Сопротивление изоляции: методы измерения и нормы

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в “динамо-машине”). Специалисты нередко называют их “стрелочными”, что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением “1800 in”.

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый “продвинутый” мультиметр, ни любой другой подобный ему образец

С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Мегаомметр М4100

Мегаомметр-Ф-4100

Мегаомметр-ЭС-02021Г

Цифровой измеритель Fluke 1507

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Периодичность проверки сопротивления изоляции электрооборудования – важное условие безотказной работы электрооборудования

Периодичность проверки сопротивления изоляции – обязательное действие, важность которого трудно переоценить, необходимое предупреждение непредусмотренной остановки оборудования. ᚷᛗᛚᛝ Плановое проведение измерений – условие подтверждения надежной работы электрооборудования

Зачем лишний раз проверять изоляцию электрооборудования?

Ответ прост, с течением времени эксплуатации наблюдается износ оборудования, проявляющийся в старении изоляции.

Рис№1. Измерение сопротивления изоляции современным мультиметром-мегомметром Fluke, обеспечивающим высокую точность показаний

Периодическая проверка сопротивления изоляции: причины выполнения

Следствие износа изоляции – обязательные периодические измерения ее сопротивления. Приведем несколько примеров старения и износа изоляции:

  1. На силовой кабель влияет механическое воздействие, например, почвенных и температурных изменений, отрицательно сказывающихся на состоянии изоляционной прочности. Осушение изоляции масляного кабеля, отсутствие эффекта «самоизлечения» кабеля в пластмассовой изоляции – главные причины износа.
  2. Коммутационные действия и переходные процессы с большими нагрузками обладают свойством создавать и накапливать значительные заряды электроэнергии, они находят выход в слабом месте изоляции кабеля или электрооборудования.
  3. Накапливание влажности обмоткой стоящего в резерве неработающего двигателя отрицательно влияет на величину коэффициента абсорбции.
  4. Измерение сопротивления изоляции – обязательное действие перед проведением и после выполнения периодических испытаний высоковольтного оборудования.

Обязательность периодичного измерения изоляции

Предприятие обязательно должно иметь график ППР (планово-предупредительных ремонтов). Составляет документ руководитель предприятия или энергетик, который ответственен за безаварийную работу электрооборудования

Важно принимать во внимание правила ПТЭЭП, в которых обозначены определенные нормы выполнения измерений. В основном проверка изоляции производится 1 раз в течение 3 лет. Однако в большинстве случаев руководствуются целями сокращения и минимизации простоя оборудования без напряжения и нежелания лишний раз выключать электроустановки

Поэтому на практике измерения сопротивления изоляции электрооборудования  выполняют при всех видах ремонта

Однако в большинстве случаев руководствуются целями сокращения и минимизации простоя оборудования без напряжения и нежелания лишний раз выключать электроустановки. Поэтому на практике измерения сопротивления изоляции электрооборудования  выполняют при всех видах ремонта.

Важно учитывать исключения из общих правил, характерные для ряда учреждений и организаций

  • Для некоторых организаций, таких как образовательные учреждения, замер сопротивления изоляции электрооборудования и заземления производится раз в год.
  • Для организаций Министерства здравоохранения измерения сопротивления производятся раз в полгода. Особенно это требование касается помещений с вредной пожароопасной или взрывоопасной средой.
  • Для предприятий общественного питания измерение изоляции выполняют раз в год.
  • Для некоторых помещений с опасными условиями труда и высокой влажностью измерение сопротивления производят раз в полгода и обязательно выполняют проверку защитного заземления 1 раз в год. Это требование характерно для предприятий, специализирующихся на химической чистке и прачечных.
  • Особенного внимания требуют электродвигатели подъемников и лифтов, в обязательном порядке рекомендуется проводить полный технический осмотр и измерение изоляции.

Рис. №2. Пример документа с нормами измерения сопротивления изоляции электрооборудования лифта

Подав заявку на измерение сопротивления изоляции электролаборатории компании «ЭнергоАудит» организация может быть уверена в точности и достоверности полученных сведений. По окончании измерений сотрудники компании готовят и передают заказчику отчет о проведенной работе. В отчете обязательно указываются рекомендации по устранению замечаний. Благодаря качественной работе специалистов электролаборатории «ЭнергоАудит» клиенты могут безопасно и с уверенностью эксплуатировать электрооборудование.

Техника безопасности при проведении измерений

При замерах сопротивления изоляции необходимо соблюдать технику безопасности. Во-первых, пользоваться неисправным мегаомметром категорически запрещается. Во-вторых, перед измерением необходимо проверить индикатором или указателем отсутствие напряжения на электрическом кабеле, двигателе или электрооборудовании. При отсутствии напряжения снимается остаточный заряд путём кратковременного заземления тех частей кабеля, двигателя или электрооборудования, которые в рабочем режиме находились под напряжением. Действия по снятию электрического заряда следует также проводить и после каждого замера.

Какие виды испытаний выполняет электроизмерительная лаборатория

Испытания и замеры, проводимые электроизмерительной лабораторией можно разделить на такие виды:

  • приемо-сдаточные – такие испытания проводятся при введении объекта или нового оборудования в эксплуатацию, они регламентируются ПУЭ и нужны для оценки качества электромонтажных работ и их соответствия проектной документации;
  • эксплуатационные – выполняются для обеспечения контроля оборудования, находящегося в эксплуатации, поскольку электротехнические параметры могут под влиянием различных факторов со временем ухудшаться и негативно влиять на пожаробезопасность и электробезопасность объекта, все требования к испытаниям регламентируются ПТЭЭП;
  • контрольные – осуществляются при необходимости внеочередной проверки состояния электроустановок, их выполняют по желанию заказчика после возникновения на объекте аварийных ситуаций или других ЧП;
  • сличительные – производятся в тех случаях, если заказчик не уверен в том, что данные о состоянии электроустановок, указанные в техническом отчете, соответствуют действительности и хочет это проверить и подтвердить.

Условия эксплуатации электрических сетей

В процессе эксплуатации электрических сетей происходит воздействие множества различных факторов:

  1. Возможны повреждения, допущенные в ходе проведения ремонтных работ.
  2. Внешнее воздействие погодных условий (повышенной и отрицательной температуры, воздействия солнечных лучей, осадков).
  3. Повышенной нагрузки по причине подключения приборов большой мощности.
  4. Разрушается изоляции электропроводки в результате длительной эксплуатации.
  5. Выявления скрытых дефектов изоляции.

Для выявления повреждений изоляции необходима регламентная ревизия, проводимая строго по графику с осуществлением диагностики состояния электропроводки на объекте.

Приборы и средства измерения сопротивления изоляции проводки

Домовладельцы спорно утверждают о том, что сегодня есть возможность проверять сопротивление изоляции в домашних условиях используя обыкновенный мультиметр. Это мнение ошибочное, как считают профессионалы, и лучше мегомметра ни один прибор не справиться с предложенной задачей.

Электролабаратории сегодня советуют пользоваться средством MIC-2500, считается, что такой прибор выдает результаты с минимальной погрешностью. Разумеется, каждый из вас может пользоваться измерителем, который считает наиболее удобным. Но, мы проведем процесс на примере этого прибора. Фирма Sonel выпускает такие измерители достаточно давно. В наше время приспособление становится более функциональным, что позволяет определить даже степень старения и влажности изоляционного слоя, не говоря уже о его сопротивлении.

MIC-2500—по сути более точный прибор. Он состоит на учете в государственном реестре, поэтому его использование считается наиболее преимущественным. Обязательным условием касательно этого прибора считается его ежегодная проверка на уровень работоспособности.

Измерение сопротивления изоляции силовых электрических кабелей и электропроводки

Изоляция электрических кабелей и электрических проводов проверяется сначала на заводе изготовителе, затем перед непосредственной прокладкой, ну и после окончания электромонтажных работ. Количество замеров зависит от количества жил кабеля или провода.

Силовые электрические кабели и провода бывают трёхжильными, четырёхжильными и пятижильными. Три жилы – это или фаза, ноль и провод заземления, или три фазы «A», «B», «C». Четыре жилы – это три фазы плюс ноль (провод заземления или комбинированная жила PEN). Пять жил – это три фазы, нулевой проводник и провод заземления.

Замеры сопротивления изоляции трёхжильного кабеля или провода выполняют следующим образом. Каждая из трёх жил проверяется по отношению к двум другим заземлённым жилам. В итоге получается три замера. Кроме того, можно проверять сопротивление сначала между каждыми двумя жилами, а затем между каждой жилой и «землёй». В этом случае получается шесть замеров.

В случае с четырёхжильным или пятижильным электрическим кабелем (проводом) методика замеров аналогична измерениям трёхжильного проводника, только количество замеров будет несколько больше.

Для того, чтобы измеряемое значение соответствовало действительности, замер выполняется в течение одной минуты. Величина сопротивления изоляции электрического проводника должна быть в пределах государственных норм. Обычно для низковольтных кабелей 220В или 380В она составляет 0,5МОм или 1МОм.

Как пользоваться мегаомметром (видео)

Пользоваться мегаомметром очень удобно для прозвонки различных двигателей или измерения напряжения. Можно сделать самодельный агрегат и использовать его для работы. Но все же будет лучше, если ремонт и непосредственно процесс замера, вы доверите специалистам.

Качество изоляционных конструкций, работающих в неблагоприятных условиях, в значительной мере определяется степенью надежности электрооборудования. Используемая изоляция подвергается множественным воздействиям, таким как нагрев, механическое воздействие, действие окружающей среды и т.д.

Таким образом, под влиянием таких факторов происходят изменения свойств диэлектриков, а соответственно и изменения технических характеристик изоляционных конструкций. Такие перемены бывают обратимые и необратимые. Во втором случае, благодаря длительной эксплуатации электроустановок, изменяются физические свойства и химическая структура материалов. Процесс изменения во времени называют старением, ухудшение свойств — износом.

Как правило, измерение сопротивления изоляции электрооборудования происходит относительно других проводов заземленных. При неудовлетворительном результате производятся замеры сопротивлений изоляций относительно земли каждого из проводов, при этом другие провода не заземлены.

Для трехпроводной линии выполняют шесть замеров сопротивления, для четырех проводных — четыре и десять, для пяти проводных — пять и пятнадцать. При сопротивлении изоляции меньше 1 мОм, проводятся испытания с переменным током 1 kV напряжения промышленной частоты.

В процессе изготовления и во время транспортировки на электропроводку постоянно воздействуют различные механические, химические и температурные факторы. Следовательно, наступает преждевременное старение. К сожалению, нарушая технологию, гарантия качества изоляции проводников, можно определить после замера изоляционного сопротивления.

Порой потребление электроэнергии превышает допустимые нормы технических характеристик электропроводки, и проводники перегреваются, в результате чего возникает преждевременное старение и износ. Как последствие, может возникнуть короткое замыкание и пожар.

Таким образом, систематическое измерение изоляционного сопротивления — гарантия избежать утечки электроэнергии, возгорания или поражения электротоком.

Замер изоляционного сопротивления проводится так:

  1. Визуальный осмотр (на предмет внешних повреждений);
  2. Непосредственно определение сопротивление изоляции мегомметром (строго проводится при обесточенном электрооборудовании);
  3. В процессе участвуют: проводники фазные, фазные и нулевые рабочие проводники, фазные и нулевые защитные проводники, проводники нулевые защитный и рабочий. Соответственно число проводов в линии определяет количество измерений, при этом минимальное изоляционное сопротивление составляет 0,5 мОм. При более низком сопротивлении изоляции, линия кабеля делится на отрезки и определяется отдельно.

Измерение сопротивления изоляции электродвигателя. Замеры, определяющие степени изоляционного сопротивления рекомендуется производить при монтажных работах, при пуско-наладке, для профилактики, а также целях определения степени изношенности.

Накануне проведения испытания нужна проверка:

  1. Паспорта двигателя, соответствия сервисного обслуживания;
  2. Укомплектованности двигателя;
  3. Степени целостности изоляции, видимых соединений участков обмотки и отводов (качества крепежей и распорок фронтальных участков обмотки) электрического оборудования;
  4. Состояния колец контакта и щеток двигателя с ротором фазным;
  5. Корпусного заземления двигателя.

Иначе говоря, нужно тщательно электродвигатель (оборудование) и визуально оценить изоляционное состояние на предмет необходимости просушивания обмотки двигателя. Измерение сопротивления изоляции проводится при помощи повышенного напряжения тока переменного.

В случае с низким изоляционным сопротивлением все замеры проводятся после просушивания. Все рабочие показатели указываются в сопроводительной технической документации производителя. Данные, полученные при такой процедуре, фиксируются в актах о проведении испытания и должны быть подписаны руководителем технической службы или главным инженером.

Сопротивление изоляции кабеля. Норма

Наша электролаборатория оказывает услуги проведения различных электротехнических измерений. Мы располагаем штатом квалифицированных специалистов и полным набором испытательного и измерительного оборудования. Наша аккредитация и сертификаты позволяют выдавать протоколы и акты установленного образца. Мы оперативно откликаемся на обращения наших клиентов, быстро и качественно выполняем заказы.

Существует множество ситуаций, когда требуется произвести измерение сопротивления изоляции кабельных линий. Одно дело, когда такие измерения проводятся собственным электротехническим персоналом предприятия или организации для того, чтобы убедиться в исправности кабельной линии. Совсем другое дело, когда на выходе должен появиться юридический документ, именуемый «протоколом проверки сопротивления изоляции проводов и кабелей».

Такой документ будет иметь юридическую силу только в случае, если его выдала электролаборатория прошедшая аккредитацию в уполномоченном государственном органе (Росаккредитация) и имеющая соответствующий аттестат. Например, такой протокол может затребовать энергоснабжающая организация в случае аварийного отключения кабельной линии перед повторным её включением.

Ещё протоколы предоставляются в органы Энергонадзора для приёмки в эксплуатацию вновь смонтированных или реконструируемых электроустановок, при подключении их к электросети энергоснабжающей организации. Требования ПТЭЭП предписывают производить замеры изоляции не реже одного раза в год. Такие протоколы должны хранится у лица ответственного за электрохозяйство. К ним очень «неравнодушны» пожарные инспектора.

Меры безопасности при проведении измерений

Организационные и технических мероприятия, обеспечивающие безопасность персонала во время измерений и испытаний кабельных линий, регламентируются «Правилами по охране труда» Эти правила определяют порядок оформления работ, состав бригады и квалификацию персонала производящего замеры и испытания в зависимости от категории электроустановки. Стоит заметить, что даже измерение изоляции кабельных линий и электропроводки 0.4 кВ с помощью мегомметра должны производить специалисты прошедшие обучение и имеющие соответствующую группу допуска по электробезопасности.

Нормы сопротивления изоляции

Параметры изоляции кабелей определяются требованиями пункта 1.8.40 ПУЭ (Правил устройства электроустановок). Для силовых кабелей, осветительных электропроводок, цепей вторичной коммутации до 1000 В. нормой являются 0.5 Мом и выше для каждой жилы кабеля между фазными проводами, по отношению к нулевому проводу и проводу защитного заземления.

Для кабельных линий напряжением выше 1000 В сопротивление не нормируется. Для определения соответствия нормам ПУЭ применяется другой параметр – ток утечки, измеряемый в миллиамперах. Испытания проводят на основе методик, утверждённых Ростехнадзором. Величина испытательного напряжения, величина допустимого тока утечки зависят от рабочего напряжения кабеля и типа его изоляции. Кратность испытательного напряжения зависит от рода тока испытательной установки. С помощью мегомметра можно только оценить качество изоляции высоковольтного кабеля.

Электрики в повседневной практике считают нормальной изоляцию в 1 Мом на каждый киловольт рабочего напряжения. Так сопротивление изоляции кабеля 10 кВ можно считать нормальным, если оно превышает 10 Мом измеренных мегомметром на 2.5 кВ.

Вам нужно провести измерения? Обращайтесь к нам!

Наша электролаборатория аккредитована и имеет свидетельство регистрации электролаборатории в Ростехнадзоре в установленном порядке и проводит все необходимые электротехнические измерения. Например, такие, как измерение сопротивления изоляции электропроводок и кабелей, измерение сопротивления цепи фаза-ноль, измерения связанные с сетью заземления.

Мы оказываем услуги клиентам, расположенным в Москве и Подмосковье. Сфера наших возможностей не ограничивается только измерениями. Еще мы занимаемся проектированием электроустановок и их ремонтом. Обо всем этом вы можете узнать на нашем сайте. Связавшись с нами, вы получите компетентные консультации по всем интересующим вас вопросам.

Силовые кабельные линии

1.8.37. Силовые кабельные линии напряжением до 1 кВ испытываются по п. 1, 2, 7, 13, напряжением выше 1 кВ и до 35 кВ — по п. 1-3, 6, 7, 11, 13, напряжением 110 кВ и выше – в полном объеме, предусмотренном настоящим параграфом.

1. Проверка целости и фазировки жил кабеля. Проверяются целость и совпадение обозначений фаз подключаемых жил кабеля.

2. Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.

3. Испытание повышенным напряжением выпрямленного тока. Силовые кабели выше 1 кВ испытываются повышенным напряжением выпрямленного тока.

Значения испытательного напряжения и длительность приложения нормированного испытательного напряжения приведены в табл. 1.8.42.

Таблица 1.8.42. Испытательное напряжение выпрямленного тока для силовых кабелей.

Изоляция и марка кабеля

Испытательное напряжение, кВ, для кабелей на рабочее напряжение, кВ

Продолжительность испытания, мин

2

3

6

10

20

35

110

220

Бумажная

12

18

36

60

100

175

300

450

10

Резиновая марок ГТШ, КШЭ, КШВГ, КШВГЛ, КШБГД

6

12

5

Пластмассовая

15

10

В процессе испытания повышенным напряжением выпрямленного тока обращается внимание на характер изменения тока утечки. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения

Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения.

4. Испытание повышенным напряжением промышленной частоты. Допускается производить для линий 110-220 кВ взамен испытания выпрямленным током; значение испытательного напряжения: для линий 110 кВ-220 кВ (130 кВ по отношению к земле); для линий 220 кВ-500 кВ (288 кВ по отношению к земле). Продолжительность приложения нормированного испытательного напряжения 5 мин.

5. Определение активного сопротивления жил. Производится для линий 35 кВ и выше. Активное сопротивление жил кабельной линии постоянному току, приведенное к 1 мм2 сечения, 1 м длины и температуре +20 °C, должно быть не более 0,0179 Ом для медной жилы и не более 0,0294 Ом для алюминиевой жилы.

6. Определение электрической рабочей емкости жил. Производится для линий 35 кВ и выше. Измеренная емкость, приведенная к удельным величинам, не должна отличаться от результатов заводских испытаний более чем на 5%.

7. Измерение распределения тока по одножильным кабелям. Неравномерность в распределении токов на кабелях не должна быть более 10%.

8. Проверка защиты от блуждающих токов. Производится проверка действия установленных катодных защит.

9. Испытание на наличие нерастворенного воздуха (пропиточное испытание). Производится для маслонаполненных кабельных линий 110-220 кВ. Содержание нерастворенного воздуха в масле должно быть не более 0,1%.

10. Испытание подпитывающих агрегатов и автоматического подогрева концевых муфт. Производится для маслонаполненных кабельных линий 110-220 кВ.

Таблица 1.8.43. Предельные значения показателей качества масла кабельных линий.

Показатель масла

Нормы для масла марки

С-220

МН-3

Электрическая прочность, кВ/см, не менее

180

180

Тангенс угла диэлектрических потерь при +100°С, %, не более

0,005

0,008

Кислотное число, мг КОН на 1 г масла, не более

0,02

0,02

Степень дегазации, %, не более

0,5

1,0

11. Контроль состояния антикоррозийного покрытия. Производится для стального трубопровода маслонаполненных кабельных линий 110-220 кВ.

12. Проверка характеристик масла. Производится для маслонаполненных кабельных линий 110-220 кВ. Отбор проб следует производить из всех элементов линии. Пробы масла марки С-220, отбираемые через 3 сут. после заливки, должны удовлетворять требованиям табл. 1.8.43.

Пробы масла марки МН-3, отбираемые из линий низкого и высокого давления через 5 сут после заливки, должны удовлетворять требованиям табл. 1.8.43.

13. Измерение сопротивления заземления. Производится на линиях всех напряжений для концевых заделок, а на линиях 110-220 кВ, кроме того, для металлических конструкций кабельных колодцев и подпиточных пунктов.

Требования и методика испытания кабелей связи

Измерение параметров кабелей связи (изоляции) — процесс несложный, но требует соблюдения установленных нормативной документацией (в частности — ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:

Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков).
. Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем.
. Нельзя проводить испытания воздушных линий связи в грозу.
. Испытываемые проводники (жилы) должны быть заземлены.
. Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»).
. Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра.
. Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.
. Все прочие требования к безопасности приведены в ГОСТ 2990-78.

Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:

Жила «1» подключается к входу «R-» (вход также может быть обозначен, как «-», «Земля» или «З») мегаомметра.
. Жила «1» и вход «R-» мегаомметра заземляются.
. Жила «2» подключается к входу-источнику напряжения «R+» («+», «Rx», «Линия» или «Л») мегаомметра.

Условная рабочая схема:

Процесс проведения измерений:

Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В).
. После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.
. При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус — зависит от характеристик мегаомметра).

На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:

R_(20)=K*R_1, где:

R_(20)- сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);

R_1 — сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;

K — «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).

Например, возьмем кабель с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:

R_(20)=0,48*12500=5520 (сопротивление при нормальных условиях)

По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:

R=R_(20)* l, где:

R_(20)- сопротивление изоляции при +20 °С;

l — длина испытываемого кабеля;

Возьмем ту же марку кабеля длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях — 5000 МОм. Отсюда:

R=6500* 1,5=7500 МОм

Компания «Кабель.РФ» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку по выгодным ценам.

Для чего проводят замер сопротивления изоляции?

Вопрос распространенный и весьма расширенный. На самом деле, существуют особенные цели для проведения данной операции. В первую очередь, замер сопротивления изоляции проводов принято выполнять для получения данных о работоспособности оборудования, электрической сети и отдельных ее составляющих. Полученный результат разрешает все подозрения о состоянии эксплуатации определенных приборов также выдает характеристику току утечки, которая происходит при включенном напряжении.

Следующее условие, которое требует проведения измерений позволит предотвратить человека от получения электротравм

Обращаем внимание новичков, что измерение принято проводить только в случаях окончательного монтажа цепи и завершающих ремонтных штрихов

Методика проведения испытаний

Прежде чем осуществить измерение сопротивления изоляции проводов и кабелей следует выполнить следующие действия:

  1. Проверить состояние прибора. Для этого следует проверить направление стрелки при разомкнутых (стрелка показывает на бесконечность) и сомкнутых (показывает на ноль) проводах.
  2. Проверить отсутствие питания. Провод не должен быть под напряжением.
  3. Заземлить кабель, который будут испытывать.

Измерение отличается в зависимости от классификации силовых линий, но эти отличия незначительные. Например, контрольный кабель имеет свою отличительную особенность: для того, чтобы измерить сопротивление, провод не нужно отсоединять от схемы.

Изоляция приборов проверяется с помощью специальных устройств, к которым во время испытаний прикасаться запрещено. Показания следует снимать только тогда, когда стрелка прибора примет устойчивое положение. Измерение осуществляется в течение одной минуты. С электронными приборами дела обстоят быстрее и результат выводится сразу на экран. Все данные следует записать в блокнот.

После того как все данные были получены, необходимо составить акт и протокол испытания. В первую очередь следует сравнить полученные значения с существующими нормами и требованиями. Затем сделать вывод: пригоден ли кабель для дальнейшей эксплуатации. И только после этого составить протокол измерения сопротивления изоляции кабеля. Образец протокола предоставлен на фото ниже:

Более подробно о том, как пользоваться мегаомметром, вы можете узнать из нашей статьи!

Замеры сопротивления изоляции, их периодичность

Электробезопасность для любого помещения является гарантом качественной работы и долговечности всех электроприборов. Кроме того, соблюдая такие предусмотренные нормами и правилами электробезопасности условия эксплуатации проводки, можно обезопасить себя, не только от пожара, но и обычного удара током. То есть, если сопротивление изоляции кабеля – норма, то и безопасность жильцов или персонала в этом помещении будет высокой.

Для чего нужно проводить эти замеры, и с какой периодичностью? Замеры сопротивления проводятся в любых помещениях, особенно, если проводка была смонтирована давно. Это относится и к предприятиям, к жилым квартирам и домам. Лучше всего, если замеры сопротивления изоляции выполняются регулярно, обеспечивая бесперебойную работу всех электроприборов и оборудования.

Согласно статистическим данным, порядка 20% пожаров в жилых домах и на производстве происходит из-за некачественной или повреждённой проводки. Не менее 15% случаев удара током или выхода из строя любого электроприбора также относятся к нарушению изоляции.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий