Как работают импульсные преобразователи напряжения (27 схем)

Повышающий Dc Dc преобразователь – преобразователь типа boost

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15 В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

   Функциональная схема повышающего преобразователя

Входное напряжение U in подается на входной фильтр C in и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка R н и шунтирующий конденсатор C out.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы. Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания U in. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе C out. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор C out, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Понятие о преобразователях DC DC

Как следует из названия, данный тип устройств преобразует входное напряжение постоянного тока в такое же на выходе, но другого номинала. DC – английская аббревиатура, Direct Current – постоянный ток.

Поскольку для работы трансформатора принципиальным является наличие переменного напряжения, то в указанных преобразователях используется иной принцип. DC–DC устройства представлены двумя основными типами:

  1. Инверторные, в которых вначале выполняется преобразование постоянного напряжения в переменное, высокой частоты, которое поступает на малогабаритный высокочастотный трансформатор.
  2. Импульсные, у которых основными элементами являются накопительный дроссель и конденсатор.

Строго говоря, все перечисленные устройства относятся к импульсным, но указанные различия позволяют отнести их к разным группам.

Аккумуляторные батареи

Инвертор 12 в 220, сделанный самотоятельно не может работать сам по себе. Для преобразования напряжения в 12 вольт, его нужно вначале откуда-то получить. Таким источником электроэнергии служат аккумуляторные батареи свинцово-кислотного типа. Эти химические устройства способны регулярно выполнять отдачу больших токов, не утрачивая своей работоспособности за 12-15 циклов зарядки и разрядки.

Чтобы АКБ преждевременно не вышла из строя, ее напряжение отслеживается с помощью контроллера, предотвращающего чрезмерный разряд. Однако, следует помнить, что в родных АКБ бесперебойников используется гелевый электролит, а в автомобильных батареях – жидкий. Поэтому режимы зарядки у них различаются. Токи, пропускаемые сквозь гель, не подходят для жидкого электролита. Таким образом, источник бесперебойного питания будет регулярно не до конца заряжать автомобильный аккумулятор, и он быстро выйдет из строя. Во избежание подобных ситуаций, у инвертора 12 в 220 на основе ИБП в комплекте должно быть отдельное зарядное устройство для АКБ. Его также возможно сделать самостоятельно.

Мощность аккумуляторной батареи выбирается в соответствии с основными целями и задачами преобразователя напряжения. Этот показатель рассчитывается как мощность, отдаваемая потребителям, разделенная на КПД инвертора. В любом случае следует не допускать полной разрядки аккумулятора, устанавливать для этой цели специальные ограничители работы или контроллеры. При отсутствии этих приборов, конструкция инвертора должна соответствовать возможностям имеющейся батареи.

В среднем кислотные аккумуляторы могут работать без заметной потери своего ресурса в течение 2 часов при токе 12 А и мощности 60 А/ч, 24 А – 120 А/ч, 42 А – 210 А/ч. Учитывая имеющийся КПД преобразования допустимая долговременная мощность нагрузки будет соответственно 120, 230 и 400 Вт. На короткое время может быть подключена повышенная нагрузка, тогда мощность возрастает примерно в 2,5 раза. Однако, после такой интенсивной работы, батарея должна отдыхать как минимум 20 минут.

Таким образом, правильно рассчитанный самодельный инвертор и соответствующий аккумулятор нужной мощности непременно дадут желаемые результаты. Для постоянной работы эти устройства не годятся, но вполне способны решить проблему энергоснабжения нужных потребителей в течение достаточно продолжительного периода времени.

Как сделать преобразователь 12 220 из компьютерного БПКак сделать преобразователь 12 220 из компьютерного БППростой и дешевый инвертор 12-220 за 500р своими рукамиПростой и дешевый инвертор 12-220 за 500р своими руками

Инвертор с 24 в 220 вольт

Расчет времени работы инвертора от аккумулятора

Что такое инвертор напряжения

Гибридный инвертор

Трехфазный инвертор

Автомобильный инвертор с 12 на 220

Преобразователь 12 в 220 Вольт в машину: какой лучше выбрать из представленных на рынке — обзор вариантов

Сейчас на рынке дополнительного оборудования для автомобилей широко представлены разнообразные инверторы 12/220 Вольт. Перед их приобретением следует, прежде всего, определиться для каких целей вы будете его использовать, какие конкретные электроприборы будете подключать.

Далее необходимо подсчитать или определить мощность потребления таких устройств. Если вы планируете одновременно снабжать электроэнергией несколько устройств, мощности надо суммировать.

Как  заявляет производитель, преобразователь напряжения  ALCA 313100  12/220В имеет номинальную мощность 150 Вт, а пиковую — 300 Вт.

Учитывая невысокую стоимость устройства (порядка 2000 рублей), не следует рассчитывать на его европейское происхождение. Питание производится от разъема прикуривателя. В характеристиках устройства указаны максимальные входные параметры – 12В/15 Ампер. Нетрудно посчитать максимальную мощность, перемножив 12 на 15: чуть более 180 Ватт. То есть при пиковой нагрузке 300 Вт входные цепи могут не выдержать. Кроме этого, обычно прикуриватель имеет по цепи питания предохранитель номиналом 15 – 20 Ампер. Поэтому при подключении более мощных преобразователей он часто выходит из строя.

Вообще, не стоит выбирать модели мощных преобразователей с питанием от разъема прикуривателя: это ненадежно и опасно — может воспламениться электропроводка, не рассчитанная на мощную нагрузку!

Герметичный автомобильный инвертор  Сибконтакт ИС2-12-300Г имеет номинальную мощность 300 Ватт.

Он подключается к электрооборудованию автомобиля отдельной проводкой. Лучше это сделать непосредственно от аккумуляторной батареи через предохранитель номиналом 30 – 40 Ампер.

Герметичность устройства является плюсом с точки зрения минимизации рисков попадания внутрь его влаги и посторонних предметов. Однако при этом значительно уменьшается вентиляция элементов преобразователя, при постоянной мощной нагрузке он перегревается.

Видео — обзор автомобильного инвертора Сибконтакт ИС2-12-300Г:

Инвертор Сибконтакт ИС2-12-300Инвертор Сибконтакт ИС2-12-300

Такой преобразователь может обеспечить питание ноутбука, бытовых электроприборов, электродвигателей небольшой мощности. Форма выходного напряжения приближается к синусоидальной, это большой плюс.

Кроме этого, Сибконтакт ИС2-12-300Г имеет защиту от перегрузок, переполюсовки, тепловую защиту, защиту от полного разряда АКБ, режим энергосбережения. Стоимость преобразователя порядка 4000 рублей.

Более мощный автомобильный инвертор AcmePower AP-DS600 (600 Ватт) может запитывать электроинструмент небольшой мощности (лобзик, дрель и др.) Он удобен для работы в полевых условиях, проведении выездных мероприятий.

Форма сигнала выходного напряжения – модифицированная (ступенчаиая) синусоида. Имеет необходимые защиты по питанию и перегреву. КПД – более 90%, стоимость – более 4000 рублей.

AVS Energy IN-1500W мощностью 1500 Ватт предназначен для питания чуть более мощных электроустановок и оборудования.

Однако продавцы инвертора AVS Energy IN-1500W не рекомендуют долговременно нагружать устройство потребителями мощностью более 800 Ватт.

Пользователи, которые испытали работу этого инвертора также отмечают, что заявленные 1500 Вт данный автомобильный инвертор «не держит».

Видео — об автомобильном преобразователе напряжения AVS Energy IN-1500W:

AVS автомобильный инвертор с 12 на 220 вольт Тест. и замеры мощности АвтоблогерAVS автомобильный инвертор с 12 на 220 вольт Тест. и замеры мощности Автоблогер

Супермощный инвертор Сибвольт 3012 (3000 Ватт) предназначен для питания практически любого оборудования. Он имеет синусоидальный сигнал, соответственно, высокую стоимость – более 33000 рублей. Масса преобразователя около 7 килограммов.

В продаже есть преобразователи мощностью 5000 Ватт и более.

При работе таких устройств на максимальной мощности в цепях питания протекают токи порядка 200 – 400 Ампер. Такой ток потребляет во время запуска двигателя стартер. Поэтому провода электропитания и клеммы преобразователя должны быть не менее мощными, чем стартерные.

При токе нагрузки 250 Ампер (мощность преобразователя около 3000 ватт) аккумуляторная батарея емкостью 100 Ампер-часов разрядится минут за 20. Это следует учитывать, планируя использовать преобразователь для решения задач энергообеспечения.

Преобразователь напряжения DС-DC с гальванической развязкой

Классическая схема DC-DC устройств отличается существенным недостатком, который заключается в гальванической связи входа и выхода. В связи с этим имеется высокая вероятность удара электрическим током.

Для повышения безопасности перечисленные выше схемы могут комплектоваться разделительным трансформатором, который осуществляет гальваническую развязку входных и выходных цепей.

Обратите внимание! Наличие трансформатора позволяет проектировать устройства с несколькими значениями выходного напряжения. Разделительный трансформатор импульсных источников имеет небольшие габариты и массу, поскольку работает на высокой частоте. Разделительный трансформатор импульсных источников имеет небольшие габариты и массу, поскольку работает на высокой частоте

Разделительный трансформатор импульсных источников имеет небольшие габариты и массу, поскольку работает на высокой частоте.

Импульсный трансформатор

Обратная связь для контроля за выходными параметрами осуществляется через дополнительную обмотку трансформатора либо через оптрон.

Повышающий преобразователь с разделительным трансформатором вместо дросселя называется обратноходовым (flyback converter).

Принцип работы импульсного преобразователя

Разработано несколько типов конструкций преобразователей, которые отличаются принципом работы:

  • step-down (buck converter) – устройства, способные понижать входное напряжение до заданного;
  • step-up (boost converter) – используются тогда, когда необходимо повысить напряжение на выходе относительно входного;
  • buck-boost converter – способен работать как на понижение, так и на повышение напряжения;
  • SEPIC (single-ended primary-inductor converter) – имеет аналогичные параметры, но работает по другому принципу;
  • inverting converter – основное назначение – инверсия полярности напряжения.

Практически все конструкции используют в работе свойство индуктивности к накоплению энергии. Цепь с катушкой индуктивности (дросселем) управляется ключом, роль которого выполняет быстродействующий транзистор. Различия в схемах заключаются во взаимном расположении дросселя, накопительной емкости и ключевого элемента.

Step-down

Схема содержит индуктивность, расположенную после ключевого элемента и включенную последовательно с нагрузкой. При открытом ключе через дроссель начинает протекать ток. Диод в это время закрыт. После закрытия ключа ток не прекращается мгновенно, а продолжает циркулировать в том же направлении, но уже через открытый диод.

Step-down конвертер

В дальнейшем цикл работы повторяется. Емкость на выходе позволяет сглаживать пульсации выходного напряжения.

Step-up

Данный повышающий преобразователь напряжения также содержит дроссель, соединенный последовательно с нагрузкой, но располагается он до ключа. При открытом ключе через индуктивность течет ток, который линейно растет. После закрытия ключа ток продолжает идти уже через открытый диод в нагрузку. При этом напряжение на входе складывается с ЭДС самоиндукции дросселя.

Step-up конвертер

Остальные схемы имеют аналогичную схемотехнику.

Во всех случаях диод блокирует нагрузку от ключа в необходимом месте цикла преобразования. Падение напряжения на диоде вызывает рассеивание дополнительной мощности, что снижает КПД устройства. Поэтому вместо обыкновенных диодов с падением около 0.7В используют быстродействующие диоды Шоттки, падение напряжения на которых составляет 0.4В.

Понятие о преобразователях DC DC

Как следует из названия, данный тип устройств преобразует входное напряжение постоянного тока в такое же на выходе, но другого номинала. DC – английская аббревиатура, Direct Current – постоянный ток.

Поскольку для работы трансформатора принципиальным является наличие переменного напряжения, то в указанных преобразователях используется иной принцип. DC–DC устройства представлены двумя основными типами:

  1. Инверторные, в которых вначале выполняется преобразование постоянного напряжения в переменное, высокой частоты, которое поступает на малогабаритный высокочастотный трансформатор.
  2. Импульсные, у которых основными элементами являются накопительный дроссель и конденсатор.

Строго говоря, все перечисленные устройства относятся к импульсным, но указанные различия позволяют отнести их к разным группам.

Порядок намотки импульсного трансформатора.

Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца.
Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .

Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.

Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».

У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.

Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.

Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.

Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Параметры импульсных преобразователей

Импульсные источники отличаются специфичными параметрами, в отличие от традиционных конструкций:

  1. Отрицательное входное сопротивление. При повышении входного напряжения ток потребления снижается. Вызвано это сокращением времени открытого состояния ключевого элемента.

Важно! По этой причине импульсные источники питания более надежно работают при повышенном напряжении на входе (в допустимых пределах)

  1. Импульсные помехи. Источником помех является ключ преобразователя, поскольку в момент коммутации возникают резкие броски тока. Для снижения помех требуется наличие фильтров не только на выходе, но и на входе устройства.
  2. Диапазон входного напряжения может быть довольно большим, поскольку состояние выхода находится в зависимости от времени нахождения ключа в открытом и закрытом состояниях.
  3. Вход и выход гальванически связаны. Этот факт накладывает особые требования по безопасности.

Особенности

Для производства ss14 диодов используются прямоугольные корпусы класса SMA. Буквы SS в названии изделия обозначают следующее: первая – поверхностный (surface) монтаж, вторая – наличие барьера Шоттки. Выводы изготавливаются из латуни, обработанной лужением. На корпусе отмечается катодная сторона, при этом разные фирмы-изготовители обозначают ее по-разному (точка, полоска определенного цвета, выемка). Также некоторые компании сокращают обозначение модели на корпусе до двухзначного – S4. Компоненты обладают очень малой массой – каждая единица весит не более 0,064 граммов. Миниатюрность и особенности монтажа на плату являются выигрышными с точки зрения производственных процессов, но затрудняют проведение тестирования – для этого мультиметр приходится оснащать специальной конструкцией.

Важно! На графических представлениях электросхем такой элемент может обозначаться стандартно для диодов или иметь некоторые дополнительные знаки. Принятое графическое изображение диода Шоттки для поверхностного монтажа на схемах

Название класса диодов связано с именем немецкого физика Вальтера Германа Шоттки, которому принадлежит первое описание перехода между металлической поверхностью и полупроводниковым материалом. В рассматриваемых изделиях этот переход создается через непосредственный контакт этих двух материалов. Типичная P – N реализация, задействующая явление электронно-дырочной проводимости, в модели SS14 не используется. Электроток создается собственно электронами. В разных моделях изделий Шоттки могут быть применены серебряные, золотые или платиновые проводники. Полупроводниковый компонент может быть кремниевым или изготовленным из арсенида галлия.

Преимуществами использования таких деталей являются значительное быстродействие и небольшое сопротивление при прямой установке элемента, что минимизирует снижение напряжения на нем. Это дает возможность монтировать эти диоды в устройства импульсного типа. Кроме того, рабочая переходная зона обладает малой электроемкостью, что позволяет использовать данные элементы в высокочастотных установках. Есть у диодов и слабые стороны: они обладают малой устойчивостью к ситуациям превышения наибольшего обратного напряжения, нагревание влечет за собой внезапный рост обратного электротока. Данные особенности связаны с устройством диодных компонентов.

Схема импульсного преобразователя напряжения 1,5 — 9 Вольт.

В качестве преобразователя напряжения из 1,5 В в 9 В была выбрана, схема А.Чаплыгина, опубликованная в журнале «Радио» (11.2001г., стр.42).

Эта одна из схем, которая, как нельзя лучше, иллюстрирует выражение: «Всё гениальное – просто».

C1, C2 – 22µF

VT1, VT2 – КТ209К

B1 – 1… 1,5V

И действительно, схема состоит всего из пяти деталей, причём две из них, это конденсаторы фильтров. Вместо выпрямителя высокочастотного напряжения используются база-эмиттерные переходы транзисторов самого генератора. При этом, величина тока базы становится пропорциональной величине тока в нагрузке, что делает преобразователь весьма экономичным.

Другой особенностью генератора является срыв колебаний в отсутствие нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такая «Крона», а точнее, встроенный в неё преобразователь, будет сам включаться тогда, когда от него потребуется что-нибудь запитать и выключаться, когда нагрука будет отключена.

Трансформатор TV1 намотан на кольцевом магнитопроводе 2000НМ размером К7х4х2.
Обмотки III и IV содержат по 28 витков провода Ø0,16мм, а I, II по 4 витка провода Ø0,25мм.

Распространенные схемы

Чтобы преобразовать напряжение одного уровня в другое, используют импульсные преобразователи с установленными индуктивными накопителями энергии. Исходя из этого, различают три типа схем преобразования:

  • Инвертирующие.
  • Повышающие.
  • Понижающие.

Во всех перечисленных схемах используются электрические компоненты:

  1. Основной коммутирующий компонент.
  2. Источник питания.
  3. Конденсатор фильтра, который подключают параллельно сопротивлению нагрузки.
  4. Индуктивный накопитель энергии (дроссель, катушка индуктивности).
  5. Диод для блокировки.

Комбинирование данных элементов в определенной последовательности позволяет построить любую из вышеперечисленных схем.

Преобразователь с 12в -220Преобразователь с 12в -220

Простой импульсный преобразователь

Самый элементарный преобразователь можно собрать из ненужных деталей от старого системного блока компьютера. Существенный недостаток данной схемы — выходное напряжение 220В далеко от идеала по своей форме синусоиды, имеет частоту, превышающую стандартные 50 Гц. Не рекомендуется подключать к такому аппарату чувствительную электронику.

В данной схеме применено интересное техническое решение. Для подключения к преобразователю техники с импульсными блоками питания (например, ноутбук) используют выпрямители со сглаживающими конденсаторами на выходе из устройства. Единственный минус — адаптер будет работать только в случае совпадения полярности выходного напряжения розетки с напряжением выпрямителя, встроенного в адаптер.

Для простых потребителей энергии подключение можно осуществить напрямую к выходу трансформатора TR1. Рассмотрим основные компоненты данной схемы:

  • Резистор R1 и конденсатор C2 — задают частоту работы преобразователя.
  • ШИМ-контролер TL494. Основа всей схемы.
  • Силовые полевые транзисторы Q1 и Q2 — используются для большей эффективности. Размещаются на алюминиевых радиаторах.
  • Транзисторы IRFZ44 можно заменить близким по характеристикам IRFZ46 или IRFZ48.
  • Диоды D1 и D2 также можно заменить на FR107, FR207.

Если в схеме предполагается использование одного общего радиатора, необходимо установить транзисторы через изоляционные прокладки. По схеме, выходной дроссель наматывают на ферритовое кольцо от дросселя, которое также извлекают из блока питания компьютера. Первичную обмотку изготавливают из провода 0,6 мм. Она должна иметь 10 витков с отводом от середины. Поверх нее наматывают вторичную обмотку, состоящую из 80 витков. Выходной трансформатор можно также изъять из ненужного ИБП.

Схема очень проста. При правильной сборке она начинает работать сразу, не требует точной настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А — а это более 300 Вт мощности.

ИНТЕРЕСНО: В магазине подобный преобразователь стоит в районе 3-4 тысяч рублей.

Схема преобразователя с выходом переменного тока

Данная схема известна еще радиолюбителям СССР. Однако это не делает ее неэффективной. Наоборот, она очень хорошо себя зарекомендовала, а главный ее плюс — получение стабильного переменного тока с напряжением 220В и частотой 50 Гц.

В качестве генератора колебаний выступает микросхема К561ТМ2, представляющая из себя D-тригер сдвоенного типа. Этот элемент можно заменить зарубежным аналогом CD4013.

Сам преобразователь имеет два силовых плеча, построенных на биполярных транзисторах КТ827А. Они имеют один существенный недостаток по сравнению с новыми полевыми транзисторами — данные компоненты сильно нагреваются в открытом состоянии, что происходит из-за высоких показателей сопротивления. Преобразователь работает на низкой частоте, поэтому в трансформаторе используют мощный стальной сердечник.

В данной схеме используется старый сетевой трансформатор TC-180. Он, как и остальные инверторы на основе несложных ШИМ-схем, выдает значительно отличающуюся синусоидальную форму напряжения. Однако этот недостаток немного сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7.

ВАЖНО: Иногда трансформатор может издавать ощутимый гул во время работы. Это говорит о неполадках в работе схемы

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий