Межповерочный интервал трансформаторов тока

Поломки трансформаторов

Строчные устройства могут выходить из строя. Работа телевизора, монитора в этом случае будет невозможна. Существует много разновидностей моделей строчных агрегатов. Замена вызывает трудности. Стоимость аналоговых приборов высока. Некоторые телевизоры, мониторы требуют больших затрат при ремонте. Необходимые детали в некоторых случаях тяжело найти.

Чтобы приобрести только ту часть схемы, которая вышла из строя, произвести ее быструю замену, нужно проверить строчный трансформатор. Телевизору проще будет выполнить адекватный ремонт. В первую очередь проверьте, нет ли следующих неисправностей:

  • обрыв контура;
  • пробой герметичного корпуса;
  • замыкание между витков;
  • обрыв потенциометра.

Сетевой понижающий трансформатор,определение обмоток,безопасное подключение к сети 220 вольтСетевой понижающий трансформатор,определение обмоток,безопасное подключение к сети 220 вольт

Первые две поломки выявить достаточно просто. Это определяется визуально. Для выполнения замены неисправных элементов материал приобретается практически в любом магазине радиотехники. Сложнее определить замыкание в контурах обмоток. Трансформатором в этом случае производится звук, напоминающий писк.

Но не всегда требуется ремонт при появлении такого сигнала. ТДКС иногда пищит из-за высокого напряжения на вторичном контуре. Проверяете, что вызывает звук, при помощи специального прибора. Если оборудования нет, нужно искать другие варианты.

Как проверить импульсный трансформатор с помощью осциллографа

Если взять импульсный трансформатор питания, например разделительный трансформатор строчной развертки, подключить его согласно рис. 1, подать на I обмотку U = 5 — 10В F = 10 — 100 кГц синусоиду через С = 0.1 — 1.0 мкФ, то на II обмотке с помощью осциллографа наблюдаем форму выходного напряжения.

Рис. 1. Схема подключения для способа 1

«Прогнав» на частотах от 10 кГц до 100 кГц генератор ЗЧ, нужно, чтобы на каком-то участке Вы получили чистую синусоиду (рис. 2 слева) без выбросов и «горбов» (рис. 2 в центре). Наличие эпюр во всем диапазоне (рис. 2. справа) говорит о межвитковых замыканиях в обмотках и т.д. и т.п.

Данная методика с определенной степенью вероятности позволяет отбраковывать трансформаторы питания, различные разделительные трансформаторы, частично строчные трансформаторы

Важно лишь подобрать частотный диапазон

Рис. 2. Формы наблюдаемых сигналов

Способ 2

Необходимое оборудование:

  • Генератор НЧ,
  • Осциллограф

Принцип работы:

Принцип работы основан на явлении резонанса. Увеличение (от 2-х раз и выше) амплитуды колебаний с генератора НЧ указывает, что частота внешнего генератора соответствует частоте внутренних колебаний LC-контура.

Для проверки закоротите обмотку II трансформатора. Колебания в контуре LC исчезнут. Из этого следует, что короткозамкнутые витки срывают резонансные явления в LC контуре, чего мы и добивались.

Наличие короткозамкнутых витков в катушке также приведет к невозможности наблюдать резонансные явления в LC контуре.

Добавим, что для проверки импульсных трансформаторов блоков питания конденсатор С имел номинал 0,01мкФ-1 мкФ, Частота генерации подбирается опытным путем.

Способ 3

Необходимое оборудование: Генератор НЧ, Осциллограф.

Принцип работы:

Принцип работы тот же, что и во втором случае, только используется вариант последовательного колебательного контура.

Рис. 4. Схема подключения для способа 3

Отсутствие (срыв) колебаний (достаточно резкий) при изменении частоты генератора НЧ указывает на резонанс контура LC. Все остальное, как и во втором способе, не приводит к резкому срыву колебаний на контрольном устройстве (осциллограф, милливольтметр переменного тока).

Для проверки на работоспособность импульсного трансформатора можно использовать как аналоговый мультиметр, так и цифровой. Применение второго предпочтительней из-за удобства его использования. Суть подготовки цифрового тестера сводится к проверке элемента питания и измерительных проводов. В то же время прибор стрелочного типа в дополнение к этому ещё дополнительно подстраивается.

Настройка аналогового прибора происходит путём переключения режима работы в область измерения минимально возможного сопротивления. После в гнёзда тестера вставляются два провода и перемыкаются накоротко. Специальной построечной ручкой положение стрелки устанавливается напротив нуля. Если же стрелку выставить в ноль не удаётся, то это свидетельствует о разрядившихся элементах питания, которые необходимо будет заменить

Как проверить трансформатор мультимтером правильно

Не вникая в подробности, которые здесь ни к чему, заметим, что ЭДС, как и напряжение, определяется числом витков обмотки при прочих равных параметрах

Чем больше витков, тем выше значение ЭДС (или напряжения) обмотки. В большинстве случаев мы имеем дело с понижающими трансформаторами. На их первичную обмотку подают высокое напряжение 220 В (230 В по-новому ГОСТу), а со вторичной обмотки снимается низкое напряжение: 9 В, 12 В, 24 В и т.д. Соответственно и число витков также будет разным. В первом случае оно выше, а во втором ниже.

Также, не приводя обоснований, заметим, что мощности обоих обмоток всегда равны:

А так как мощность – это произведение тока i на напряжение u

S = u∙i,

Откуда получаем простое уравнение:

Последнее выражение имеет для нас большой практический интерес, который заключается в следующем. Для сохранения баланса мощностей первичной и вторичной обмоток при увеличении напряжения нужно снижать ток. Поэтому в обмотке с большим напряжением протекает меньший ток и наоборот. Проще говоря, поскольку в первичной обмотке напряжение выше, чем во вторичной, то ток в ней меньше, чем во вторичной. При этом сохраняется пропорция. Например, если напряжение выше в 10 раз, то ток ниже в те же 10 раз.

Отношение числа витков или отношение ЭДС первичной обмотки ко вторичной называют коэффициентом трансформации:

Из приведенного выше, мы можем сделать важнейший вывод, который поможет нам понять, как проверить трансформатор мультиметром.

Вывод заключается в следующем. Поскольку первичная обмотка трансформатора рассчитана на более высокое напряжение (220 В, 230 В) относительно вторичной (12 В, 24 В и т.д.), то она мотается большим числом витков. Но при этом в ней протекает меньший ток, поэтому применяется более тонкий провод большей длины. Отсюда следует, что первичная обмотка понижающего трансформатора обладает большим сопротивлением, чем вторичная.

Поэтому с помощью мультиметра уже можно определить, какие выводы являются выводами первичной обмотки, а какие вторичной, путем измерения и сравнения их сопротивлений.

Как определить обмотки трансформатора

Измерив сопротивление обмоток, мы узнали, как из них рассчитана на более высокое напряжение. Но мы еще не знаем, можно ли на нее подавать 220 В. Ведь более высокое напряжение еще на означает 220 В. Иногда попадаются трансформаторы, рассчитаны на работу от мети переменного тока 110 В и 127 В или меньшее значение. Поэтому если такой трансформатор включить в сеть 220 В, он попросту сгорит.

В таком случае опытные электрики поступают так. Берут лампу накаливания и последовательно соединяют с предполагаемой первичной обмоткой. Далее один вывод обмотки и вывод лампочки подключают в сеть 220 В. Если трансформатор рассчитан на 220 В, то лампа не засветится, так как приложенное напряжение 220 В полностью уравновешивается ЭДС самоиндукции обмотки. ЭДС и приложенное напряжение направлены встречно. Поэтому через лампу накаливания будет протекать небольшой ток – ток холостого хода трансформатора. Величина этого тока недостаточна для разогрева нити лампы накаливания. По этой причине лампа не светится.

Если лампа засветится даже в полнакала, то на такой трансформатор нельзя подавать 220 В; он не рассчитан на такое напряжение.

Очень часто можно встретить трансформатор, имеющий много выводов. Это значит, что он имеет несколько вторичных обмоток. Узнать напряжение каждой из них можно узнать следующим образом.

Раньше мы рассмотрели, как проверить трансформатор мультиметром и определить по отношению сопротивления первичную обмотку. Также с помощью лампы накаливания можно убедится в том, что она рассчитана на 220 В (230 В).

Теперь дело осталось за малым. Подаем на первичную обмотку 220 В и выполняем измерение переменного напряжения на выводах оставшихся обмоток с помощью мультиметра.

Соединение обмоток трансформатора

Вторичные обмотки трансформатора соединяют последовательно и реже параллельно. При последовательном соединении обмотки могут включаться согласно и встречно.

Согласное соединение обмоток трансформатора применяют с целью получения большей величины напряжения, чем дает одна из обмоток. При согласном соединении начало одной обмотки, обозначаемое на чертежах электрических схем точкой или крестиком, соединяется с концом предыдущей. Здесь следует помнить, что максимальный ток всех соединенных обмоток не должен превышать значения той, которая рассчитана на наименьший ток.

Импульсный трансформатор в чем основные отличие от обычного

Основные отличия:

  1. Размер — импульсного трансформатора обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.

Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Классификация и выбор

Подключение счетчика через трансформаторы тока

По конструкции и исполнению трансформаторы тока используемые в измерительных цепях делятся на:

  • Встроенные. Первичная обмотка у них служит элементом для другого устройства. Они устанавливаются на вводах и имеют только вторичную обмотку. Функцию первичной обмотки выполняет другой токоведущий элемент линейного ввода. Конструктивно это магнитопровод кольцевого типа, а его обмотки имеют отпайки, соответствующие разным коэффициентам трансформации;
  • Опорные. Предназначенные для монтажа и установки на опорной ровной плоскости;
  • Проходной. По своей структуре это тот же встроенный, только вот находиться он может снаружи другого электрического устройства;
  • Шинный. Первичной обмоткой служит одна или несколько шин включенных в одну фазу. Их изоляция рассчитывается с запасом, что бы он мог выдержать даже многократное увеличение напряжения;
  • Втулочный. Это одновременно и проходной, и шинный трансформатор тока;
  • Разъемный. Его магнитопровод состоит из разборных элементов;
  • Переносной. Это устройство электрики называют токоизмерительные клещи. Они являются переносным и удобным измерительным трансформатором тока, у которого магнитная система размыкается и замыкается уже вокруг того провода в котором и нужно измерять значение тока.

При выборе трансформатора тока стоит знать главное, что при протекании по первичной обмотке номинального тока в его вторичной обмотке, которая замкнута на измерительный прибор, будет обязательно 5 А. То есть если нужно проводить измерение токовых цепей где его расчётная рабочая величина будет примерно равна 200 А. Значит, при установке измерительного трансформатора 200/5, прибор будет постоянно показывать верхние приделы измерения, это неудобно. Нужно чтобы рабочие пределы были примерно в середине шкалы, поэтому в этом конкретном случае нужно выбирать трансформатор тока 400/5. Это значит что при 200 А номинального тока оборудования на вторичной обмотке будет 2,5 А и прибор будет показывать эту величину с запасом в сторону увеличения или уменьшения. То есть и при изменениях в контролируемой цепи будет видно насколько данное электрооборудование вышло из нормального режима работы.

Вот основные величины, на которые стоит обратить внимание при выборе измерительных трансформаторов тока:

  1. Номинальное и максимальное напряжение в первичной обмотке;
  2. Номинальное значение первичного тока;
  3. Частота переменного тока;
  4. Класс точности, для цепей измерения и защиты он разный.

Проверка с помощью мультиметра дома

В современной технике трансформаторы применяют довольно часто. Эти приборы используются, чтобы увеличивать или уменьшать параметры переменного электрического тока. Трансформатор состоит из входной и нескольких (или хотя бы одной) выходных обмоток на магнитном сердечнике. Это его основные компоненты.

Случается, что прибор выходит из строя и возникает необходимость в его ремонте или замене. Установить, исправен ли трансформатор, можно при помощи домашнего мультиметра собственными силами. Итак, как проверить трансформатор мультиметром в домашних условиях, рассмотрим ниже.

Основы и принцип работы

Сам по себе трансформатор относится к элементарным устройствам, а принцип его действия основан на двустороннем преобразовании возбуждаемого магнитного поля. Что характерно, индуцировать магнитное поле можно исключительно при помощи переменного тока.

Если приходится работать с постоянным, вначале его надо преобразовывать. На сердечник устройства намотана первичная обмотка, на которую и подается внешнее переменное напряжение с определенными характеристиками. Следом идут она или несколько вторичных обмоток, в которых индуцируется переменное напряжение. Коэффициент передачи зависит от разницы в количестве витков и свойств сердечника.

Разновидности

Сегодня на рынке можно найти множество разновидностей трансформатора. В зависимости от выбранной производителем конструкции могут использоваться разнообразные материалы. Что касается формы, она выбирается исключительно из удобства размещения устройства в корпусе электроприбора. На расчетную мощность влияет лишь конфигурация и материал сердечника.

При этом направление витков ни на что не влияет – обмотки наматываются как навстречу, так и друг от друга. Единственным исключением является идентичный выбор направления в случае, если используется несколько вторичных обмоток. Для проверки подобного устройства достаточно обычного мультиметра, который и будет использоваться, как тестер трансформаторов тока. Никаких специальных приборов не потребуется.

Порядок проверки

Проверка трансформатора начинается с определения обмоток. Сделать это можно при помощи маркировки на устройстве. Должны быть указаны номера выводов, а также обозначения их типа, что позволяет установить больше информации по справочникам. В отдельных случаях имеются даже поясняющие рисунки. Если же трансформатор установлен в какой-то электронный прибор, то прояснить ситуацию сможет принципиальная электронная схема этого прибора, а также подробная спецификация.

Итак, когда все выводы определены, приходит черед тестера. С его помощью можно установить две наиболее частые неисправности – замыкание (на корпус или соседнюю обмотку) и обрыв обмотки. В последнем случае в режиме омметра (измерения сопротивления) перезваниваются все обмотки по очереди. Если какое-то из измерений показывает единицу, то есть бесконечное сопротивление, то налицо обрыв.

Здесь имеется важный нюанс. Проверять лучше на аналоговом приборе, так как цифровой может выдавать искаженные показания из-за высокой индукции, что особенно характерно для обмоток с большим числом витков.

Когда ведется проверка замыкания на корпус, один из щупов подсоединяют к выводу обмотки, в то время как вторым позванивают выводы всех прочих обмоток и самого корпуса. Для проверки последнего потребуется предварительно зачистить место контакта от лака и краски.

Порядок проверки трансформатора мультиметром.

Инструкции для тестирования тороидального трансформатора

Тороидальный трансформатор представляет собой высокоэффективный трансформатор, который легче и меньше, чем альтернативные трансформаторы такой же мощности. Тороидальный трансформатор — это плотно обернутые полоски стали в сердцевине, также он состоит из мотка проволоки, который свернут вокруг сердечника. Этот моток называется первичная катушка, а также есть вторая катушка проволоки, которая тоже свернута вокруг сердечника и называется вторичная обмотка.

Проще говоря, электричество проходит через первичную обмотку тороидального трансформатора, тем самым создавая магнитные поля, которые проходят через вторую катушку для получения выходного напряжения.

Трансформаторы используются для повышения или понижения выходного напряжения, тем самым увеличивая или уменьшая напряжение. Для проведения тестирования состояния трансформатора, существует определенный алгоритм действий:

  1. Первый шаг заключается в том, что трансформатор необходимо визуально осмотреть и проверить, нет ли от него запаха.
  2. Перегрев может привести к неисправности трансформатора, если есть следы ожогов или внешняя часть обмотки видна снаружи, трансформатор должен быть заменен и нет никакой необходимости для дальнейших испытаний, которые будут проводиться.
  3. Точно так же, запах гари является свидетельством того, что трансформатор перегревается. Если никаких дополнительных повреждений не видно за исключением запаха, дальнейшие испытания могут быть проведены, чтобы определить, является ли трансформатор в рабочем состоянии или нет.
  4. Информация о входном и выходном напряжении, как правило, четко обозначена на трансформаторе, но самым безопасным вариантом является получение схемы цепи от производителя продукта.

Напряжение, которое подается на первичную обмотку, должно быть четко указано на схеме цепи и корпуса трансформатора. Аналогичным образом, выходное напряжение, подаваемое на вторичной обмотке должно быть четко указано на схеме цепи и корпуса трансформатора. Вы должны знать входное и выходное напряжения для того, чтобы проверить, правильно ли работает трансформатор.

Трансформатор не способен преобразовывать переменное напряжение, в напряжение постоянного тока. Для преобразования напряжения переменного тока используются диоды и конденсаторы. Схема цепи покажет, как выходное напряжение трансформатора преобразуется из переменного тока, в напряжение постоянного тока.

Вам потребуется эта информация, чтобы определить, следует ли завершить измерения, проводимые с помощью мультиметра тестера в режиме переменного тока или в режиме постоянного тока. Начните проведение теста путем подключения питания и коммутации к изделию.

Как проверить тороидальный трансформатор.

Переключите цифровой мультиметр тестер (с экраном) или аналоговый мультиметр тестер в режиме напряжения переменного тока. Для того, чтобы подтвердить правильность входного напряжения для трансформатора, проверьте напряжение, прикоснувшись красный щуп к положительному полюсу, а черный зонда к отрицательной клемме трансформатора основного входа.

Если значения напряжений слишком низкие, значит это может быть из-за проблем с трансформатором или схемами. Необходимо удалить трансформатор от входной цепи и проверить входную мощность, представленную схемой. Если показания находятся в линии, то трансформатор неисправен и если показания остаются неизменными, то схема неисправна.

Чтобы проверить выходное напряжение сначала нужно определить, является ли выходное напряжение в сети переменного или постоянного тока. Установите цифровой или аналоговый мультиметр тестер в нужный режим для проверки.

Если конденсаторы и диоды используются для преобразования выходного напряжения от сети переменного тока в напряжении постоянного тока, то слишком низкое чтение может быть вызвано неисправным трансформатором или неисправными конденсаторами и диодами. Извлеките тороидальный трансформатор с выходной схемой и проверьте выходное напряжение трансформатора. Не забудьте изменить режим мультиметра тестера к напряжению сети переменного тока.

Будет интересно Катушка тесла (Трансформатор) самостоятельная сборка собственными силами

Если выходное напряжение в линии, трансформатор работает правильно, то проблема будет тогда с конденсаторами и диодами. Тороидальные трансформаторы, которые излучают постоянный жужжащий звук скоро выйдут из строя и должны быть заменены

Всегда помните об осторожности, не касайтесь схемы при выполнении тестов. Случайный контакт со схемой, которая находится под напряжением может привести к травмам

Параметры проверки сварочного оборудования

Проверяя сварочное оборудование, инструменты и приспособления, необходимо сравнивать полученные результаты с приведенными в таблице данными:

Назначение оборудования, инструмента, приспособлений и основные проверяемые показатели Технические требования Возможные отклонения от требований
I. Оборудование для контактной стыковой и точечной сварки
1. Напряжение первичного тока 380 В — 15 В

+ 25 В

2. Рабочее давление сжатого воздуха 5,5 ати — 1 ати
3. Герметичность системы охлаждения Полная
4. Циркуляция воды в системе охлаждения Беспрепятственная, с расходом, указанным в паспорте оборудования или в Приложении 2 Указаний
5. Длина рычага механизма осадки у стыковых сварочных машин с ручным приводом При сварке арматурной стали класса A-IV не меньше 1200 мм
6. Длина рукоятки ручных зажимов стержней в электродах стыковых сварочных машин Не меньше 500 мм
7. Установка электродов а) В машинах для стыковой сварки – соосное расположение свариваемых стержней
б) В машинах для точечной сварки с двусторонним подводом тока – соосное расположение верхнего и нижнего электродов
в) То же, с односторонним подводом тока – оси смежных электродов должны располагаться в одной вертикальной плоскости параллельно друг к другу
8. Закрепление электродов Надежно, без люфтов
II. Оборудование для дуговой сварки
1. Тип источника питания током В зависимости от способа сварки в соответствии с рекомендациями Указаний
2. Подключение источника питания к сварочным постам К самостоятельным электрическим сборкам, получающим ток от отдельных фидеров ближайшего трансформаторного поста
3. Напряжение тока, питающего первичную обмотку сварочного трансформатора 380 В — 15 В

+ 25 В

4. Напряжение холостого хода генератора при полуавтоматической сварке На 2–5 В выше начального напряжения сварки
5. Прикрепление гибких токоподводящих кабелей (к трансформаторам, друг к другу и т. п.) Плотное, с помощью наконечников, скрепляемых болтами или другим способом, обеспечивающим хороший электрический контакт
6. Площадь поперечного сечения гибких токоподводящих кабелей В зависимости от сварочного тока: до 200 В – 25 мм2 2 × 10 мм2
200–300 – 50 мм2 2 × 16 мм2
300–400 – 70 мм2 2 × 25 мм2
400–600 – 95 мм2 2 × 35 мм2
7. Длина гибкого кабеля Не более 30 м
8. Изоляция гибких кабелей Без нарушений
9. Полярность дуги при сварке постоянным током В соответствии с рекомендациями Указаний
10. Чистота контактных поверхностей электродов (губок) и токоподводящего электрода стола в машинах для сварки под слоем флюса тавровых соединений элементов закладных деталей Зачистка до металлического блеска
11. Скорость подачи сварочной проволоки В зависимости от диаметров проволоки и свариваемых стержней в соответствии с требованиями Указаний
12. Равномерность подачи сварочной проволоки Подача без рывков и задержек
13. Диаметр отверстия в наконечнике держателя полуавтомата Наконечник выбирается в зависимости от диаметра сварочной проволоки. Диаметр отверстия канала наконечника должен быть больше диаметра проволоки на 0,3 мм
14. Выработка канала в наконечнике держателя Местная выработка не более 1,5 мм Наконечник может быть повернут так, чтобы проволока прижималась к невыработанному участку канала
III. Инструмент (электроды) для контактной стыковой или точечной сварки
1. Геометрические размеры В зависимости от диаметра свариваемых стержней в соответствии с требованиями Указаний При точечной сварке увеличение диаметра или размеров овальной рабочей поверхности в плане вследствие деформации электродов не должно превышать 3 мм
2. Форма электродов для точечной сварки В зависимости от вида свариваемых элементов в соответствии с рекомендациями Указаний
3. Форма гнезд в электродах для сварки арматурной стали встык В зависимости от класса арматурной стали в соответствии с рекомендациями Указаний
4. Состояние рабочих поверхностей электродов а) Чистые до металлического блеска.

б) Отсутствие вмятины – желобка в месте контакта со стержнями.

в) Форма поверхности в соответствии с требованиями Указаний

Вмятины глубиной не более 1,5 мм
IV. Приспособления для дуговой сварки швами или ванной сварки
1. Тип электрододержателя для дуговой многоэлектродной ванной сварки Специальный, в соответствии с рекомендациями Указаний Обычный
2. Тип и размеры инвентарных форм В зависимости от положения и диаметра свариваемых стержней в соответствии с рекомендациями Указаний
3. Износ инвентарных форм Зазор между цилиндрическими поверхностями стержней и форм не более 2 мм, а толщина стенок уменьшена не более чем на 0,15 d
4. Состояние внутренней (рабочей) поверхности медных форм Свободна от шлака

Дополнительные испытания

Испытания с оценкой внешней целостности корпуса трансформатора, анализа трансформаторного масла, вводов, тест встроенных трансформаторов тока силового преобразователя напряжения хоть и носят вспомогательный характер, но должны в обязательном порядке проводится при проведении приемосдаточных работ на объекте.

Кратко о каждом из них рассказывается ниже.

Трансформаторного масла

Масло в системе силового трансформатора напряжения играет роль охлаждающей, изоляционной жидкости в зависимости от типа сборки электроагрегата. К тому же со временем необходимые показатели этого жидкого вещества могут видоизменяться (масло может «стареть»), что негативно может повлиять на правильную работу всего преобразователя напряжения в целом. Поэтому при дополнительных испытаниях трансформаторное масло оценивают по нескольким параметрам:

  • Степень возможного окисления масла;
  • Критический нагрев до режима воспламенения жидкости;
  • Допуски вещества по плотности.

Данные собираются на основе тестов с помощью специальных лабораторных измерителей, которые после испытаний сравнивают с паспортными значениями и в случае серьезных отклонений полученных параметров от заданных, принимают соответствующие меры.

Вводов

Следующим вспомогательным тестом является проверка и осмотр всех контактных вводов силового оборудования на обнаружения явных неисправностей, деформаций или иных дефективных изменений, которых не было на этапе прошлого тестирования.

Ведется обязательная очистка контактных вводов от пыли, грязи и других посторонних веществ, которые могут отрицательно повлиять на работоспособность оборудования.

Встроенных ТТ

Дополнительным обязательным испытанием подвергаются встроенные трансформаторы тока на силовом преобразователе напряжения согласно «ПЭУ» по пунктам. 7.1, 7.3.2, 7.4-7.6. В основу таких тестов входят несколько проверок оборудования:

  • Измерение сопротивления изоляции встроенных ТТ – полученное значение сопротивления должно быть не менее 1 Мом;
  • Тепловизионный контроль ТТ – тест и оценка проводится согласно нормам, указанным в приложении 3 «ПУЭ»;
  • Контроль изоляции под рабочим напряжением.

Все полученные параметры, после проведения их сравнительного анализа с паспортными данным добавляются к основным результатам проверки оборудования занесением в рабочий журнал.

Включение толчком на номинальное напряжение

Перед тестированием трансформатора подобным опытом монтажные, очистные работы с силовым оборудованием должны быть полностью закончены. Первичный анализ и общие мероприятия методики тестов трансформатора должны нести минимум удовлетворительные значения и параметры для проведения включения толчком на номинал напряжения.

Суть вспомогательного испытания состоит в подключении к трансформатору дизель генератора и подача напряжения на него без нагрузки в 3-6 кратной величине толчком в присутствии рабочего персонала, который ведет оценку и анализ всех защит и механизмов силового преобразователя напряжения.

Если срабатывания защит трансформатора на отключение от сети не было, оборудование остается под напряжением на длительный период с дальнейшей его «прослушкой» и анализа работы.

По результатам тестирования полученные данные, выводы о работе силового электрооборудования заносятся в рабочий журнал испытаний.

Порядок выявления дефектов трансформатора

Для проверки неисправностей трансформатора прежде всего надо определить выводы всех его обмоток. Это можно сделать по его маркировке, где указываются номера выводов, обозначение типа (тогда можно воспользоваться справочниками), при достаточно большом размере даже есть рисунки. Если трансформатор непосредственно в каком-то электронном приборе, то все это прояснят принципиальная электрическая схема на устройство и спецификация.

Определив все выводы, мультиметром можно проверить два дефекта: обрыв обмотки и замыкание ее на корпус или другую обмотку.

Для определения обрыва надо «прозвонить» в режиме омметра по очереди каждую обмотку, отсутствие показаний («бесконечное» сопротивление) указывает на обрыв. На цифровом мультиметре могут быть недостоверные показания при проверке обмоток с большим числом витков из-за их высокой индуктивности.

Для поиска замыкания на корпус один щуп мультиметра подсоединяется к выводу обмотки, а вторым поочередно касаются выводов других обмоток (достаточно одного любого из двух) и корпуса (место контакта нужно зачистить от краски и лака). Короткого замыкания быть не должно, проверить так необходимо каждый вывод.

Российские и зарубежные аналоги станка

Полного аналога станка не присутствует, но есть схожие по выполняемым задачам. К числу таких относят JTM-949TS, FV 251M, FV 301, FV 321M, FV 361. Точный — Х5032. Схожи модели из единой серии Р.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий