Как понизить напряжение: способы и приборы

Похожие обсуждения

Телевизор в спальне — да или нет?

Q

Плинтус: необходимость или пережиток прошлого?

Q

Потолочный плинтус

Q

Потолочный карниз.

Q

Как запитать электрическую лампочку (2 вариант)?

Share

Есть другой способ снижения  напряжения на нагрузке, но только для цепей постоянного тока. Про первый способ смотри здесь.

Вместо дополнительного резистора используют цепочку из последовательно включенных, в прямом направлении,  диодов.

Весь смысл состоит в том, что при протекании тока через диод на нем падает «прямое напряжение» равное, в зависимости от типа диода, мощности и тока протекающего через него —  от 0,5 до 1,2 Волта.

На германиевом диоде падает напряжение 0,5 — 0,7 В, на кремниевом от 0,6 до 1,2 Вольта.  Исходя из того, на сколько вольт  нужно понизить напряжение на нагрузке, включают соответствующее количество диодов.

Чтобы понизить напряжение на 6 В необходимо приблизительно включить:  6 В : 1,0 = 6 штук кремниевых диодов, 6 В : 0,6 = 10 штук германиевых диодов. Наиболее популярны и доступны кремниевые диоды.

Выше приведенная схема с диодами, более громоздка в исполнении, чем с простым резистором. Но, выходное напряжение, в схеме с диодами, более стабильно и слабо зависит от нагрузки. В чем разница между этими двумя способами снижения выходного напряжения?

На Рис 1 — добавочное сопротивление — резистор (проволочное сопротивление), Рис 2 — добавочное сопротивление — диод.

У резистора (проволочного сопротивления)  линейная зависимость между током, проходящем через него и падением напряжения на нем. Во сколько раз увеличится ток, во столько же раз увеличится и падение напряжения на резисторе.

Из примера 1: если мы к лампочке подключим параллельно еще одну, то ток в цепи увеличится, с учетом общего сопротивления двух лампочек до 0,66 А. Падение напряжения на добавочном резисторе будет: 12 Ом *0,66 А = 7,92 В.   На лампочках останется: 12 В — 7,92 В = 4,08 В. Они будут гореть в пол накала.

Совсем другая картина будет если вместо резистора будет цепочка диодов.

Зависимость между током протекающем через диод и падающем на нем напряжении нелинейная. Ток может увеличиться в несколько раз, падение напряжения на диоде увеличится всего на несколько десятых вольта.

Т.е. чем больше ток диода, тем (сравнительно с резистором) меньше увеличивается его сопротивление. Падение напряжения на диодах мало зависит от тока в цепи.

Диоды в такой цепи выполняют роль стабилизатора напряжения. Диоды необходимо подбирать по максимальному току в цепи. Максимально допустимый ток диодов должен быть больше, чем  ток в рассчитываемой цепи.

Падения напряжения на некоторых диодах при токе 0,5 А даны в таблице.

В цепях переменного тока, в качестве добавочного сопротивления можно использовать конденсатор, индуктивность, динистор или тиристор (с добавлением схемы управления).

Share

Что будет если MOSFET транзистор заменит выпрямительный диод в источнике питания?

Кремниевые выпрямительные диоды обладают большим значением прямого падения напряжения, которое достигает величины 1,2 В. Мощность, которую они рассеивают, способна понизить величину КПД питающего источника. На антивозвратном диоде в панели фотоэлектрического типа с величиной мощности 120 Вт и номинальным значением напряжения 24 В, теряется до 6 Вт, что равно 5% относительных единиц. Еще одним отрицательным фактором использования диодов может служить добавочные затраты на систему охлаждения, что служит причиной потерь мощности.

Рис. Прецизионный диод большой мощности работает в качестве выпрямителя, питает нагрузку индуктивности.

Схема выпрямительного устройства с МOSFEТ транзистором Q1 с низким значением сопротивления сток-исток во время работы, является источником 36 В. Нагрузка образуется с помощью использования последовательного соединения резистора на 9 Ом и индуктивности – 25 мГн. Компаратор IC служит для управления (открытия/ закрытия) затвора транзистора Q1. Это возможно на тех временных отрезках, когда питающее напряжение на аноде выше напряжения на катоде. Исток работает в качестве анода, а катод заменяется стоком. Способность проводить транзистором ток в направлении сток-исток весьма эффективно работает в этой схеме. При включении Q1 можно эффективно шунтировать паразитный диод, расположенный между подложкой и стоком, при этом наблюдаются минимальные потери мощности. При небольшом напряжении, происходит работа затвора-истока в качестве транзистора. Так, и паразитный диод D1, и резистор R1 работают в качестве компаратора, они служат для ограничения напряжении я на входах.

Нормальный режим работы выпрямителя при максимально большом токе нагрузки 2,65 А наблюдается падение напряжения, оно равно 33 мВ, а Q1 действует в омической области, там, где нарастает вольт-амперная характеристика. Если напряжение затвора оставить без управления, то падение напряжения будет равно величине способствующей мгновенному возрастанию максимальной мощности.

Эту же схему можно применять в DC/DC и DS/AC преобразователях, потому как в мостовых схемах, при этом MOSFET транзисторы имеют возможность пропускать и активные, и реактивные токи. Значительной особенностью может считаться исключение воздействие паразитного диода подложка-сток.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Практический метод

Самые точные данные о прямом падении напряжения на светодиоде можно получить путём проведения практических измерений. Для этого понадобится регулируемый блок питания (БП) постоянного тока с напряжение от 0 до 12 вольт, вольтметр или мультиметр и резистор на 510 Ом (можно больше). Лабораторная схема для тестирования показана на рисунке.

Текущие показания на экране и будут номинальным прямым напряжением светодиода. Если ещё продолжить наращивать питание схемы, то расти будет только ток через полупроводник, а разность потенциалов на нём изменится не более чем на 0,1-0,2 вольт. Чрезмерное превышение тока приведёт к перегреву кристалла и электрическому пробою p-n-перехода.

Если рабочее напряжение на светодиоде установилось около 1,9 вольт, но при этом свечение отсутствует, то возможно тестируется инфракрасный диод. Чтобы убедиться в этом, нужно направить поток излучения на включенную фотокамеру телефона. На экране должно появиться белое пятно.

В отсутствии регулируемого блока питания можно воспользоваться «кроной» на 9 В. Также можно задействовать в измерениях сетевой адаптер на 3 или 9 вольт, который выдаёт выпрямленное стабилизированное напряжение, и пересчитать номинал сопротивления резистора.

Шитье

Повышаем напряжение зарядки генератора

Тема может и не новая, но по сей день актуальная. В сети описано множество способов повышение напряжения заряда аккумулятора. На авторство не претендую, но данный способ не встречал и хочу поделиться своим опытом переделки «таблетки» генератора.

Как известно, в зимнее время при включенных потребителях напряжение бортовой сети падает до 12,8-13,5 В и соответственно недозаряжает АКБ. Я пошел, как считаю, по наименьшему пути сопротивления, путем включения вольтдобавки в электронную схему стабилизатора (таблетку).

Стабилитрон VD1 обеспечивает стабилизацию половины напряжения возбуждения генератора, таким образом при добавлении диода на нем возникает дополнительное падение напряжения, что обеспечивает отключение напряжения возбуждения генератора при большем напряжении.

Ну а теперь как на практике все это осуществить.

Берем реле регулятор, высверливаем заклепки и снимаем крышку.

Аккуратно удаляем компадум с платы, можно отверткой, можно жесткой щеткой. Нужный нам стабилитрон (для тех кто не совсем знаком с радиотехникой) стеклянная колбочка с полоской. Полоска обозначение «Минус». Выпаиваем стабилитрон и припаиваем к нему диод «минус к минусу». Получившуюся сборку впаиваем обратно.

Вот что получилось. Далее все заливаем герметиком и закрываем крышку. Можно продублировать винтами.

При использовании диода 1n004 напряжение зарядки без нагрузки 14,8 вольт. При всех включенных потребителях 13,8 -14,2 В.

Автор; Александр Родин Щелково, Московская область

xn—-7sbgjfsnhxbk7a.xn--p1ai

Как повысить заряд генератора используя дополнительный диод

Как увеличить напряжение генератора Многие автомобилисты сталкивались с таким понятием, как низкое напряжение в сети. Виновником ситуации становился генератор, который выдавал недостаточное количество тока. Можно ли каким-нибудь способом увеличить напряжение, выдаваемое агрегатом? Как увеличить мощность генератора, не повредив цепь и общую систему.

Диод в схему

Установка диода с тумблером – самый простой способ увеличить напряжение. Тут не нужно заморачиваться, искать много информации в книжках и т.п. Все максимально доступно, никаких особых сложностей.

Этот вариант увеличения напряжения, несмотря на простоту, дает самый надежный результат. Подходит идеально для отечественных, вазовских моделей авто.

Целью данного способа увеличения напряжения в бортовой сети автомобиля является обман регулятора, который находится внутри генератора. Как известно, на старых отечественных моделях авто (копейка, Ваз 2105 и т.д.) просадка напряжения порой доходит до критичных значений – бывает, и до 12.5 вольт опускается. Аккумулятор, понятно, заряжаться при таком напряжении не будет.

Регулятор напряжения – это те же щетки, таблетка, шоколадка – названий много, но это один и тот же элемент, который отвечает за регулирование напряжение в генераторе. На наших отечественных автомобилях, преимущественно старого года выпуска, таблетки стоят плохого качества. Они плохо регулируют вольтаж, и как было сказано выше, порой значение тока просаживается ниже плинтуса.

Итак, что нужно сделать – вставить дополнительный диод в цепь. Этим мы добьемся следующего: насколько на диоде будет понижено напряжение, настолько регулятор будет повышать общий ток в цепи.

Интегрировать диод можно несколькими способами. Один из лучших – дистанционно. Берется простой тумблер, устанавливается где-нибудь в удобном месте.

Очевидно, что тумблер следует провести через провод на генератор. Вставить диод можно в прорезь моста генератора, в том месте, где проходит проводок с обмотки возбуждения на регулятор. Т.е, диод просто врезаем в проводок между мостом и регулятором.

К диоду выводим отдельно тумблер через два провода, как показано на фото ниже.

Когда напряжения в бортовой сети достаточно, например, в летнее время, диод просто установлен, не задействован. Если тока мало, достаточно включить тумблер, активировав диод. Таким способом, мы обманываем регулятор.

Диоды можно использовать следующие.

Подойдут также их аналоги, например, импортные. Они намного компактнее, изготовлены из пластмассы (корпус). Отечественные – металлические.

С помощью диода можно обеспечить падение напряжения в 0.9 или 1.2 вольт. Таким образом, если просадка получается до 13-13.6, то примерно 1 вольт будет регулятором добавляться. Для зимних нагрузок это нормально. Стандартная просадка регулятора должна быть до 13.8 вольт, не ниже. При таком значении аккумулятор может еще заряжаться, но если вольтаж будет меньше – уже нет.

Особенно критично падение вольтажа ниже стандартных значений для современных кальциевых АКБ. Дело в том, что низкая просадка убивает такие батареи, они портятся. Естественно, не рекомендован и повышенный показатель напряжения. Он должен быть не больше 14.6 вольт (подробнее об этом в таблице, в конце статьи).

Установка диода в цепь – это универсальное решение, дающее хороший результат. Однако следует помнить о некоторых важных моментах:

  • Соблюдать полярность, подключая дополнительный диод. Если нарушить это правило, то зарядка на АКБ поступать не будет.
  • Диод обязан быть подобран так, чтобы выдавать ток не менее 5 А.
  • Желательно устанавливать диод вне генератора, так как он будет сильно греться.
  • Более эффективными считаются кремниевые диоды. Они способны забирать напряжение в пределах 0.8-1.2. А вот германиевые диоды – не больше 0.7 вольт.

Параметры импульсных диодов

Для диодов импульсного типа свойственно наличие:

В число основных параметров импульсного диода входят следующие:

  1. емкость;
  2. максимальное импульсное прямое напряжение;
  3. максимальный импульсный прямой ток;
  4. время восстановления обратного сопротивления.

Вольт-амперная характеристика p-n перехода, представляющая зависимость плотности полного тока на границе перехода от напря­жения смещения:

, (3.7)

где

. (3.8)

На практике для реальных полупроводниковых приборов используют вольт-амперную характеристику для полного тока через p-n переход:

(3.9)

где , ; S -площадь перехода.

При быстром изменении напряжения (тока) на диоде ток (напряжение) через диод в соответствии со статической характеристикой (3.9) устанавливается не сразу, а через некоторое время, обусловленное инерционностью диода. Инерционность диода связана с конечной скоростью установления концентрации неравновесных носителей при внешнем смещении р-n перехода. Поэтому для импульсных диодов наряду с параметрами, определенными из статической вольт-амперной характеристики, вводят еще ряд параметров, характеризующих инерционность диода.
Дополнительной характеристикой является длительность установления прямого напряжения.

Импульс обратного тока

Задержка запирания импульсного диода интересна эффектом, который выражается в кратковременном увеличении обратного тока. Это обусловлено особыми физико-химическими процессами, протекающими в полупроводниковой структуре импульсного диода. В первые доли секунды при прохождении импульса через p-n-переход происходит инжекция неосновных носителей заряда, которые скапливаются в базе диода. И только после того, как данное скопление рекомбинирует и рассосется, диод запирается.
Движение неосновных носителей провоцирует возникновение того самого обратного тока, резкое возрастание которого фиксируется при смене полярности входного сигнала. Таким образом, в этот момент возникает классический с точки зрения физики . Его длительность крайне невелика – единицы наносекунд, что и используется в генераторных схемах. Небольшая продолжительность определяется чрезвычайно малой емкостью p-n-перехода, которая редко превышает единицы пикофарад.
Как известно, в выпрямительных диодах, для обеспечения их функциональности используются плоскостные p-n-переходы. Их особенность состоит в довольно большой емкости. В импульсных же диодах она должна быть как раз небольшой. Поэтому при производстве данных радиодеталей от плоскостной модели p-n-перехода отказались. Эти элементы изготавливают с помощью микросплавных и планарных методов. Последние применяются при производстве интегральных микросхем для цифрового оборудования.

1. tвосст- время восстановления обратного сопротивления при переключении из прямого направления в обратное в момент t1(рис.4.7). В начальный момент после переключения Ua обратный ток намного больше установившегося (3.8) из-за высокой неравновесной концентрации неосновных носителей, оставшихся от прямого смещения. В течение tвосст концентрация неосновных носителей уменьшается, а обратный ток достигает заданного значения (несколько большего, чем из (3.8), как показано на рис.4.7).

Рис. 4.7

Рис. 4.8

2. tуст -время установления прямого сопротивления диода при переключении из обратного направления в прямое в момент t1 (рис.4.8). В начальный момент включения прямого тока величина прямого напряжения (сопротивления) на p-n переходе больше, чем это следует из (3.7), так как концентрация инжектированных (неосновных) носителей еще мала. В течение tуст концентрация инжектированных носителей достигает величины, близкой к установившейся, а прямое напряжение (сопротивление) уменьшается до 1,1Unp , соответствующего статической вольт-амперной характеристике (3.7). Этот процесс еще характеризуют максимальным импульсным прямым напряжением Unp.имп.max.

3. Сд -емкость диода при заданном смещении. Часто Сд измеряется при Uобр= 5 В.

В табл. 4.4 приведены параметры некоторых импульсных диодов. Импульсные диоды выполняются точечными и плоскостными с малой площадью перехода.

Таблица 4.4 Параметры импульсных диодов

Тип

диода

Iпр,

мА

Uпр

Uпр.имп

Uобр

Iобр,

мкА

tвосст,

мкс

tуст,

мкс

C

(Uобр=5В),

пФ

В

Д18

Д219А

КД503А

20

50

20

1

1

1

5,0

2,5

2,5

20

70

30

50

1

10

<0,1

0,5

0,01

<0,08

0,5

15

5

По величине tвост импульсные диоды подразделяются на :

  • скоростные, или микросекундные 1мкс< tвост <0,1мс

  • сверхскоростные, или наносекундные tвост <0,1мкс

Конструкция

Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться.

Действительно, металл-полупроводник обладает такими параметрами:

  • Имеет большое значение тока утечки;
  • Невысокое падение напряжения на переходе при прямом включении;
  • Восстанавливает заряд очень быстро, так как имеет низкое его значение.

Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться – германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше 1200 вольт – это самые высоковольтные выпрямители. На практике же намного чаще их используют при более низком напряжении – 3, 5, 10 вольт.

На принципиальной схеме диод Шоттки обозначается таким образом:

Но иногда можно увидеть и такое обозначение:

Это означает сдвоенный элемент: два диода в одном корпусе с общим анодом или катодом, поэтому элемент имеет три вывода. В блоках питания используют такие конструкции с общим катодом, их удобно использовать в схемах выпрямителей. Часто на схемах рисуется маркировка обычного диода, но в описании указывается, что это Шоттки, поэтому нужно быть внимательными.

Диодные сборки с барьером Шоттки выпускаются трех типов:

1 тип – с общим катодом;

2 тип – с общим анодом;

3 тип – по схеме удвоения.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Такое соединение помогает увеличить надежность элемента: ведь находясь в одном корпусе, они имеют одинаковый температурный режим, что важно, если нужны мощные выпрямители, например, на 10 ампер. Но есть и минусы

Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт

При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а

Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а

Но есть и минусы. Все дело в том, что малое падение напряжения (0,2–0,4 в) у таких диодов проявляется на небольших напряжениях, как правило – 50–60 вольт. При более высоком значении они ведут себя как обычные диоды. Зато по току эта схема показывает очень хорошие результаты, ведь часто бывает необходимо – особенно в силовых цепях, модулях питания – чтобы рабочий ток полупроводников был не ниже 10а.

Еще один главный недостаток: для этих приборов нельзя превышать обратный ток даже на мгновение. Они тут же выходят из строя, в то время как кремниевые диоды, если не была превышена их температура, восстанавливают свои свойства.

Но положительного все-таки больше. Кроме низкого падения напряжения, диод Шоттки имеет низкое значение емкости перехода. Как известно: ниже емкость – выше частота. Такой диод нашел применение в импульсных блоках питания, выпрямителях и других схемах, с частотами в несколько сотен килогерц.

ВАХ такого диода имеет несимметричный вид. Когда приложено прямое напряжение, видно, что ток растет по экспоненте, а при обратном – ток от напряжения не зависит.

Все это объясняется, если знать, что принцип работы этого полупроводника основан на движении основных носителей – электронов. По этой же самой причине эти приборы и являются такими быстродействующими: у них отсутствуют рекомбинационные процессы, свойственные приборам с p-n переходами. Для всех приборов, имеющих барьерную структуру, свойственна несимметричность ВАХ, ведь именно количеством носителей электрического заряда обусловлена зависимость тока от напряжения.

Делитель на резисторах

Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:

  1. U(R1) = (R1 * U) / (R1 + R2).
  2. U(R2) = (R2 * U) / (R1 + R2).

Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.

Заключение

По сравнению с традиционным кремнием, карбид кремния имеет более высокое рабочее напряжение, меньшее значение удельного сопротивления, большую удельную мощность и лучшие возможности теплоотвода. В результате именно карбид кремния оказывается наиболее перспективным материалом для мощных полупроводниковых компонентов.

Диоды Шоттки на основе SiC отличаются высоким рабочим напряжением, минимальным падением напряжения при прямом смещении, максимальной допустимой температурой перехода до 175°С, рекордно низкими значениями времени восстановления и заряда восстановления.

SiC-диоды Шоттки Littelfuse имеют рейтинги напряжения 650 В и 1200 В, постоянный ток до 20 А, заряд восстановления от 6 нКл. Выпускаются они в корпусных исполнениях TO220-2L и TO247. Это позволяет использовать их в целом ряде приложений силовой электроники – от блоков бесперебойного питания до драйверов электродвигателей.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий