Режем металл плазменной технологией

Как осуществляете плазменная резка?

Резка металлов с помощью плазмы – наиболее современный способ металлообработки. Разбираясь, как работает плазморез, нужно знать физические основы этого процесса. При включении аппарата в его рабочем органе – плазмотроне – возникает дуговой разряд между центральным электродом и соплом. Температура этой дуги достигает 30 тыс. градусов. Путём продувания через сопло плазмотрона газа образуется раскалённая струя плазмы со скоростью истечения примерно 1500 метров в секунду. Такой струёй любой металл почти мгновенно оплавляется и выдувается из зоны реза.

Луч плазмы получают в результате начального короткого замыкания, возникающего между центральным вольфрамовым стержнем и корпусом сопла. В большинстве аппаратов для плазменной резки это замыкание в виде искрового разряда создаётся специальным устройством – осциллятором. В этом и заключается основной принцип работы плазменного резака.

Через плазмотрон в процессе резки могут продуваться два типа газов – малоактивные и активные. К малоактивным относятся водород, аргон и азот. Активные же газы для плазменной резки металлов – это кислород или просто воздух. Кислородная плазменная струя способна резать металлы мягких типов или низколегированные. Использование этого газа в качестве рабочего даёт возможность быстро оплавлять железо без образования каких-либо заусенец. При этом не происходи улетучивание железа из районов, прилегающих к зоне резки. А вот использование атмосферного воздуха для образования плазменной струи хоть и дешевле, но резать металл толще 20 мм им не получится.

Если говорить о достоинствах и недостатках плазменной резки металлов, то лучше начать с достоинств.

Перечислим их:

  • возможность этим способом производить обработку любых металлов;
  • большая скорость резки для средних по толщине и тонких деталей;
  • минимальная площадь термического воздействия резки на прилегающую зону металла, что позволяет избегать тепловых деформаций и других термических влияний;
  • высокое качество получаемых резов;
  • когда аппарат не требует установки баллонов со сжатым кислородом или воздухом, а обеспечивается газовым напором с помощью компрессора, плазменная технология оказывается абсолютно безопасной;
  • плазменным способом можно выполнять поверхностные гравировки и фигурную резку металлов по схемам разной степени сложности.

Но одними достоинствами никакие новые технологические приёмы не могут характеризоваться.

Есть недостатки и у плазменной резки металлов:

  • цена плазменного резака выше, чем стоимость аналогичного газового или механического оборудования для резки металлов;
  • резка металлов плазменным способом ограничена толщиной в 100 мм;
  • истекающий из сопла раскалённый поток ионизированного газа (плазмы) создаёт повышенный шумовой фон, что вынуждает оператора станка использовать в работе наушники;
  • для обслуживания плазменных установок требуются специалисты, прошедшие квалификационное обучение.

Плазменным способом можно эффективно вести обработку металлов с толщиной и свыше 100 мм. Плазменная резка в отличие от газокислородной не требует постоянного контроля интенсивности горения газовой струи. Этим обуславливается её частое применение с сферах узкой специализации металлообработки. С помощью плазмы гораздо легче выполнят нелинейную резку, чем газокислородными аппаратами.

Обзор видов

Плазменные горелки для резки и пайки можно разделить на несколько категорий. Так, выделяют две основные разновидности устройств.

  • Пистолет плазменно-водяной сварки. Отличительной характеристикой в этом случае является наличие разрядной камеры и парообразующего устройства, которые соединены друг с другом.
  • Резак, составляющими частями которого являются: ручка, головка, клапаны и мундштук. Это устройство отличается более вытянутой формой. Примечательно, что в процессе работы вода, водород и другие необходимые смеси подаются именно через клапаны.

В случае ручной плазменной сварки специалисты зачастую используют устройство в виде пистолета. Его удобно держать в руках. От автоматического оно отличается по нескольким параметрам:

  • способность работать в труднодоступных местах;
  • изолированность сопла (удобно и безопасно одновременно);
  • по сравнению с автоматическими устройствами такого же типа ручные являются более объемными.

Автоматические горелки для плазмореза используются реже. В бытовых условиях чаще пользуются ручными. Наиболее популярной моделью у мастеров заслуженно считается плазменная горелка с оригинальным названием «Горыныч». Горелка выполнена в виде пистолета, который соединяется с блоком питания при помощи специального соединительного шнура. Составляющими частями этого устройства традиционно являются: сопло, аккумулятор, ручка. Активация работы осуществляется при помощи имеющейся кнопки «пуск».

В качестве преимущества можно отметить надежный металлический корпус. Аккумулятор также изготовлен из высококачественной нержавеющей стали. Внутри имеются специальные кварцевые дисперсионные волокна, которые предназначены для впитывания влаги и хорошо справляются с поставленной задачей. Само изделие помещено в корпус, выполненный из качественного пластика. А также в качестве преимуществ следует отметить:

  • материал при обработке не деформируется и не дает существенную усадку (большинство других моделей дают обратный эффект);
  • при обработке создается шов отличного качества;
  • на месте работы образуется защитная оксидная пленка.

Приобрести плазморез можно в магазинах, занимающихся реализацией сварочного оборудования и инструментов. Пользователи отмечают долговечность, простоту эксплуатации и качество работы данного устройства.

Как выбрать плазморез

При выборе плазмореза нужно учесть несколько ключевых характеристик.

Толщина разрезаемого металла

Этот параметр напрямую зависит от силы тока (количества ампер), вырабатываемой инвертором. Если Вам требуется резать черный металл, то на каждый 1 мм толщины понадобиться 4 А мощности. Например, чтобы кроить листовое железо 7 мм, ищите аппарат с силой тока не менее 30 А. Для цветных сплавов расчетное значение 1 мм=1.5 А.

Существует еще понятие чистового реза и максимального. Например, первое значение в характеристиках может быть 12 мм, а второе — 18 мм. Это означает, что при толщине до 12 мм вообще не понадобится последующая механическая обработка. Лучше брать плазморез с запасом по мощности, чтобы он не работал постоянно в полную силу. Это продлит его ресурс.

Вид металла Сила тока, необходимая для резки заготовки толщиной в 1 мм
Медь, латунь, алюминий, медные сплавы 6 А 
Нержавеющая сталь, черные металлы 4 А 

Продолжительность включения

Подразумевает, как долго аппарат сможет работать без перерыва. Зависит от мощности и типа охлаждения. Для гаража и небольшой мастерской подойдут установки с ПВ 40%. Для производства, где часто требуется плазменная резка заготовок, выбирайте ПВ 60-80%.

Необходимая мощность компрессора

Чтобы плазменная резка была качественной, необходима стабильная подача воздуха от компрессора. Его производительность должна быть на 20-30% выше, чем требуется по паспорту инвертора. Покупайте компрессор с фильтром-осушителем и маслоотделителем, чтобы примеси не влияли на качество плазмы.

Длина шлангпакета

У плазмотрона длина кабелей может быть 1.5-8 м. При выборе учитывайте, с какими по габаритам конструкциями Вам придется работать. Чем короче шлангпакет, тем чаще придется переставлять аппарат. Но если он требуется для выреза небольших деталей над столом, то можно сэкономить и купить плазмотрон с коротким кабелем.

Принцип действия плазменной резки

Плазменная резка – это разделительная обработка металла с помощью термического процесса. Роль режущего инструмента здесь играет струя низкотемпературной плазмы.

Принцип действия плазменного аппарата:

  1. Между разрезаемым металлом и электродом или соплом плазмотрона создается электрическая дуга с температурой в 5000С.
  2. В сопло под давлением поступает газ, за счет чего температура электрической дуги повышается до 20 000С.
  3. Газ ионизируется и преобразуется в высокотемпературный газ или низкотемпературную плазму.
  4. От нагретой дуги возрастает ионизация, и температура газовой струи повышается до 30 000С. Во время этого процесса поток плазмы обладает высокой теплопроводностью и ярко светится.
  5. Плазма со скоростью в 500–1500 м/с проистекает из сопла, попадает на подготовленный металл, разогревает его и плавит в месте разреза.

Более наглядно процесс резки металла с помощью плазмотрона можно посмотреть по видео.

Плазмотрон прямого действия

Плазменная дуга возникает между катодом и свариваемым токопроводящим материалом. Основными его узлами служат:

  • катодный узел, состоящий из вольфрамового электрода и устройства подачи газа;
  • корпус плазмотрона;
  • сопло (формирующий наконечник);
  • изолятор;
  • система охлаждения (в устройствах с водяным охлаждением);
  • ручка с пусковой кнопкой.

Корпус плазмотрона с соплом изолированы от катодного узла. Электрод катода изготовляется из тугоплавкого материала, преимущественно вольфрама с добавками оксидов лантана, тория, иттрия или других металлов, повышающих устойчивость вольфрама при высоких температурах и снижающих потенциал его воздействия с ионизированными газами.

Формирование плазменно-дуговой струи производится с помощью тугоплавкого сопла, охлаждаемого водой или струей газа. Для облегчения розжига дуги в камере плазмотрона вмонтирован дежурный электрод — анод. При запуске плазмотрона он включается в сеть, и дуга возникает внутри камеры между ним и катодом. Образовавшаяся струя плазмы нагревает свариваемый металл и вызывает возникновение более мощной  дуги между ним и катодом плазмотрона. После этого дежурная дуга угасает, и сварочный аппарат работает на основной.

Проверка

Конструкция

Конструкция плазменного резака состоит из следующих компонент:

  1. Плазмотрон, предназначенный для формирования плазменной струи. Имеет сложную конструкцию, изготавливается из тугоплавкого металла. Требуется подбор таких параметров: диаметра сопла, длины резака, угла подачи сжатого воздуха в область формирования плазмы.
  2. Источник питания предназначен для поджига дуги. Должен иметь стабильные параметры по току и напряжению. Подбирают в зависимости от максимальной величины выходного тока, габаритов, размеров и веса.
  3. Осциллятор, используемый для упрощения розжига дуги, стабилизации её горения. Имеет простую схему, поэтому может быть собран самостоятельно либо приобретён в сборе.
  4. Компрессор для создания потока воздуха, подаваемого для охлаждения горелки, формирования направленного потока плазмы. Подходит практически любая модель. Чтобы не попала влага, потребуется установить осушитель.
  5. Медный кабель с зажимом на конце для подключения массы.
  6. Кабель-шланг, предназначенный для подключения горелки и поджига электрической дуги, а также для подачи сжатого воздуха. Может быть изготовлен путём укладки кабеля и кислородной трубки внутри поливочной гибкой трубки.

Необходимые комплектующие

Перед сборкой резака потребуется подготовить следующие комплектующие:

  • источник питания;
  • резак или плазмотрон;
  • компрессор с осушителем или фильтром;
  • осциллятор;
  • электроды;
  • шланги;
  • кабели.

Подбор блока питания

Выбор источника электроэнергии для плазменной установки выполняется с учётом следующих критериев:

  • максимальной толщины и типа разрезаемого металла;
  • длительности проведения работ, времени горения дуги;
  • требований к параметрам плазмы;
  • стабильности тока, напряжения питающей сети;
  • требований безопасности;
  • необходимости расширения функциональности плазмореза.

Блок питания

Плазмотрон

Поскольку плазмотрон используется для генерации плазмы, к подбору его параметров нужно подходить грамотно. Важные параметры:

  • стойкость к рабочим температурам;
  • удобство пуска, настройки, остановки работы оборудования;
  • небольшой вес, компактные размеры;
  • срок службы;
  • требования к обслуживанию;
  • ремонтопригодность.

По типу стабилизации дуги плазмотроны бывают газового, водяного и магнитного вида.

При работе важно своевременно заменять электроды, чтобы максимально продлить срок службы сопла. Понять необходимость данной процедуры можно по ухудшению качества резки: нарушение точности, появлению поверхностных волн

Важно не перегревать плазмотрон, поскольку это может повлечь серьёзные поломки.

Для создания плазмотрона потребуются следующие детали:

  • рукоятка из материала с низкой теплопроводностью, в которой есть отверстия под провода для электрода, трубок для газа;
  • пусковая кнопка;
  • подходящие по параметрам электроды;
  • сопло нужного диаметра;
  • изолятор;
  • пружина для соблюдения расстояния от сопла до разрезаемого металла;
  • наконечник с защитой от брызг расплавленного металла;
  • завихритель потока;
  • специальная насадка.

Осциллятор

Осциллятор применяется для выработки токов высокой частоты. Работает в режимах коротких импульсов или постоянного горения дуги. Предназначен для быстрого запуска плазмореза.

Конструктивно состоит из следующих элементов:

  • выпрямителя;
  • конденсаторов;
  • блока питания;
  • управляющей микросхемы;
  • импульсного модуля;
  • повышающего трансформатора;
  • контроллера напряжения.

Электроды

Выбор электродов определяется на основе рабочих режимов резки, типа металла, требований к качеству работ. Для эксплуатации в небольших мастерских рекомендуется приобретать гафниевые электроды. Бериллиевые или ториевые могут формировать токсичные соединения.

Компрессор и кабель шланги

Модель компрессора подбирается на основе его технических параметров, требований к конструкции плазмореза. Он используется для создания воздушных потоков внутри рабочих каналов, охлаждения компонентов оборудования при непрерывной работе. Для регулировки подачи воздуха на выходе из компрессора устанавливается электрический клапан.

Внутри шлангов размещают кабель, трубку для сжатого воздуха. На массовом кабеле располагают щуп для обеспечения контакта с разрезаемым металлом и поджига стабильной дуги.

Источники плазменной резки

Характеристики источника питания зависят от производительности и мощности оборудования. Его предназначение заключается в подаче тока определённой силы. Роль источника могут выполнять:

  • трансформатор, дающий возможность более эффективно работать с трубами или металлом увеличенной толщины;
  • инвертор, более подходящий для небольших цехов. Основное преимущество – это экономное энергопотребление.

Трансформаторный источник питания считается более надёжным благодаря малой восприимчивости к перепадам напряжения в сети. Широко применяется вместе со станками плазменной резки, автоматическими линиями с ЧПУ. Отличается долгим сроком службы без потери качественных характеристик. Основными недостатками являются высокое энергопотребление, большие вес и габариты, что обуславливает низкий КПД. Широко востребован благодаря возможности получения выходного тока до 180 ампер, что позволяет уверенно работать в самых сложных условиях.

Инвертор отличается гораздо меньшими габаритами и весом, позволяет значительно экономить электроэнергию. Однако максимально возможный ток в 70 ампер ограничивает сферу использования. К тому же, инвертор плохо переносит колебания напряжения. Ремонт достаточно сложен и обычно осуществляется в сервисных центрах.

Какой именно выбрать источник плазменной резки, каждый решает сам исходя из конкретных задач и требований. Источник питания может идти в комплекте со станком, но можно подобрать его и отдельно с условием, чтобы он подходил по параметрам.

Опросник для подбора установки плазменной резки

Мы рассмотрели основные узлы плазменных машин и особенности, которые нужно учитывать при подборе данного вида оборудования. В заключении я представляю вашему вниманию краткий список вопросов, ответ на которые поможет вам подобрать оптимальный для вас станок:

  • Какой тип металла вы будете раскраивать?
  • Какова минимальная и максимальная толщина резки?
  • На какой максимальной толщине вам необходима врезка (прошивка)?
  • Какие требования к чистоте и точности реза?
  • Нужно ли вырезать окружность, диаметр которой равен или меньше толщины листа?
  • Нужно ли осуществлять рез под углом?
  • Какой размер листа вы планируете резать?
  • Сколько часов в сутки планируется эксплуатировать установку?
  • Какое количество деталей необходимо раскраивать в смену/месяц/год?
  • Какие есть ограничения по производственным площадям?
  • Какие есть ограничения по электрической сети?
  • На какой бюджет вы рассчитываете?

Ответ на эти вопросы и определит технические параметры для подбора подходящей установки.

Рис. 3 Установка плазменной резки от турецкого производителя

Типы плазморезов:

По типу резки: По типу используемого газа: По типу поджига дуги: По типу охлаждения:
Для ручной резки Плазмотроны на сжатом воздухе С контактным поджигом С воздушным (газовым) охлаждением
Для автоматической резки Плазмотроны на аргоне, кислороде, азоте или их смесях С пневмоподжигом (PN) С жидкостным охлаждением
    С высокочастотным поджигом (HF)  
  • Для ручной резки. Используются для работ в небольших производствах, мастерских, станциях технического обслуживания, гаражах, личном хозяйстве и т.д. Даже инвертор небольшой мощности позволяет ручным резаком быстро и эффективно резать металл толщиной до 30 мм. Можно резать листовой металл, трубы, различные детали и конструктивные элементы.
  • Для автоматической резки. Используются в станках стационарного типа для автоматического раскроя листового металла или профильных труб. В работе обычно управляются с помощью ЧПУ. Комплектуются мощными инверторами зачастую с несколькими сменными плазмотронами и соплами.

По типу используемого газа:

  • Плазмотроны на сжатом воздухе. Наиболее распространенный вид плазморезов. К их достоинствам относятся простота, низкая стоимость оборудования и расходных материалов (электроды, сопла), простота в управлении, высокая эффективность и универсальность. Могут использовать обычный или очищенный сжатый воздух.
  • Плазмотроны на аргоне, кислороде, азоте или их смесях. Используются в работах более сложных систем больших производств на стационарных раскройных станках для резки меди, алюминия и их сплавов. Требуют более точной настройки.

По типу поджига дуги:

  • Контактные. В контактных плазмотронах соплом нужно дотронуться на поверхности рабочей детали для формирования дуги. Такой тип поджига у бытовых инверторов небольшой мощности.
  • Пневмоподжиг. Инверторы с пневмоподжигом формируют стартовую (дежурную) дугу внутри плазмотрона, без контакта сопла с поверхностью детали или высокачастотного разряда, который может нанести вред электронике станка с ЧПУ.
  • Высокочастотный (HF) поджиг. В данном случае дуга возбуждается при помощи входящего в состав источника тока устройства – осциллятора. Дуга образовывается, только когда имеется высокочастотный электрический разряд между поверхностями заготовки и соплом плазмотрона (при этом поверхности между собой не соприкасаются). Стартовая дуга инициируется по команде сварщика внутри поверхности плазмотрона между электродом и внутренней поверхностью сопла с помощью тока высокой частоты. Рабочая дуга автоматически поджигается от стартовой каждый раз при поднесении плазмотрона к поверхности детали и гаснет по команде сварщика или при увеличении этого расстояния.

По типу охлаждения:

  • С воздушным (газовым) охлаждением. Сопло плазмореза охлаждается поступающим воздухом или рабочим газом.
  • С жидкостным охлаждением. Жидкостное охлаждение плазмореза используется в высоконагруженных промышленных резаках с большими токами от 150 А.

Самодельный плазморез

Бесспорно многие из нас видели видео на ютубе, где Виталий Богачев собрал плазменный резак из обычного сварочного аппарата дуговой сварки Постараюсь объяснить простыми словами без всякого фанатизма. Виталий, удалил вторичную обмотку на сварочном трансформаторе и вместо нее намотал новую вторичную обмотку кабелем меньшего сечения, что бы поднять выходное напряжение до 200В. Следом установил диодный мост на радиаторы и дроссель намотанный на железе, походу от большего сварочного трансформатора. Подключил это дело к резаку. Для продувки использовал обычный воздух накачиваемый компрессором Вот первое видео в котором Виталий описал конструкцию прибора

Во втором видео Виталий показал как работает его самопальный плазменный резак. Видно, что резак режет метал до 8мм, но Виталий не показывает сам аппарат во время резки, даже элементарно зайти в это помещение и показать куда тянется рукав от резака, этого нет

Самодельный плазморез, плазменный резак в работе продолжение. Резка. DIY plasma cutter in the workСамодельный плазморез, плазменный резак в работе продолжение. Резка. DIY plasma cutter in the work

Честно, ну очень меня поманила эта идея и захотелось собрать подобное устройство, но вот что насторожило. Почему заводские аппараты для плазменной резки стоят приличных денег, если в них нет ничего такого сложного, может в видео есть подвох и на самом деле видео для пиара

Думал и решил в общем посчитать, что же мне надо для сборки плазменного резака

Во первых нужен сварочный аппарат для дуговой сварки переменного тока 200А, а точнее таких аппаратов нужно пара. Первый трансформатор будет силовой, второй трансформатор будет в качестве дросселя. На сварочном трансформаторе три обмотки, две первичные обмотки 0-220-400В, а так же вторичная обмотка 40В. Вот что я планирую делать с этими трансформаторами, разрезать оба трансформатора, снять вторичную обмотку с первого и на ее место поставить первичку второго трансформатора, вот и должно у меня получится на вторичной обмотке 200В. Теперь о дросселе. Остается у меня железо со второго трансформатора, а так же две вторичные обмотки, которые можно одеть на второй сердечник и последовательно соединить. Должен получиться великолепный дроссель с пока неизвестной индуктивностью. Посмотрел на эти сварочные трансформаторы в Яндекс маркете и нашел самый дешевый вариант по 2 376 ₽ за один. Значит за два с учетом доставки выйдет примерно 6,500Р. Вот такие сварочные аппараты

Иду далее, нужны 4 диода напряжением от 600В, но лучше 1000В. Ток для диодов лучше выбрать побольше скажем 150А будет в самый раз. За этим делом обращусь ка я на AliExpress. Нашел подходящий диодный мостик на 150А 1600В на обратный пробой, такой хороший запас по обратному напряжению не будет лишний.

Цена на такой диодный мостик 770,33 руб., вот ссылка для покупки. Так же нужен радиатор для охлаждения диодного моста, лучше чем радиатор с процессора ПК идей нет, такой радиатор можно на барахолке купить за 100-200Р. И того 1000Р за выпрямитель

Для работы плазменного резака нужен компрессор, ну это дело решенное, самодельный компрессор давно собран. Компрессор это хорошо, а вот воздух должен быть чистым, без масла и влаги. Значит надо перед резаком ставить осушитель, который опять же лучше заказать с Китая. Приглянулся мне фильтр AF2000-02 G1/4 за 442,20 руб.

Осушитель выдерживает давление в 1.5 МПа, что вполне устраивает. Так же нужен клапан для управления, клапан буду использовать типа такого, цена на него 480Р. Вот ссылка

Еще несколько компонентов надо для полного комплекта. Несколько релюшек для управления силовым трансформатором и клапанном газа.

Такие реле можно заказать из Китая по 100 рублей Нужен блок питания 12В для питания клапана и реле

Такой блок питания стоит в Китае 232 р, купить можно по этой ссылке. Разъем под кнопку управления на держаке. Этой кнопкой включается трансформатор, открывается клапан и включается осциллятор. С Китая такой стоит 66 рублей, комплект мама-папа. Так же для розжига дуги плазмы без контакта нужен высоковольтный осцилятор

Готовый модуль из Китая для питания от переменного напряжения 220В модуль стоит 1500 рублей, ссылка вот Вроде все рассчитал 6500+1000+440+480+270+2400+800+100+230+66+1500+1000=15000 рублей. Последняя тысяча на всякие мелочи которые могут понадобится в процессе сборки Эксперимент мог бы быть реализован, но такую сумму не могу выделить. Думал что сделать, ведь хочется проверить собрать плазморез самостоятельно, но пока денег нет!. С ув. Эдуард

плазменное зажигание "сварочник + осциллятор"плазменное зажигание «сварочник + осциллятор»

Как работает самодельный плазмотрон

В принципе, самодельный плазмотрон работает точно так же, как и заводской. Правда, у него свой собственный ресурс, зависящий в основном от материала, из которого изготовлено сопло.

Сначала включается осциллятор и инвертор, через которые ток подается на электрод. Происходит его поджиг. Управление поджигом производится кнопкой, расположенной на рукоятке горелки.
Секунд 10-15, за это время дежурная дуга заполнит собой все пространство между электродом и соплом

Теперь можно подавать сжатый воздух, потому что за это время температура внутри сопла достигнет 7000С.
Как только из сопла вырвется плазма, можно переходить к процессу резки металла.
Очень важно правильно вести горелку вдоль намеченного контура резки. К примеру, если скорость продвижения резака не очень большая, то это гарантия, что ширина реза будет большой, плюс края будут точно неровными с наплывами и корявыми

Если скорость движения резака, наоборот, будет большой, то расплавленный металл будет плохо выдуваться из зоны резки, что приведет к образованию рваного реза, потеряется его непрерывность. Поэтому опытным путем необходимо подобрать скорость резки.

Ремонт плазматрона

Ремонт аппарата плазменной резки выполняется достаточно просто — если есть необходимость заменить только один вышедший из строя модуль, ремонтируют непосредственно его — просто заменяя неисправную деталь. Сегодня производство плазмотронов ориентировано на увеличение сроков службы данных изделий, поэтому для ремонта и обслуживания такой продукции выпускают все необходимые запчасти. Чаще всего ремонт плазмотронов необходим при ухудшении качества работы плазмореза из-за нарушения владельцем условий эксплуатации оснащения. Пыльная и влажная атмосфера помещения способствует засорению аппаратуры и ее перегреву, и в результате снижается производительность оборудования, а также возможен выход его из строя.

Скрытие радиаторов

Самый доступный, но не очень эстетичный способ, это использование навесных экранов.

Если прибор отопления размещен в нише, его можно закрыть плоским экраном.

Популярными решениями являются панели из стекла с фотопечатью. Они позволяют закрыть приборы спереди, оставив для конвекции воздуха пространство снизу и сверху.

Какими бы не были экраны для отопительных приборов, они должны обладать некоторыми свойствами:

  • Не снижать теплоотдачу приборов;
  • Защищать детей от ожогов от приборов отопления, острых углов;
  • Нести декоративную функцию.

Желаем вам красиво прятать трубы и приборы отопления, не влияя на эффективность их работы.

Комплектация плазмотрона

Из принципа работы аппарата плазменной резки становится понятным, что для проведения этого процесса потребуется источник электрического питания, источник сжатого воздуха, горелка, в состав которой входит сопло из жаропрочного материала, кабели для подачи электроэнергии и шланги для подачи сжатого воздуха.

Так как разговор идет о плазмотроне, который будет собираться своими руками, то необходимо учитывать момент, что оборудование должно быть недорогим. Поэтому в качестве источника питания электроэнергией выбирается сварочный инвертор. Это недорогой аппарат с хорошей стабильной дугой, с его помощью можно неплохо сэкономить на потреблении электрического тока. Правда, резать им можно металлические заготовки толщиною не более 25 мм. Если есть необходимость увеличить данный показатель, тогда придется использовать вместо инвертора сварочный трансформатор.

Что касается источника сжатого воздуха, то тут проблем возникнуть не должно. Обычный компрессор давлением 2-2,5 атмосферы прекрасно будет поддерживать стабильную дугу для резки

Единственное, на что необходимо обратить внимание, это объем выдаваемого воздуха. Если процесс резки металлов будет продолжительным, то компрессор может не выдержать такой интенсивной работы

Поэтому рекомендуется после него установить ресивер. По сути, это емкость, в которой будет аккумулироваться воздух под необходимым давлением

Здесь важно провести настройку так, чтобы снижение давления в ресивере сразу же становилось причиной включения компрессора для наполнения емкости сжатым воздухом. Необходимо отметить, что компрессоры в комплекте с ресивером сегодня продаются, как единый комплекс.

Самый сложный в изготовлении элемент плазмотрона – это горелка с соплом. Самый простой вариант – это купить готовое сопло, а лучше несколько его видов с разными диаметрами его отверстия. Таким образом можно, меняя сопло, проводить резку разной ширины. Стандартный диаметр – 3 мм. Кто-то из домашних мастеров делает сопла своими руками из жаропрочных металлов, которые достать не так просто. Поэтому проще купить.

Устанавливается сопло на резак, он просто накручивается на конец горелки. Если используется в самодельном плазмотроне инвертор, то в его комплект входит рукоятка, на которую можно насадить купленное сопло.

Обязательные элементы плазмотрона – сварочный кабель и шланг. Их обычно соединяют в один комплект, что создает удобство их использования. Сдвоенный элемент рекомендуется заизолировать, к примеру, установить внутрь резинового шланга.

И еще один элемент самодельного плазмотрона – это осциллятор. Его назначение – зажечь дугу в самом начале работы, то есть, этот прибор создает первичную искру для поджига неплавящегося электрода. При этом касаться концом расходника поверхности металла нет необходимости. Работают осцилляторы, как на переменном, так и на постоянном токе. Если в заводских аппаратах этот прибор установлен внутри корпуса оборудования, то в самодельных его можно установить рядом с инвертором, подключив проводами.

Необходимо понимать, что осциллятор предназначается только для поджига дуги. То есть, после ее стабилизации прибор должен быть отключен. Схема подключения основана на использовании реле, при помощи которого контролируется процесс стабилизации. После отключения устройства дуга работает непосредственно от инвертора.

Как видите, никакие чертежи для сборки плазмотрона своими руками не нужны. Вся сборка производится достаточно просто, главное соблюсти правила техники безопасности. К примеру, сварочный кабель соединяется на болтах, шланги для сжатого воздуха на заводских обжимах и хомутах.

Принцип работы

Принцип действия плазмотрона заключается в следующем.

Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги.

В выходном отверстии от сужения происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20000 °С.

Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток.

При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует.

Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Плазменно-дуговой резкеподвергаются токопроводящие материалы.

При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы.

Последняя образуется за счет поступления газа, его нагрева и ионизации.

Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование.

Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл.

Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу, охлаждает компоненты плазмотрона и поглощает вредные выделения.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка.

//www.youtube.com/embed/GUXgCnErxfE?feature=oembed//www.youtube.com/embed/-UdogyPB7S8?feature=oembed

Заключение

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий