Подробное описание, применение и схемы включения таймера ne555

Описание режимов работы микросхемы NE555

Хотя архитектура таймера позволяет использовать его в различных режимах, существует три типовых вида работы NE555.

Одновибратор (ждущий мультивибратор)

Исходное положение:

  • на входе 2 высокий логический уровень;
  • на входах R и S триггера – нули;
  • выход триггера – 1;
  • транзистор цепи разряда открыт, конденсатор С зашунтирован;
  • на выходе 3 — уровень 0.

При появлении на входе 2 нулевого уровня, нижний компаратор переключается в 1, перебрасывая триггер в 0. На выходе микросхемы появляется высокий уровень. Одновременно закрывается транзистор, переставая шунтировать конденсатор. Он начинает заряжаться через резистор R. Как только напряжение на нем достигнет 2/3 от VCC, сработает верхний компаратор, установит триггер обратно в 1, а выход таймера — в 0. Транзистор откроется и разрядит ёмкость. Так на выходе сформируется положительный импульс, начало которого определяется внешним сигналом на входе 2, а завершение зависит от времени заряда конденсатора, которое вычисляется по формуле t=1,1⋅R⋅C.

Мультивибратор

При подаче питания конденсатор разряжен, на входе 2 (и 6) логический 0, на выходе таймера 1 (этот процесс описан в предыдущем разделе). После заряда емкости через R1 и R2 до уровня 2/3 VCC высокий уровень на входе 6 перебросит выход 3 в ноль, а разряжающий транзистор откроется. Но разряжаться конденсатор будет не напрямую, а через R2. В итоге схема придет к исходному положению, и цикл повторится вновь и вновь. Из описания процесса видно, что время заряда определяется суммой сопротивлений R1, R2 и емкостью конденсатора, а время разряда задают R1 и С

Вместо R1 и R2 можно поставить переменные резисторы и оперативно управлять частотой и скважностью импульсов. Формулы для расчета:

  • длительность импульса t1=0,693⋅(R1+R2)⋅C;
  • длительность паузы t2=0,693⋅R2⋅C;
  • частота следования импульсов f=1/(0,693(R1+2⋅R2)⋅C.

Время паузы не может превысить время импульса. Чтобы обойти это ограничение, цепи разряда и заряда разделяют, включив в схему диод (катодом к выводу 6, анодом к выводу 7).

Триггер Шмитта

На микросхеме 555 можно построить триггер Шмитта. Это устройство преобразовывает медленно изменяющийся сигнал (синусоиду, пилу и т.п.) в прямоугольный. Здесь времязадающие цепи не используются, сигнал подается на входы 2 и 6, соединенные между собой. При достижении порога 2/3 VCC напряжение на выходе скачком переключается в 1, при снижении до уровня 1/3 также скачкообразно уменьшается до нуля. Зона неоднозначности составляет 1/3 напряжения питания.

3 наиболее популярные схемы на основе NE555

Одновибратор

1122

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R1*C1=1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(UВЫХ-ULED)/ILED,

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Собираем простое Реле Времени на NE555, устройство полезное в быту.Собираем простое Реле Времени на NE555, устройство полезное в быту.

Собираем простое Реле Времени на NE555, устройство полезное в быту.Собираем простое Реле Времени на NE555, устройство полезное в быту.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Описание

Созданию микросхемы NE555, реализованному в 1970 году специалистами компании Signetics (США), предшествовали теоретические разработки Ганса Камензинда, который сумел доказать важность, не имевшего на тот момент времени аналогов, изобретения. Таймер NE555 явился первой и единственной «таймерной» микросхемой, доступной рядовым потребителям, которая позволяла собирать миниатюрные и недорогие устройства за счет плотной компановки элементов в кристалле микросхемы

Основные параметры ИМС серии 555

Микросхема NE 555 состоит из пяти функциональных узлов:

  • делителя напряжения;
  • двух прецизионных компараторов;
  • триггера;
  • транзистора с открытым коллектором на выходе

РИСУНОК 1

Устройство микросхемы NE 555

Параметры работы микросхемы во многом определяются качеством сборки аналогов. Для таймера NE 555 диапазон рабочих температур составляет: 0° — 70° С, а для SE 555 он шире: от -55°С до +125°С.

Существенное влияние на точность работы схемы NE555оказывает вариант исполнения: гражданский или «военный». У последнего выше точность и продолжительнее ресурс работы. Корпус выполнен из керамики или металла.

Питание микросхем

Рекомендуемый интервал питания микросхем 555 и их аналогов лежит в интервале 4,5 V  — 16V. Для микросхемы с индексом SE может достигать 18V.

Потребляемый ток в норме составляет 2-5 мА, при пиковых значениях: 10-15 мА.

Выходной ток у китайских аналогов и отечественной микросхемы КР1006ВИ1 составляет не более 100 мА. У оригинальных импортных микросхем NE/SE 555 он около 200 мА.

Преимущества и недостатки микросхемы

У микросхемы 555 «таймерного» типа существует множество преимуществ. Именно поэтому она популярна столь долгое время.

Внутренний делитель задает верхний и нижний порог срабатывания для двух встроенных компараторов. Это одновременно является достоинством, та как не требуется вводить дополнительные элементы, одновременно это и недостаток: пороговым напряжением микросхемы нельзя управлять.

Кроме этого в процессе эксплуатации выявился и еще один недостаток: при каждом переключении возникает паразитный сквозной ток, достигающий в пиковых значениях силы в 400 мА. За счет этого увеличиваются тепловые потери. Микросхема нагревается.

Как избавиться от недостатков

Решение проблемы давно найдено. Оно заключается в установке между проводом вывода управления и общим проводом полярного конденсатора небольшой емкости (до 0,1 мкФ). Этот конденсатор стабилизирует работу микросхемы при запуске.

Помехоустойчивость работы микросхемы достигается установкой в цепь питания неполярного конденсатора емкостью 1 мкФ. Вариации микросхемы NE 555, собранные на КМОП-транзисторах, не несут в себе указанных недостатков. Для их стабильной работы нет необходимости устанавливать внешние конденсаторы.

Достоинства и недостатки

Главным достоинством микросхемы NE555 является простота применения – для построения схемы достаточно небольшой обвязки, хорошо поддающейся расчёту. При этом стоимость устройства невелика.

Основным минусом таймера является выраженная зависимость длительности импульсов от напряжения питания. Обусловлено это тем, что конденсатор в схеме одновибратора или мультивибратора заряжается через резистор (или через два), а верхний вывод резистора подсоединен к питающей шине. Ток через сопротивление формируется напряжением VCC – чем оно выше, тем больше ток, тем быстрее зарядится конденсатор, тем раньше сработает компаратор, тем короче будет формируемый временной интервал. По неизвестной причине этот момент отсутствует в технической документации, но хорошо знаком разработчикам.

Другой недостаток таймера состоит в том, что пороговые напряжения компараторов формируются внутренними делителями и регулировке не подлежат. Это сужает возможности применения NE555.

И ещё одна неприятная особенность. В связи с двухтактной схемой построения выходного каскада, в момент переключения (когда верхний транзистор уже открыт, а нижний еще не закрыт или наоборот) идет импульс сквозного тока. Его длительность невелика, но он приводит к дополнительному нагреву микросхемы и формирует помехи по цепям питания.

Печатная плата драйвера на NE 555.

К контактам J1 на плате при настройке подключается амперметр, после контакты закорачиваются каплей припоя ( амперметр подключать до подачи питания и отключать после отключения питания. ) . Индуктивность L1 готовая гантелька 220 mH, обозначение 221.

Mosfet с любой материнки, я использовал K3918. Транзистор Q2 может быть любым маломощным n-p-n, зависимости тока от коэффициента усиления не заметил. Диод Шотки на входе защищает схему от переполюсовки.

*Небольшая ошибка, нужно перевернуть три левых светодиода.

Данные платы используются при отключении света и питаются от трёх банок Li-Po батарей ёмкостью 2200 мА/ч. Полная работоспособность сохраняется от двух банок 8,4v, а вот от одной 4,2v яркость падает примерно в половину.

Слой печатных дорожек печатать как есть. Слой шелкографии печатать зеркально.

Скачать версию 1 Скачать

Скачать версию 2 Скачать

Существенный недостаток схемы:

При обрыве в цепи нагрузки из-за перегорания светодиодов, отключается стабилизация тока и как следствие неконтролируемо растёт напряжение на транзисторе Q1. Это неизбежно вызывает пробой Q1, а т.к. MOSFET уходит в КЗ, то и входной диод выйдет из строя от перегрева . Напряжение может превышать более 200v!

Тут есть два пути решения проблемы:

  • Использовать высоковольтный транзистор Q1
  • Дополнить схему защитой от перенапряжения

Первый вариант проще, но нужно выходной электролит ставить на большее напряжение, а от сюда цена и габариты. Так же этот конденсатор нужно разряжать после обрыва цепи светодиодов, иначе может пиз. ть током.

Так как у меня не частые гости высоковольтные полевые транзисторы, а низковольтных от материнок лежат горстями, то я пошёл по второму пути и добавил в схему защиту от повышения напряжения на выходе.

Драйвер светодиодов на NE555.

Схема простого драйвера на таймере ne555 для цепочки светодиодов показана на рисунке. Драйвер работает как DC-DC повышающий преобразователь со стабилизацией тока.

В данном варианте драйвер используется для питания двух цепочек светодиодов размера 5730, по 7 штук в каждой. Напряжение приблизительно 21v. Так как светодиоды распаяны на плату без охлаждения, общий ток ограничен 100 мА, по 50 мА на цепочку. При этом, общий потребляемый ток схемы равен 200 мА.

Транзистор Q1, диоды Шотки и индуктивность L1 выбираются исходя из требуемых параметров выходного тока. Ограничение тока приблизительно рассчитывается по формуле:

I=0,6V/R3

Общий вид смонтированной платы led драйвера версия 1.

Общий вид смонтированной платы led драйвера версия 2.

Схема импульсного источника питания двухполярного напряжения

Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1

В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе. На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.). Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.

Led драйвер ne555 на smd компонентах.

Драйвер можно собрать на SMD компонентах. Таймеры 555 в SOP корпусе ещё в пути, по этому использовал DIP корпус подрезав выводы.

Дроссель мотал на плоской ферритовой гантельке, её можно достать из дросселя материнской платы или видеокарты. Аккуратно снимается корпус, чтобы не повредить центральную гантель, а так как дроссель залит компаундом, то наружная часть просто ломается.

Намотал хз сколько витков, хз какого провода, транзистор-тестер показал 0,21mH. Катушку приклеил к плате через диэлектрическую прокладку.

Развёл платы под DIP и SOP корпуса. Резисторы 1206, конденсаторы какие были, c1 47мкФ 16v, c2 22мкФ 25v.

Все транзисторы в корпусе SOT-23. Q1 — судя по маркировке «L4» — Si2304BDS с параметрами 30v, 2.5A, 0.05 Ом. Транзисторы Q2 Q3- неизвестные n-p-n, сдул с какой то платы.

Общий ток потребления при R3 5Ом 200мА, на каждой цепочке светодиодов по 50мА. Ничего не греется.

Два варианта разводки под микросхему в DIP и SOP.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

t=1,1*R*C.

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам:

1

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

Особенности и характеристики

Простой генератор импульсов на основе 555

Наиболее известная особенность 555 серии микросхем, снижающей количество областей их применения – внутренний делитель напряжения. Он задает фиксированный уровень порога срабатывания обоих компараторов устройства, сменить который невозможно.

Питание таймера 555 серии осуществляется напряжением от 4,5 до 16 вольт. Ток потребления непосредственно зависит от этого параметра и составляет от 2 до 15 мА. Характеристики выходного сигнала отличаются у различных производителей. В основном, его ток не превышает 200 мА.

Температурные режимы также зависят от сборки. Обычные NE555 рассчитаны на эксплуатацию в промежутке от 0 до 70°С. Военные варианты таймера (исторически обозначенные серией SE) допускают более широкий диапазон – от -55 до 125°С.

В период активности таймера на выходе присутствует напряжение, оно равно приходящему на шине питания за вычетом 1,75В. В остальных случаях на этом контакте 0,25В, при общем напряжении +5В. Терминология описывает эти состояния, как высокий и низкий уровень сигнала.

Запуск таймера к генерации производится импульсным сигналом 1/3 вольт от питания устройства. Форма его любая – синусная или прямоугольная.
Элементы схемы, определяющие временные параметры срабатывания

Время срабатывания изменения состояния устанавливается характеристиками внешнего конденсатора между контактом разряда и землей, а также сопротивлением двух резисторов. Первый расположен на шине питания и соединяет ее с входом останова работы микросхемы. Второй находится на линии между предыдущим и контактом разряда, но до описанной ранее емкости.

Области применения

Сложно найти направления в развитии электроприборов, в которой бы не нашел применение  таймер NE/SE 555. На нем успешно конструируют платы генераторов и реле времени, с возможностью управления интервалом от микросекунд до нескольких часов, используют при создании датчиков освещенности и контроля уровня жидкости, охранной сигнализации и кодовых замков.

Сигнализатор темноты

С устройствами, включающимися или выключающимися при изменении силы светового потока (освещенности), каждый вольно или невольно сталкивается каждый день:

  • на улицах с помощью таких устройств включаются фонари освещения;
  • в подъездах – дежурное освещение лестничных площадок;
  • в квартирах — различные устройства имеющий суточный ритм работы.

Принцип действия устройства, реагирующего на изменение освещенности, основан на том, что при изменении сопротивления фоторезистора, на входе NE555 меняется потенциал. Это влечет изменение напряжения на выходе и включает реле.

РИСУНОК 2

Принципиальная схема датчика света

Модуль сигнализации

Сигнализация, собранная с использованием микросхемы 555, использует ее как одновибратор, который, получив сигнал от датчика, генерирует управляющий сигнал включающий сирену. Продолжительность, тональность и громкость звучания регулируется введенными в схему переменными резисторами.

РИСУНОК 3

Принципиальная схема сигнализации

Метроном

Аналог механического прибора, задающего ритм определенной частоты и используемый музыкантами в процесс обучения и репетиций, имеет электронный аналог, собираемый с использованием таймера 555.

В данном случае микросхема работает в режиме мультивибратора, генерирующего периодические импульсы, которые регулируются  транзисторами Q1 и  Q2, обеспечивающими регулировку частоты импульсов. Непосредственно частота имульсов регулируется потенциометром Р1 . Для получения щелчка, схожего с щелчком механического метронома, в схему добавлен транзистор Q.

РИСУНОК 4

Принципиальная схема метронома

Таймер

Пример использования микросхемы по «прямому» назначению – отсчету интервала времени. Работа устройства основана на способности переключать режимы, выдавая сигналы на включение/выключение.

При разряженном конденсаторе потенциал на входе 555 обнулен. В процесс зарядки, требующей определенного времени, «отсчитывается» заданный интервал. После достижения заданного значения зарядки происходит разряд конденсатора, изменение потенциала. Таймер срабатывает на включение или выключение.

РИСУНОК 5

Принципиальная схема таймера

Точный генератор

Используется для регулирования параметров выходных импульсов в различных электронных устройствах. В частности – в высокочастотных преобразователях, входящих в блоки питания LED-лент.

РИСУНОК 6

Принципиальная схема таймера

Расположение и назначение выводов

Микросхема NE555 имеет восемь выходов. В настоящее время встречаются микросхемы в прямоугольных DIP-корпусах, хотя, изредка, можно встретить микросхему в круглом металлическом корпусе. От этого назначение выводов не меняется.

Расположение и нумерация показана на рисунке:

РИСУНОК 7

Расположение и назначение выводов NE555

Драйвер полевого транзистора: преобразователь на ne555 и mosfet

Описывать ее работу не буду, в статье все хорошо описано даже я понял.

_ _ _ _ _ _ Turn — On Time (ns) _ _ _ Turn — Off Time (ns)

2N2222. . . . . . . .35 . . . . . . . . . . . . . . . . 250

BCW68. . . . . . . .100 . . . . . . . . . . . . . . . . 400

Как видим время открывания транзисторов существенно меньше времени запирания.Рассмотрим работу.Когда на входе низкий сигнал то открыт VT2 а VT3 закрыт. Подаем на вход положительный сигнал, тогда за время 100 нс откроется VT3, а VT2 закроется после того как закроется VT1, т.е через 250 + 250 = 500 нс. Выходит, что через транзисторы VT2 и VT3 в течении времени 500 — 100 = 400 нс будет течь сквозной ток?

Теперь снимем сигнал управления.Открываются VT1 и VT2 за время 35 + 35 = 70 нс, а VT3 еще будет открыт в течении 400 нс. В итоге 400 — 70 = 330 нс это опять сквозной ток?Как с этим бороться?Выбирать транзисторы с меньшим временем переключения?Но ведь оно у всех различается по времени включения и выключения и все равно будут течь сквозные токи.Ставить резисторы, но тогда с учетом емкости затвора получится RC цепь и ухудшатся параметры переключения.

И второй вопрос по замене транзисторов.Чем лучше заменить эти транзисторы?Спасибо.

К сообщению приложены файлы: 1.jpg, 405×165, 10Кb

AndriusВыходит, что через транзисторы VT2 и VT3 в течении времени 500 — 100 = 400 нс будет течь сквозной ток?Нет, поскольку VT1 и VT2 уже должны быть закрыты — еще до открывания VT3. Ведь нагрузка емкостная, и после ее заряда базовые и коллекторные токи VT1 и VT2 станут равными нулю.

В итоге 400 — 70 = 330 нс это опять сквозной ток?Нет — по аналогичной причине.

LekaНет, поскольку VT1 и VT2 уже должны быть закрыты — еще до открывания VT3. Ведь нагрузка емкостная, и после ее заряда базовые и коллекторные токи VT1 и VT2 станут равными нулю.

В итоге 400 — 70 = 330 нс это опять сквозной ток?Нет — по аналогичной причине.

Понял. Спасибо.

Доработанная схема светодиодного драйвера.

Доработка состоит из трёх дополнительных деталей: Q3, R4 и стабилитрона ZD. При нормальной работе схемы стабилитрон закрыт, т.к. выходное напряжение меньше 24v, на резисторе R4 напряжение 0v. При обрыве в цепи светодиодов, напряжение начинает расти и при достижении напряжения 24v стабилитрон открывается. На резисторе R4 появляется напряжение которое поступает на базу Q3, транзистор открывается и останавливает таймер. В таком режиме, ток потребления всей схемы примерно равен: ZDстаб x 2, около 30мА.

Стабилитрон желательно подобрать на 1. 2v больше, чем напряжение на светодиодах.

В данном варианте схемы следует использовать транзистор Q1 с напряжением сток-исток не менее 25-30v. У некоторых транзисторов с материнских плат это напряжение 20v, читайте даташит при выборе полевика!

Схема модифицированного драйвера.

И её печатная плата.

Развести одностороннюю плату без перемычек у меня не получилось.

Скачать печатную плату в формате LAY6

Схема импульсного источника питания на таймере NE555 и операционном усилителе

      Схема импульсного источника питания, показанная на рис.3, подобна, но в качестве задающего генератора прямоугольных импульсов используется операционный усилитель (ОУ) типа К140 УД12 или КР140 УД 1208. Этот ОУ очень экономичен, может работать от однополярного напряжения питания от 3 до 30 В или от двуполярного ±1,5… 15 В.       Частоту генерации регулируют потенциометром R3. Для увеличения широкополосности выводы 1,4,5 объединяют и заземляют на общий провод. Резистор R6, регулирующий токуправления, уменьшают до минимально возможного значения 100 кОм. Ток потребления ОУ в пределах 1,5…2 мА. Между выходом ОУ и дифференцирующей цепочкой C3R10VD1, от которой запускается одновибратор DD1, включен буферный усилитель на транзисторе VT1 типа ВС237, который служит для увеличения крутизны фронта и спада выходного импульса МС DA1.       В нагрузке ключа VT2 использован дроссель L1 из тех же балластов от экономичных ламп. От перенапряжения этот дроссель защищен цепочкой R13VD2. Его индуктивность 1,65 мГн, но намотан он более толстым проводом, следовательно, его активное сопротивление меньше, а добротность выше. Это позволяет получить на выходе выпрямителя с удвоением VD3VD4 напряжение приблизительно 24…25 В.       Необходимо также отметить, что схема импульсного источника питания рис.3 может работать от однополярного напряжения питания 3,3 В.       Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.3 приведены в табл.3.

Post Views:
4 615

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий