, например, 80 В (почти в три раза). А поскольку мощность (а также температура нагрева жала) снижается пропорционально, то в итоге мы получим паяльник на 25-30 Вт.
Симисторные регуляторы применяются для плавного изменения мощности:
- паяльников (именно для паяльника было сделано описанное в статье устройство);
- электрических сушилок для фруктов;
- утюгов;
- обогревателей;
- других нагревательных приборов;
- пылесосов;
- электроинструментов – болгарок, орбитальных шлифовальных машинок, лобзиков;
- другого оборудования с двигателями – точильных станков, сверлильных и прочих;
- ламп накаливания.
Касательно последнего пункта стоит отметить, что именно такая схема симисторного регулятора не очень подходит. Но и об этом подробнее сказано ниже.
Измерение сварочного тока
После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.
Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.
Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.
Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.
Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.
Как сайлентблоки влияют на управление автомобилем?
Сайлентблоки – важнейшая часть любого автомобиля. Данные детали представляют собой уплотнённую втулку, которая соединяет детали амортизации. А амортизация – это одна из самых главных составляющих любого автомобиля. Поэтому, исправность сайлентблоков крайне важна.
Как же они влияют на управление?
- Если сайлентблок сделан некачественно, то велик шанс обычной поломки, при которой он перестает выполнять свои функции. В данном случае, водитель может услышать звуки удара колес и дна автомобиля о кочки и другие неровности. Управлять автомобилем станет очень сложно.
- Некачественные сайлентблоки, но уже исправные. Обычно, данные детали делают с применением резины. А с использованием, из-за нефтепродуктов и химических средств, резина может слегка раствориться. Это также может привести к неисправностям амортизации.
Автомобиль станет сложнее держать на неровной дороге, что может привести к авариям.
Также, при проблеме и износе сайлентблоков, автомобиль на больших скоростях может терять управление, поэтому, очень важно следить за исправностью этих деталей.
Пример стабилизации напряжения на LM317
Допустим надо подать на микросхему 12 вольт и отрегулировать его до 5. Исходя из формулы, приведенной выше, для того, чтобы LM317 выдал 5 вольт и выступал в роли регулятора напряжения, значение R2 должно быть 720 Ом.
Соберите указанную выше схему. Затем с помощью мультиметра проверьте выходное напряжение, поместив его щупы на конденсатор емкостью 1 мкФ. Если схема собрана правильно, то на её выходе будет около 5 вольт.
Теперь замените резистор R2 и установите на его место номинал со значением 1,5 кОм. Теперь на выходе должно быть около 10 В. Это преимущество этих миросхем. Вы можете настроить их на любое напряжение в пределах диапазона, указанного в его характеристиках.
Принцип работы
Соберем простой стабилизатор напряжения используя LM317 согласно схеме.
Подключим на вход Vin источник постоянного питания. Как уже было написано ранее, к этим контактам надо подать входное напряжение, которое микросхема затем понизит в зависимости от нагрузки. Оно должно быть больше, чем на выходе.
Допустим используя эту схему надо получить 5 В нагрузке. Следовательно, на вход Vin надо подать больше чем 5 вольт. Как правило, если микросхема LM317, не является регулятором с малым падением надо, чтобы входное напряжение примерно на 2 вольта было выше выходного. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.
Контакт Adj позволяет отрегулировать напряжение на выходе до уровня, который мы хотим.Рассчитаем, какое значение сопротивления R2 даст на выходе устройства 5 вольт. Используя формулу для выходного напряжения можно узнать значение сопротивления R2.
Так как сопротивление R1 равно 240 Ом, а выходное напряжение равно 5 В, то R2 согласно формуле будет равно 720 Ом. Таким образом, при значении R2 =720 Ом, LM317 будет выдавать 5 В, при подаче на её вход более 5 Вольт.
Драйвер тока
Драйвер тока (LED Driver) поддерживает ток и напряжение в цепи нагрузки в независимости от поданного на него постоянного питания. Известно, что светодиод является полупроводниковым прибором, который следует запитать током, указанным в характеристиках светодиода.
Используя схему стабилизации как показано в DataSheet можно собрать на LM317 простую схему драйвера тока.
Для ее работы зная потребляемый светодиодом ток, необходимо подобрать сопротивление подстроечного резистора R1. У маломощных светодиодов ток потребления составляет порядка 20 мА или 0,02 А. Для подбора необходимого сопротивления используют формулу, где Iout это ток на выходе микросхемы, необходимый для питания светодиодов.
Используя формулу, получаем значение номинала резистора с сопротивлением 62.5 Ома. Для избежания перегрева микросхемы подбирают необходимую мощности резистора по формуле.
Собрав схему и подав питание, получают простейший драйвер стабилизации тока для светодиодов. Светодиод будет включаться, с требуемой яркостью, которая не будет зависеть от поданного постоянного питания на вход микросхемы.
Номинал необходимого резистора R1, можно подобрать, используя обычный подстроечный проволочный резистор на сопротивление 0.5 кОм. Для этого сначала проверяют его сопротивление между среднем и любым из крайних выводов. С помощью мультиметра, вращая регулирующий стержень, добиваемся значения сопротивления 500 Ом, чтобы не сжечь подключенный светодиод при включении.
Затем подключают в схему со светодиодом. Чтобывыбрать подходящий номинал резистора, после подачи питания изменяют сопротивление подстроечного резистора до требуемого тока светодиода.
Онлайн-калькулятор
Для расчета параметров радиоэлементов в схемах с LM317 в сети интернет существует множество онлайн-калькуляторов:
- для расчета резистора R2, при известном выходном напряжении и сопротивлении резистора R1;
- для вычисления напряжения на выходе стабилизатора, при известном сопротивлении двух резисторов (R1 и R2);
- для расчета сопротивления и мощности резистора, при известном значении силы тока на выходе микросхемы и др.
Разновидности реле регуляторов
Прежде, чем произвести самостоятельный ремонт устройства регулирования напряжения, необходимо учесть, что существует несколько типов регуляторов:
- внешние – повышают ремонтопригодность генератора
- встраиваемые – в пластину выпрямителя или щеточный узел
- регулирующие по минусу – появляется дополнительный провод
- регулирующие по плюсу – экономичная схема подключения
- для генераторов переменного тока – нет функции ограничения напряжения на обмотку возбуждения, так как она заложена в самом генераторе
- для генераторов постоянного тока – дополнительная опция отсечения АКБ при неработающем ДВС
- двухуровневые – морально устарели, применяются редко, регулировка пружинами и небольшим рычагом
- трехуровневые – дополнены специальной платой сравнивающего устройства и сигнализатором согласования
- многоуровневые – в схеме имеются 3 – 5 добавочных резисторов и система слежения
- транзисторные – в современных авто не используются
- релейные – улучшенная обратная связь
- релейно-транзисторные – универсальная схема
- микропроцессорные – небольшие габариты, плавные регулировки нижнего/верхнего порога срабатывания
- интегральные – встраиваются в щеткодержатели, поэтому заменяются после истирания щеток
Реле генераторов постоянного тока
Таким образом, схема подключения регулятора напряжения при эксплуатации генератора постоянного тока сложнее. Поскольку в стояночном режиме авто, когда ДВС заглушен, необходимо отключить генератор от АКБ.
При диагностике проверка реле происходит на выполнение трех его функций:
- отсечка аккумулятора во время стоянки машины
- ограничение максимального тока на выходе генератора
- регулировка напряжения для обмотки возбуждения
При любой неисправности требуется ремонт.
Реле генераторов переменного тока
В отличие от предыдущего случая диагностика своими руками регулятора генератора переменного тока немного проще. В конструкцию «автомобильной электростанции» уже заложена функция отсечки питания во время стоянки от АКБ. Остается проверить лишь напряжение на обмотке возбуждения и на выходе с генератора.
Если в машине стоит генератор тока переменного, его невозможно завести разгоном с горки. Так как остаточного намагничивания на возбуждающей обмотке здесь нет по умолчанию.
Встроенные и внешние регуляторы
Для автолюбителя важно знать, что измеряют и начинают регулировать напряжение реле в конкретном месте их установки. Поэтому встроенные модификации воздействуют непосредственно на генератор, а выносные «не знают» о его наличии в машине
Управление по «+» и «–»
В принципе схемы управления по «минусу» и «плюсу» отличаются лишь схемой подключения:
- при монтаже реле в разрыв «+» одна щетка подключается к «массе», другая к клемме регулятора
- если же подключить реле в разрыв «–», то одну щетку нужно подключить к «плюсу», другую к регулятору
Однако в последнем случае появится еще один провод, поскольку реле напряжения является устройством активного типа. Для него необходимо индивидуальное питание, поэтому «+» нужно подвести отдельно.
Двухуровневые
На начальном этапе в машинах устанавливались механические двухуровневые регуляторы напряжения с простым принципом действия:
- через реле проходит электрический ток
- возникающее магнитное поле притягивает рычаг
- сравнивающим устройством служит пружина с заданным усилием
- при увеличении напряжения контакты размыкаются
- на возбуждающую обмотку поступает меньший ток
Использовались механические двухуровневые реле в автомобилях ВАЗ 21099. Основным минусом являлась работа с повышенным износом механических элементов. Поэтому на смену этим приборам пришли электронные (бесконтактные) реле напряжения:
- делитель напряжения собран из резисторов
- стабилитрон является задающим устройством
Сложная схема соединения и недостаточно эффективный контроль напряжения привели к снижению спроса на эти приборы.
Трехуровневые
Однако двухуровневые регуляторы, в свою очередь, так же уступили позиции более совершенным трехуровневым и многоуровневым приборам:
- напряжение выходит с генератора на специальную схему через делитель
- информация обрабатывается, действительное напряжение сравнивается с минимальным и максимальным пороговым значением
- сигнал рассогласования регулирует силу тока, поступающего на возбуждающую обмотку
Более совершенными считаются реле с частотной модуляцией – в них нет привычных сопротивлений, зато увеличена частота срабатывания ключа электронного. Управление осуществляется логическими схемами.
Модели переменного тока
Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.
Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.