Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

Рабочие характеристики диода.

На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления — обратный ток Iобр. — Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпp.) или пропускным, а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр.) или непропускным.

При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром. Внутреннее сопротивление открытого диода — величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Вольт-амперная характеристика (ВАХ)

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт — амперной характеристикой диода (ВАХ).

Такую характеристику вы видите на (рис. 2). Здесь по вертикальной оси вверх отложены значения прямого тока Iпр., а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпp., влево — обратного напряжения. На такой вольт — амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь вольт — амперной характеристики, соответствующую обратному току. Из нее видно, что ток Iпр. диода в сотни раз больше тока Iобр. Так, например, уже при прямом напряжении Uпp. = 0,5 В ток Iпр. равен 50 мА (точка (а) на характеристике), при Uпp. = 1 В он возрастает до 150 мА (точка (б) на характеристике), а при обратном напряжении Uобр. = 100 В обратный ток Iобр. не превышает 0,5 мА (500 мкА). Подсчитайте, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Рис. 2 Вольт — амперная характеристика полупроводникового диода.

Рис. 3 Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б).

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видите, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов. Примерно такие вольт — амперные характеристики имеют все германиевые диоды. Вольт — амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1-0,2 В, а кремниевый при 0,5-0,6 В. Прибор, на примере которого я рассказал вам о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными.

Математическая модель диода. Обозначение.

Полупроводниковый диод имеет два вывода. Выводы называются: Анод и Катод. Полупроводниковый диод обладает свойством односторонней проводимости. Диод проводит ток, если к аноду приложить положительное напряжение, а к катоду — отрицательное. Если наоборот, то проводимость отсутствует.

Полупроводниковый диод позволяет создавать асимметричные с точки зрения полярности сигнала схемы. Например, выпрямители, преобразующие переменный ток в пульсирующий однополярный, или детекторы, выделяющие низкочастотную огибающую из высокочастотного сигнала.

На схемах полупроводниковый диод обозначается, как показано на рисунке.

Полупроводниковый диод на основе искусственного p-n перехода обладает проводимостью, описываемой следующей формулой:

[Ток через диод] = [Обратный ток диода] * (exp([Напряжение на диоде] * [K]) — 1).

Где [K] = ln([Ток измерения напряжения насыщения] / [Обратный ток диода] + 1) / [Напряжение насыщения при токе измерения].

[Обратный ток диода], [Напряжение насыщения при токе измерения] и [Ток измерения напряжения насыщения] — данные из справочника. В справочнике обычно пишут: ‘Напряжение насыщения 0.8 В при токе 1 А’ или ‘Максимальное прямое напряжение 0.8 В при токе 7 А’. Это как раз и есть нужные параметры. Еще ток измерения иногда приводят в сноске.

На рисунке приведена Вольтамперная характеристика полупроводникового диода, зависимость тока и напряжения. Как мы видим, рост напряжения на диоде приводит к очень быстрому, экспоненциальному росту тока.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Существует множество приборов и устройств, которые преобразовывают электрический ток. Предлагаем рассмотреть, что такое выпрямительные диоды большой мощности и средней, их принцип работы, а также характеристики и применение.

Охотничьи ножи — 6 лучших производитеоей

Практическая часть

Лабораторная работа посвящена исследованию полупроводникового выпрямительного диода. Исследуемый диод FR302 закреплен на стеклотекстолитовой плате вместе с токоограничительным резистором МЛТ-2 43 Ом. Резистор предназначен для ограничения тока при снятии прямой ветви характеристики, т. к. при открытом p-n-переходе сопротивление диода мало.

Проводимость диода исследуется с помощью миллиамперметра (микроамперметра) и вольтметра, по показаниям, которых строится вольтамперная характеристика (ВАХ) диода. 

Рисунок 3. Электрическая принципиальная схема снятия прямой ветви ВАХ диода

Питание установки осуществляется от регулируемого блока питания, который дает постоянный ток напряжением от 0 до 12 В (стабилизированный выход) и постоянный ток напряжением от 0 до 36 В (нестабилизированный выход). 

Для снятия прямой ветви характеристики используется миллиамперметр и милливольтметр, т. к. в открытом состоянии падение напряжения на диоде составляет около 1 В, а ток через него достигает 200 мА.

Рисунок 4. Электрическая принципиальная схема снятия обратной ветви ВАХ диода

Для снятия обратной ветви ВАХ диода обратное напряжение на диоде доводится до 36 В. При таком напряжении обратный ток диода FR302 остается небольшим (единицы-десятки микроампер), поэтому для его измерения в цепь вместо миллиамперметра включают микроамперметр. Сильно увеличивать обратный ток диода крайне нежелательно, так как это может привести к его выходу из строя. К тому же напряжения выше 42 В опасны, и их использование нежелательно.

Материал предоставил для изучения — Denev.

Устройство и конструкция

Разобравшись с принципом работы полупроводникового диода, можно начать изучать его устройство и конструкцию. Эти сведения понадобятся для дальнейшего использования диода и более глубокого понимания его рабочих свойств. В основе элемента лежат такие составляющие:

  1. Внешняя оболочка. В качестве корпуса используется небольшой баллон. Он полностью вакуумный и может быть стеклянным, металлическим или изготовленным из керамики.
  2. Внутри конструкции находится два электрода. Первый используется в качестве катода с накалом, обеспечивающим стабильную эмиссию электронов. В самом простом исполнении он являет собой нить с минимальной толщиной, способную накаливаться по мере подачи тока. Но в настоящее время активно распространяются модели косвенного накала. В отличие от классических типов они представлены в виде небольших цилиндров со специфическим слоем, где происходит испускание электронов.
  3. Что касается второго электрода, то он является анодом, принимающим электроны от катода. Элемент обладает плюсовым зарядом и цилиндрической формой. При изготовлении кристалла диода применяется кремний или германий.

Что означает ВАХ диода?

ВАХ диода это просто напросто вольтамперная характеристика диода. Она описывает зависимость тока от напряжения прикладываемого к диоду.  Давайте рассмотрим это обстоятельство чуток подробнее. Слева у нас показан вольтамперной характеристики для резистора. Как видите, зависимость тока от напряжения линейная, чем больше напряжение приложенное к резистору  тем больше ток.

Для диода кривая зависимости явно отличается. Если мы подключим к аноду положительный потенциал, а к катоду отрицательный  и будем плавно повышать напряжение то будет происходить следующее. Ток в начальный момент времени будет очень мал поэтому диод еще не будет открыт по полной. Но если мы будем прибавлять напряжение то это приведет к полному открытию диода.

ВАХ диода.

Хорошо, а что же случится если мы подключим диод иначе? Положительный потенциал приложим к катоду, а отрицательный к аноду. В этом случае график ВАХ диода у нас буквально перевернется и картина будет следующая. При плавном повышении напряжения ток будет повышаться, но величина тока будет настолько незначительной, что им зачастую пренебрегают. Этот ток при обратном подключении называют еще током утечки.

Только есть здесь один нюанс.  Если мы будем и дальше повышать обратное напряжения на диоде, то можно добиться резкого повышения тока. На вольтамперной характеристике этот момент выглядит в виде небольшого «хвостика» причудливо оттопыренного в конце. Это так называемый обратимый пробой диода. Такой пробой не страшен, если напряжение уменьшить то ток снова уменьшится и будет вновь очень незначительным. Явление подобного обратимого пробоя является  побочным и  для диода его всегда стараются сводить к минимуму.

Как видите всю эту информацию мы получили лишь используя график ВАХ, но будет полезно все это проверить своими руками на практике. Действительно, соберите несложную схему и  сделайте несколько замеров мультиметром, это пойдет на пользу. Вот только диод нужно уметь правильно подключать, ато ведь его легко можно пожечь, так что читайте дальше -поведаю обо всем.

КАК РАБОТАЕТ ДИОД [РадиолюбительTV 36 ]КАК РАБОТАЕТ ДИОД [РадиолюбительTV 36 ]

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Шитье

Для кухонных стен

Мощные кремниевые диоды: достоинства и недостатки

Перед тем как начать разговор о недостатках кремния, стоит отметить, что кремниевые диоды – это надежное, проверенное десятилетиями решение. Говорить о том, что они абсолютно устарели, конечно, нельзя. Более того, они обладают неоспоримыми достоинствами и целым рядом преимуществ:

  • самые современные диоды способны работать с напряжениями более 1 кВ и коммутировать токи в сотни ампер;
  • кремниевая технология бюджетна и хорошо отлажена;
  • к услугам разработчиков предлагается огромная номенклатура моделей от множества производителей;
  • доступны различные корпусные исполнения и так далее.

Анализируя вышесказанное, можно утверждать, что новые материалы еще не скоро смогут вытеснить кремний с рынка. Вместе с тем, у этого полупроводникового материала есть очевидные недостатки.

С чисто физической точки зрения кремний практически исчерпал себя. Ожидать фантастических прорывов в характеристиках кремниевых приборов не стоит. В частности, многие электрические свойства мощных диодов, например, допустимое рабочее напряжения и уровень потерь проводимости (рисунок 2), зависят от толщины кристалла.

Рис. 2. Влияние толщины полупроводника на характеристики диода

Чтобы создать диод, способный работать без пробоя с напряжениями до 1200 В, потребуется общая толщина слоя кремния в 120 мкм. Увеличение стоимости и габаритов – это только часть проблемы, так как рост толщины неизбежно приводит к увеличению мощности потерь при прямой проводимости.

Снизить потери проводимости пытаются за счет внедрения высоколегированных областей различной формы, чтобы увеличить число неосновных носителей. Но и здесь возникают проблемы – при выключении диода требуется дополнительное время на рассасывание этих носителей (время восстановления).

В целом ряде приложений наличие времени восстановления приводит к возрастанию динамических потерь. Рассмотрим случай самого обычного импульсного преобразователя, работающего на индуктивную нагрузку, например, мотор вентилятора (рисунок 3). Пусть в начальный момент времени транзистор находился во включенном состоянии, при этом энергия накачивалась в индуктивную нагрузку Lн. В момент выключения транзистора ток начинает протекать через диод VD. Если к моменту начала следующего периода коммутации ток в индуктивности не спал до нуля, то при включении VT1 будет наблюдаться бросок тока (сквозной ток через транзистор и диод). Это связно с тем, что за время включенного состояния диод VD1 успел накопить большой объем неосновных носителей. Эти носители и приводят к возникновению сквозных токов. Чем больше время восстановления – тем длительнее импульс тока и тем больше потери.

Рис. 3. Процесс восстановления диода при переключениях

Для минимизации динамических потерь применяют различные ухищрения, однако полностью избавиться от токовых хвостов не удается. На сегодняшний день время восстановления традиционных кремниевых диодов составляет десятки-сотни наносекунд. При использовании карбида кремния это значение удается снизить на порядок. Это одна из причин, по которой карбид кремния является одним из наиболее перспективных материалов для создания мощных высоковольтных компонентов.

Германий или кремний

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые — только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Лучшие тепловые вентиляторы для дачи

Dyson AM09 Fan Heater

Рейтинг: 4.9

Почему он: Привлекательный дизайн, безлопастная конструкция, высокая мощность.

Это – единственный в рейтинге безлопастной тепловой вентилятор. Поэтому он выглядит весьма футуристически. Но при этом производительность устройства на отличном уровне – она составляет 2000 Вт, благодаря чему вентилятор способен отопить до 20 квадратных метров.

Как и другая бытовая техника Dyson, это устройство выводит функции вентилятора на совершенно новый уровень. 10 скоростных режимов, дистанционное управление, наклон, поворот, возможность регулирования ширины теплового потока – всё это позволяет настроить обогреватель так, чтобы он приносил максимум комфорта.

Вентилятор оснащается пультом ДУ и электронной системой контроля, через которую можно аккуратно выставить все желаемые параметры работы. Также у обогревателя есть таймер и защитная система, отключающая его при опрокидывании. Уровень шума – сравнительно низкий для своего класса и при максимальной нагрузке он составляет всего 64 дБ.

  • Высокая производительность;
  • Уникальные дизайн и конструкция;
  • Полный контроль с пультом дистанционного управления.

Дорогой в сравнении с остальными моделями.

Timberk TFH F20VVE

Рейтинг: 4.8

Почему он: Безопасная модель с низким уровнем шума.

Этот тепловентилятор выполняется в специальном корпусе, который защищает от случайного контакта с нагревательным элементом или рассеивателем. Благодаря такой конструкции он подходит даже для установки в детских комнатах! А керамический нагревательный элемент с мощностью в 2000 Вт быстро прогреет помещение площадью до 20 квадратных метров.

Ещё одна повышающая безопасность особенность – термостат. Этот функциональный элемент автоматически отключает вентилятор при рисках перегрева. Обогреватель оснащается цифровой системой управления и поддерживает дистанционный контроль с пульта. Среди её функций – настройки температуры с довольно малым шагом и таймер работы с лимитом в 7.5 часов. Установленные параметры отображаются на жидкокристаллическом дисплее.

  • Мощный и надёжный нагревательный элемент;
  • Поддержка дистанционного управления;
  • Режим вращения.
  • Чувствительный термостат;
  • Нет даже минимальной влагозащиты;
  • Только один режим работы вентилятора.

Timberk TFH T15XCZ

Рейтинг: 4.7

Почему он: Привлекательный дизайн, высокая мощность, оптимальная цена.

Этот тепловентилятор выполняется в уникальном дизайном, который делает его совершенно не похожим на устройство для отопления – скорее уж на «хипстерскую» аудиоколонку. Но это – как раз достоинство. Обогреватель превосходно впишется и в классический, и в современный интерьер.

Кроме того, обогреватель отличается высокой – для своих компактных размеров – мощностью. Она составляет 1500 Вт, благодаря чему обогреватель способен повысить температуру в помещении с площадью до 20 квадратных метров. Для управления тепловентилятором используется механическая рукоять, расположенная на одной из боковых стенок. Нагревательный элемент выполняется из керамики, которая отличается долговечностью. Есть два режима работы, отличающиеся мощностью.

Также устройство способно работать в режиме обычного вентилятора, без подогрева помещения. Есть функция автоматического отключения при опрокидывании и система защиты от мороза.

Диоды с барьером Шотки

Для выпрямления малых напряжений высокой частоты широко используются диоды с барьером Шотки. В этих диодах вместо p-n-перехода используется контакт металлической поверхности с полупроводником. В месте контакта возникают обеднённые носителями заряда слои полупроводника, которые называются запорными. Диоды с барьером Шотки отличаются от диодов с p-n-переходом по следующим параметрам:

  • более низкое прямое падение напряжения;
  • имеют более низкое обратное напряжение;
  • более высокий ток утечки;
  • почти полностью отсутствует заряд обратного восстановления.

Две основные характеристики делают эти диоды незаменимыми: малое прямое падение напряжения и малое время восстановления обратного напряжения. Кроме того, отсутствие неосновных носителей, требующих время на обратное восстановление, означает физическое отсутствие потерь на переключение самого диода.

Максимальное напряжение современных диодов Шотки составляет около 1200 В. При этом напряжении прямое напряжение диода Шотки меньше прямого напряжения диодов с p-n-переходом на 0,2…0,3 В.

Преимущества диода Шотки становятся особенно заметны при выпрямлении малых напряжений. Например, 45-вольтный диод Шотки имеет прямое напряжение 0,4…0,6 В, а при том же токе диод с p-n-переходом имеет падение напряжения 0,5…1,0 В. При понижении обратного напряжения до 15 В прямое напряжение уменьшается до 0,3…0,4 В. В среднем применение диодов Шотки в выпрямителе позволяет уменьшить потери примерно на 10…15 %. Максимальная рабочая частота диодов Шотки превышает 200 кГц.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Будет интересно Как устроен туннельный диод?

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Будет интересно SMD транзисторы

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Диоды высокого тока.

Какие светодиоды используются

Один из главных элементов, который входит в состав светодиодной лампы, это диод. Им называют полупроводниковый кристалл, состоящий из нескольких слоёв. Именно он служит для преображения подаваемого на лампу электричества в свет. Производят диод на основе чипа — кристалла с площадкой, к которой подключены проводники.

Разъяснение по светодиодным лампам, разборка LED лампы, принцип работыРазъяснение по светодиодным лампам, разборка LED лампы, принцип работы

Чтобы получить белое свечение, чип необходимо покрыть желтым люминофором. При смешивании синего и желтого цвета образуется белый. Существует 4 типа светодиодов:

  • COB. При такой технологии производства чип монтируют в плату. Контакт получает надёжную защиту от окисления и чрезмерного нагрева. Также это положительно отражается на характеристиках свечения. Если такой чип выйдет из строя, отремонтировать схему нельзя. Это единственный недостаток технологии;
  • DIP. Схема состоит из кристалла, двух присоединённых проводников, линза расположена сверху. Такие осветительные приборы в большинстве случаев используют в качестве подсветки на рекламных табло и световых украшениях;
  • Диод SMD. Устанавливается на плоских поверхностях, что позволяет изготовить устройства разных форм. Отличается улучшенными характеристиками теплоотвода. Такие лампы можно использовать для любых источников света;
  • «Пиранья». Конструкция похожа на схему DIP. Но здесь имеются 4 вывода, что обеспечивает улучшение отвода образующегося тепла и делает технологию более надёжной. Широкое распространение «пиранья» получила в автомобильной промышленности.

Светодиод вида «пиранья» в прозрачном корпусе.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий