Датчики давления arduino bmp280, bmp180, bme280

Описание

Тензодатчики классифицируются не только по своей форме, но и по конструктивным особенностям. Конструкция прибора зависит от типа чувствительного элемента. Для контроля деформации используются следующие типы контактов:

  1. Фольговые;
  2. Пленочные;
  3. Проволочные.

Индикатор с фольговым элементом используется как наклеиваемый тензодатчик. Это очень удобная система, которая представляет собой фольговую ленту, толщиной до 12 мкм. Часть пленки имеет плотную форму, а часть – решетчатую. Данная модель отличается от остальных тем, что можно припаивать дополнительные контакты, к тому же они нормально переносят низкие температуры.


Фото — фольговый преобразователь

Пленочные являются аналогом фольговых, за исключением материала, из которого изготовлены. Производители изготавливают такие модели из тензочувствительных пленок с особым напылением, которое увеличивает чувствительность системы. Такие измерительные узлы удобно использовать при необходимости измерить динамические нагрузки. Производство пленок выполняется из таких материалов, как титан, висмут, германий.

Проволочные способны измерить нагрузку от нескольких сотых грамма до целых тонн (скажем, весовой бункер и прочие). Их называют одноточечные, т. к в отличие от пленочных и фольговых моделей, они измеряют в одной точке, а не площади. Такая конструкция позволяет использовать проволочные тензодатчики для измерения деформации сжатия и растяжения.


Фото — проволочная модель

Датчики в современной нефтяной промышленности: обзор

Датчики в нефтяной промышленности используются для точного учета сырья на всех уровнях переработки и хранения, а также при прохождении технологических процессов. Они устанавливаются в узлах учета, в распределительных и измерительных станциях. Это могут быть датчики температуры, давления, уровня среды.

К ним предъявляются одинаково жесткие требования по защищенности, взрывобезопасности и коррозионной устойчивости, поскольку предполагается их эксплуатация в нагруженных неблагоприятных условиях. Существуют датчики разной функциональности и в разных вариантах исполнения. Они могут различаться по типу чувствительного элемента и по способу присоединения.

Так, среди устройств, призванных контролировать давление в системе, особенно популярны те, что работают с емкостными и кремниевыми пъезорезистивными элементами. Они обладают высокой устойчивостью к перегрузкам и отличаются долговременной стабильностью.

Востребованы и модели, обеспечивающие измерение уровня в емкости и работающие в составе комплексных систем учета. Их главный критерий качества — высокая точность. Также ключевыми требованиями к этому виду аппаратуры стоит назвать наличие взрывонепроницаемой оболочки и искробезопасной электрической цепи.

Оптоэлектронные датчики

Они просто детектируют давление, обладают высокой разрешающей способностью. У них высокая чувствительность и термостабильность. Работают на основе интерференции света, используют для измерения небольших перемещений интерферометр Фабри-Перо. Такие электронные датчики давления встречаются крайне редко, но являются достаточно перспективными.

Основные компоненты прибора:

  1. Кристалл оптического преобразователя.
  2. Диафрагма.
  3. Светодиод.
  4. Детектор (состоит из трех фотодиодов).

К двум фотодиодам пристраиваются оптические фильтры Фаби-Перо, у которых небольшая разница в толщине. Фильтры – это кремниевые зеркала с отражающей лицевой поверхностью. Они покрыты слоем оксида кремния, на поверхность наносится тонкий слой алюминия. Оптический преобразователь очень схож с емкостным датчиком давления.

Источник

Как выбрать датчик давления

Измеряемое давление

  • Абсолютное
  • Избыточное (относительное)
  • Дифференциальное (перепад)
  • Вакуум (разрежение)
  • Гидростатическое давление (уровень).

Измеряемая среда

  • Измеряемая среда
  • Диапазон рабочих температур измеряемой среды
  • Максимальное статическое давление измеряемой среды.

Метрологические характеристики

  • Единицы измерения (градуировка)
  • Погрешность измерений
  • Перестраиваемый интервал измерений
  • Влияние температуры окружающей среды
  • Влияние статического давления
  • Влияние питания
  • Влияние вибрации
  • Долговременный дрейф
  • Межповерочный период
  • Электромагнитная совместимость.

Преобразователь

  • Индикатор
  • Диагностические функции
  • Степень защиты корпуса
  • Материал корпуса
  • Питание
  • Кабельный ввод
  • Выходной сигнал:
    • токовый 4..20мА
    • HART
    • PROFIBUS PA
    • Foundation Fieldbus.

Источник

Чувствительность

Различные процессы требуют различных уровней точности. В общем, чем точнее датчик, тем он дороже, таким образом, будет экономически выгодно выбрать датчики, которые способны максимально удовлетворить требуемую точность. Существует также компромисс между точностью и способностью быстро обнаруживать изменения давления. Следовательно, в процессах, в которых давление сильно варьируется в течение коротких периодов времени — нецелесообразно использовать датчики, которым требуется больше времени, чтобы дать точные показания давления, хотя они и могли бы дать более точные значения.

Классификация приборов по принципу действия

От принципа действия или метода, используемого при преобразовании входного сигнала в электрический выходной, датчики измерения классифицируют:

  • Тензометрический метод. Чувствительные детали производят измерение сопротивления при воздействии на тензорезистор, прикреплённый к упругому элементу, который при воздействии давления деформируется.
  • Пьезорезистивный метод. Работает на основе интегральных чувствительных деталей из кремния. Преобразователи из кремния обладают высокой чувствительностью благодаря возможности изменения сопротивления полупроводника. Для измерения характеристик в неагрессивных средах используется Low cost — метод исполнения оборудования, когда чувствительный элемент не оборудован какими-либо степенями защиты. В случае работы в среде где, возможно, оказания на датчик агрессивного вещества, чувствительный элемент оборудуется герметичным корпусом с разделяющей диафрагмой из стали, которая передаёт давление посредством кремниевой жидкости.
  • Ёмкостный метод. Главной частью датчика, работающего по такому методу является ёмкостная ячейка. Её работа заключается в изменении электрической ёмкости между укладкой конденсатора и измерительной мембраны в зависимости. Главным плюсом можно отметить защиту от деформации, при отсутствии давления мембрана восстанавливает свою форму, при этом калибровка такого датчика не требуется. А также высокая стабильность характеристик обусловлена малым влиянием погрешности температуры за счёт небольшого объёма жидкости, которая заполняет внутренний объем ячейки.
  • Резонансный метод. За основу работы по такому принципу взято изменение частоты резонансы колеблющегося элемента при его деформации. Из недостатков можно выделить большое время отклика, и невозможность работы в агрессивных средах без потери измерительной точности.
  • Индуктивный метод. Основывается на регистрации вихревых оков. Измерительный элемент состоит из двух изолированных катушек металлическим экраном. Преобразователь проводит измерение смещения мембраны при отсутствии фактического контакта между двумя поверхностями. Электрический ток генерируется в катушках таким образом, что заряд и разряд катушки происходит на равных отрезках временного промежутка. При изменении положения мембраны создаётся ток в зафиксированной катушке, после чего следует изменение индуктивности системы. Смещение данных основной катушки даёт возможность о преобразовании данных в стандартный сигнал, который по своим параметрам пропорционален оказанному давлению.
  • Ионизационный метод. Работает по принципу регистрации поток ионизированных частиц, как ламповый диод. Лампа оборудуется двумя электродами, катодом, анодом, и нагревателем в некоторых случаях. Преимуществом является возможность регистрировать данные в средах с низким давлением, в том числе и вакуума, но при атмосферном давлении такое оборудование эксплуатировать нельзя.
  • Пьезоэлектрический метод. Задумка основывается на основе пьезоэлектрического эффекта, в котором пьезоэлемент создаёт электрический сигнал, пропорционально воздействию измеряемой среды на него. Используется для измерения постоянно изменяющихся акустических и импульсных сред. Обладает широким диапазоном динамического и частного измерения данных. Обладает небольшой массой, габаритами и высокой надёжностью при эксплуатации в тяжёлых условиях.

Поверка датчиков давления (Сапфир, Метран)Поверка датчиков давления (Сапфир, Метран)

Тензорезистивный датчик давления

В настоящее время основная масса датчиков давления выпускаются на основе чувствительных элементов, принципом которых является измерение деформации тензорезисторов, сформированных в эпитаксиальной пленке кремния на подложке из сапфира (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые, железные и др. Принцип действия тензопреобразователей основан на явлении тензоэффекта в материалах. Чувствительным элементом служит мембрана с тензорезисторами, соединенными в мостовую схему. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы меняют свое сопротивление, что приводит к разбалансу моста Уитстона. Разбаланс линейно зависит от степени деформации резисторов и, следовательно, от приложенного давления. Следует отметить принципиальное ограничение КНС преобразователя – неустранимую временную нестабильность градуировочной характеристики и существенные гистерезисные эффекты от давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с конструктивными элементами датчика

Поэтому, выбирая преобразователь на основе КНС, необходимо обратить внимание на величину основной погрешности с учетом гистерезиса и величину дополнительной погрешности

К преимуществам можно отнести хорошую защищенность чувствительного элемента от воздействия любой агрессивной среды, налаженное серийное производство, низкую стоимость.

Принцип работы датчиков давления

Единицы измерения давления

  • Паскаль1 Па = 1 Н/м 2
  • Бар1 бар = 10 5 Па
  • Физическая Атмосфера – атмосферное давление на уровне моря 1 атм = 101325 Па = 1,01325 бар = 10,33 м вод. ст.
  • Метр водяного столба — гидростатическое давление столба воды высотой в 1 метр 1 м вод. ст. = 9806,65 Па = 9,80665×10 -2 бар = 0,096784 атм (напор в водопроводе удобно измерять в метрах водяного столба).

Классификация датчиков по типу измеряемого давления

  • Датчики абсолютного давления(Absolute Pressure Sensor) Эти датчики измеряют давление относительно абсолютного вакуума. Применение: пищевые и химические производства.
  • Датчики избыточного (относительного) давления, манометры(Gauge Pressure Sensor) Эти датчики измеряют давление относительно атмосферного давления в этом месте. Барометры измеряют атмосферное давление. Применение: водоснабжение и водоотведение.
  • Датчики дифференциального (перепада) давления(Differential Pressure Sensor) Эти датчики измеряют перепад (разность) давления в двух точках. Применение: контроль загрязнения фильтров, измерение расхода и уровня жидкости (гидростатический метод).
  • Вакуумные датчики, датчики разряжения(Vacuum Pressure Sensor) Измеряют давление, которое ниже атмосферного (вакуум).

Классификация датчиков давления по принципу действия

  • Пьезорезистивные (Piezoresistive Strain Gage) Используется эффект изменения электрического сопротивления полупроводников под действием механической нагрузки.
  • Пьезоэлектрические (Piezoelectric) Используется пьезоэлектрический эффект – способность некоторых кристаллов (кварца) и керамики генерировать электрическое поле или разность потенциалов пропорционально силе давления (сжатия).
  • Тензометрические (Strain Gauge) Используется тензоэффект – изменение электрического сопротивления тензорезисторов при их деформации под воздействием нагрузки.
  • Емкостные (Capacitive) Используется эффект зависимости ёмкости конденсатора от расстояния между обкладками.
  • Резонансные (Resonant) Используется эффект зависимости частоты собственных колебаний (кварцевого резонатора) от давления.
  • Индуктивные (Electromagnetic) Принцип действия основан на регистрации токов Фуко, возникающих в металлическом экране, расположенном между двумя катушками, одна из которых связана с измерительной мембраной — при её приближении или удалении от экрана изменяется индуктивность системы.
  • Ионизационные (Ionization) Используется эффект зависимости плотности потока ионов от разряжения в катодно-анодной лампе.

Разделители давления

Разделители давления служат для разнесения в пространстве преобразователя и среды измерения. Измеряемое давление передается с разделительной мембраны на наполнительную жидкость и дальше по капиллярной трубке или напрямую в измерительную камеру преобразователя.

  • При использовании в пищевой и фармацевтической промышленности быстросъёмные мембранные разделители можно легко промывать
  • Измеряемое вещество может закупорить или разъесть импульсные трубки
  • Нестандартный температурный диапазон.

Датчик абсолютного давления или ДАД: что это такое

Электронный блок управления стал неотъемлемой частью современного двигателя и без его помощи обеспечить нормальную работу всех систем и уследить за их исправностью невозможно. Датчик абсолютного давления, также известный как ДАД, лишь одно из многих регулирующих устройств, влияющих на стабильность работы двигателя и передающее информацию на ЭБУ.

Во многих автомобилях он расположен на впускном коллекторе двигателя и регистрирует колебания уровня давления в тракте впуска. В дальнейшем на основании данных ДАД электронный блок оптимизирует состав горючей смеси, поступающей в камеру сгорания.

Теперь рассмотрим детальнее, что такое датчик абсолютного давления, как он работает и почему без него не обойтись?

Расстояние срабатывания и объект воздействия

В зависимости от конструкции и принципа действия индуктивного датчика объект воздействия может иметь вертикальное или горизонтальное перемещение относительно самого измерителя. Однако реакция сенсора на начало движения контролируемого объекта может начинаться не сразу, что обуславливается номинальным расстоянием, при котором обеспечивается зона чувствительности датчика и техническими параметрами объекта.

Как видите на рисунке 4, в первом положении контролируемый объект находится на таком удалении, где электромагнитные линии не достигают его поверхности. В таком случае с индуктивного датчика сигнал сниматься не будет, так как он не фиксирует перемещения в зоне чувствительности. Во втором положении контролируемый объект уже пересек расстояние срабатывания и вошел в чувствительную зону. В результате взаимодействия с объектом на выходе датчика появится соответствующий сигнал.

Также расстояние срабатывания будет зависеть от геометрических размеров, формы и материала. Следует заметить, что в качестве объекта срабатывания индуктивного датчика применяются только металлические предметы, но от конкретного типа будет отличаться и момент перехода датчика в противоположное состояние, что изображено на диаграмме:

На практике существует огромное разнообразие индуктивных датчиков, всех их можно разделить на две большие категории, в зависимости от рода питающего тока – переменного и постоянного. В зависимости от состояния контактов в соответствии с таблицей 1 р.3 ГОСТ Р 50030.5.2-99 индуктивные датчики бывают:

  • замыкающий – при перемещении контролируемого объекта происходит перевод во включенное положение;
  • размыкающий – в случае воздействия индуктивный датчик переводит контакты в отключенное положение;
  • переключающий – одновременно объединяет оба предыдущих варианта, за одну коммутацию переводит один вывод во включенное, второй, в отключенное положение.

По количеству измерительных цепей индуктивные датчики подразделяются на одинарные и дифференциальные. Первый из них обладает одной катушкой и одной цепью измерения. Второй тип подразумевает наличие двух сенсоров, измерительные цепи которых включаются в противофазу для сравнения показаний.

По способу передачи данных индуктивные датчики подразделяются на аналоговые, электронные и цифровые. В первом случае применяются те же катушки и ферромагнитные сердечники. Электронные используют триггер Шмидта вместо ферромагнетиков для получения гистерезисной составляющей. Цифровые выполняются в формате печатных плат на микросхемах. Помимо этого виды подразделяются по количеству выводов датчика: два, три, четыре или пять.

Индуктивный датчик давления

Индукционный способ основан на регистрации вихревых токов (токов Фуко). Чувствительный элемент состоит из двух катушек, изолированных между собой металлическим экраном. Преобразователь измеряет смещение мембраны при отсутствии механического контакта. В катушках генерируется электрический сигнал переменного тока таким образом, что заряд и разряд катушек происходит через одинаковые промежутки времени. При отклонении мембраны создается ток в фиксированной основной катушке, что приводит к изменению индуктивности системы. Смещение характеристик основной катушки дает возможность преобразовать давление в стандартизованный сигнал, по своим параметрам прямо пропорциональный приложенному давлению.

Преимуществом такой системы, является возможность измерения низких избыточных и дифференциальных давлений, достаточно высокая точность и незначительная температурная зависимость.

Однако датчик чувствителен к магнитным воздействиям, что объясняется наличием катушек, которые при прохождении переменного сигнала создают магнитное поле.

Сопротивление: особенности измерения

Технические характеристики и преимущества

К ключевым техническим опциям интеллектуальных датчиков давления можно отнести следующие:

  • измерение абсолютного, избыточного, дифференциального, гидростатического давления;
  • универсальность использования – измеряемой средой может выступать морская вода, различные виды масел, дизельное топливо, керосин, газ, мазут;
  • максимальная температура измеряемой среды — 120 градусов;
  • диапазон температур окружающей среды – от -60 до +70;
  • абсолютное давление – от 2,5 КПа до 16 МПа;
  • избыточное давление – от 0,16 КПа до 100 МПа;
  • погрешность измерения — от 0,1 до 0,5%;
  • высокий уровень пыле- и влагозащищенности — IP54, IP67.
  • межповерочный интервал составляет 5 лет;
  • срок гарантии – 3 года.

Датчик давления имеет высокую точность измерений. Если осуществляется специальный заказ, погрешность не превышает 0,04%. Датчики хорошо показывают себя в широком диапазоне измерений, в процессе самодиагностики и перегрузки.

Интеллектуальный счётчик — это надежное средство измерения, которое отвечает заявленным метрологическим и технико-эксплуатационным параметрам, легко работает в агрессивной среде и при низких температурах. Дополнительные плюсы – высокий уровень визуализации, простота использования, комфортный вывод информации на дисплее. Своевременно узнав о превышении давления, можно спланировать действия для предотвращения серьезных проблем.

Устройство датчика давления

Датчик давления состоит из преобразующего элемента; элемента, воспринимающего давление; приемника давления; системы вторичной обработки цифрового сигнала и устройства вывода информации. Все это скрывается в общем корпусе, оснащенном цифровым дисплеем.

Методы измерения давления при помощи датчика:

  • тензометрический – чувствительные комплектующие измеряют давление за счет чуткости элементов, которые жестко припаиваются к мембране;
  • пьезорезистивный – основан на применении преобразователя давления (мембрана из монокристаллического кремния), находящегося в металло-стеклянном корпусе;
  • емкостные преобразователи применяют метод изменения емкости конденсатора;
  • резонансный – в основе лежат акустические или электромагнитные процессы;
  • индуктивный – основан на постоянных вихревых потоках.

Области применения

Датчики можно использовать в следующих областях:

  • медицинской сфере;
  • пищевой промышленности;
  • тепло- и водоснабжении;
  • машиностроительном производстве, а также автомобильной промышленности;
  • электронной промышленности, роботостроении.

Счетчики давления позволяют держать под контролем большинство производственных процессов, успешно применяются в важных социальных сферах. Без них невозможно представить нормальную жизнедеятельность.

Как выбрать

Для того чтобы избежать серьезных финансовых расходов и правильно подойти к выбору датчика давления, необходимо учесть несколько важных качественных характеристик:

  • диапазон давления – для разных целей использования диапазоны могут резко отличаться друг от друга;
  • точность осуществления измерений – в некоторых случаях требуется высочайший уровень точности, например, при разработке двигателей для гоночных автомобилей;
  • температура является крайне важным и серьезным показателем, ведь приборы широко востребованы для тех устройств, которые используются в различных температурных диапазонах;
  • качество выходного сигнала на данном приборе;
  • принцип передачи информации о текущем давлении;
  • удобство присоединения датчика давления к технологическому процессу;
  • материал изготовления датчика – это существенно, если планируется использовать его в условиях высоких нагрузок;
  • наличие сертификата качества, что делает применение датчика максимально безопасным;
  • сроки доставки.

Учитывая соответствующие факторы, можно найти подходящий датчик давления, который прослужит максимально долгое время без поломок и прочих проблем

Важно лишь подобрать достойного производителя, имеющего нужную документацию и положительные отзывы, а также правильно произвести установку и начальную настройку

Поймайте того, кто крадёт ваш телефон

Существует множество приложений, позволяющих отследить потерянный или похищенный телефон, но те, что используют встроенную камеру, способны причинить похитителю больше всего неудобств.

Бесплатное приложение Lockwatch для Android в случае ввода неправильного пароля для входа в систему снимает злоумышленника и отправляет вам электронное письмо с его фотографией и координатами GPS. Приложение запускается автоматически, а съёмка производится беззвучно фронтальной камерой, так что взломщик не узнает о том, что уже «спалился».

Ещё одно аналогичное приложение — GotYa! — вместе с фотографией похитителя пришлёт вам ссылку на Google Maps, но за него придётся заплатить разработчикам 80 рублей.

Возможные неисправности в работе ДДМ

Узнать о том, что датчик не работает несложно. Это сможет определить даже начинающий автолюбитель.

Определить неисправность контроллера давления масла и системы в целом можно по следующим факторам:

  1. Затруднён запуск двигателя.
  2. При включении мотора в работу высвечивается и мигает индикация: Check Engine и значок маслёнки. Они гаснут после начала работы силового агрегата. Аналогичная ситуация возникает при работе на холостом ходу.
  3. Двигатель не набирает обороты, теряет мощность. Автомобиль дёргается во время движения, затруднён разгон.

Датчик выходит из строя по таким причинам:

  • дефект масляного насоса;
  • засорение контроллера отработанным материалом;
  • низкий уровень масла в системе;
  • загрязнение масляного фильтра;
  • повреждение мембраны;
  • замыкание в электропроводке схемы ДДМ;
  • естественный износ реостата.

Следует помнить, что для обслуживания двигателя автомобиля следует использовать высококачественное масло от надёжных производителей. В противном случае придётся восстанавливать сам силовой агрегат, компоненты узла, в том числе, датчик давления.

Принцип работы

Датчики давления основаны на принципе изгиба мембраны, вызванном давлением жидкости или газа. На мембрану нанесен очень тонкий проводящий экранированный слой, который повторяет изгибы мембраны. Этот прогиб можно измерить двумя разными способами:

  • Проводящий (и резистивный) слой на мембране и опорный слой в корпусе датчика образуют конденсатор, деформация его обкладок вызывает изменение емкости, которое может быть измерено
  • Сопротивление проводящих слоев изменяется при изгибе мембраны. Специальная механическая компоновка из четырех резистивных структур образовывает устойчивый мост Уитстона, сопоставимый с классическими тензометрическими датчиками

На практике широко используются оба способа измерения давления. Линейка датчиков давления Smartec основана на резистивной структуре, экранированной на мембране.

Принцип действия датчика давления

Емкостное измерение на основе тензометрического резистора на изгибающейся мембране

Изгиб мембраны (а также слоя) очень мал ( Такое отверстие, соединяющее подмембранный объем с атмосферой, обычно называют вентиляционным.

Принцип работы датчика относительного давления

Единственным интерфейсом между «внешним миром» и находящейся под давлением средой является мембрана. Если эта мембрана повреждена (например, из-за ударного давления), сторона под давлением непосредственно соединяется с вентиляционным отверстием, начинается выброс газа или жидкости, что может привести к опасной ситуации. Для измерения давления опасных газов этот тип датчика не используется, вместо этого применяют датчики абсолютного типа.

Все датчики относительного давления имеют вентиляционное отверстие, которое соединяет одну сторону мембраны с атмосферой. Если это отверстие закрыто или забито из-за загрязнения, могут возникнуть ошибки считывания. Если этот тип датчиков установлен в прочный корпус, вентиляционное отверстие должно всегда оставаться открытым.

Типичное применение датчиков такого типа – измерение давления в шинах.

Что такое электронные датчики?

Электронные датчики давления воды или любой другой жидкости – это такие приборы, которые позволяют осуществлять замер параметров и их обработку специальными блоками управления и индикации. Датчик давления – это такое устройство, у которого выходные параметры напрямую зависят от того, какое давление в измеряемом месте (емкость, трубы и т. д.). Причем можно с их помощью осуществить замер любого вещества в различных агрегатных состояниях – жидком, парообразном, газообразном.

Необходимость таких приборов вызвана тем, что практически вся промышленность построена на системах автоматического управления. Человек осуществляет только настройку, калибровку, обслуживание и запуск (остановку). Работа любой системы происходит в автоматическом режиме. Но еще такие приборы часто используются в медицине.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий