Как определить сопротивление цепи

Применение метода контурных токов для расчета цепи

В соответствии с этой методикой, неизвестными величинами являются расчетные или контурные токи, предположительно протекающие во всех независимых контурах. В связи с этим, все неизвестные токи и уравнения в системе, равны количеству независимых контуров электрической цепи.

Токи ветвей в соответствии с данным методом рассчитываются следующим образом:

  • В первую очередь вычерчивается схема цепи с обозначением всех ее элементов.
  • Далее определяется расположение всех независимых контуров.
  • Направления протекания контурных токов задаются произвольно по часовой или против часовой стрелки в каждом независимом контуре. Они обозначаются с использованием цифровых или комбинированных символов.
  • В соответствии со вторым законом Кирхгофа, затрагивающего контурные токи, составляются уравнения для всех независимых контуров. В записанном равенстве направления обхода контура и контурного тока этого же контура совпадают. Необходимо учитывать и то обстоятельство, что в ветвях, расположенных рядом, протекают собственные контурные токи. Падение напряжения потребителей берется отдельно от каждого тока.
  • Следующим этапом является решение полученной системы любым удобным методом, и окончательное определение контурных токов.
  • Нужно задать направление реальных токов во всех ветвях и обозначить их отдельной маркировкой, чтобы не перепутать с контурными.
  • Далее нужно от контурных токов перейти к реальным, исходя из того, что значение реального тока конкретной ветви составляет алгебраическую сумму контурных токов, протекающих по этой ветви.

Если направление контурного тока совпадает с направлением реального тока, то при выполнении алгебраического суммирования математический знак не меняется. В противном случае значение контурного тока нужно умножить на -1.

Метод контурных токов очень часто применяется для расчетов сложных цепей. В качестве примера для приведенной схемы нужно задать следующие параметры: Е1 = 24В, Е2 = 12В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для решения этой сложной задачи составляются два уравнения, соответствующие двум независимым контурам. Направление контурных токов будет по часовой стрелке и обозначается I11 и I22. На основании второго закона Кирхгофа составляются следующие уравнения:

После решения системы получаются контурные токи со значением I11 = I22 = 3 А. Далее произвольно обозначается направление реальных токов, как I1, I2, I3. Все они имеют одинаковое направление – вверх по вертикали. После этого выполняется переход от контурных к реальным. В первой ветви имеется течение только одного контурного тока т I11. Его направление совпадает с реальным током, поэтому I1 + I11 = 3 А.

Формирование реального тока во второй ветке осуществляется за счет двух контурных токов I11 и I22. Направление тока I22 совпадает с реальным, а направление I11 будет строго противоположно реальному. Таким образом, I2 = I22 – I11 = 3 – 3 = 0 А. В третьей ветке I3 наблюдается течение лишь контурного тока I22. Его направление будет противоположным направлению реального тока, поэтому в данном случае расчеты выглядят следующим образом: I3 = -I22 = -3А.

Основным положительным качеством метода контурных токов по сравнению с вычислениями по законам Кирхгофа, является значительно меньшее количество уравнений, используемых для вычислений. Тем не менее, здесь присутствуют определенные сложности. Например, реальные токи ветвей не всегда удается определить быстро и с высокой точностью.

Метод контурных токов | Теория и задачаМетод контурных токов | Теория и задача

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Грозозащита для антенны

Электричество из земли

Розетки в ванной: выбор и правила установки

Сварка медных проводов инвертором с применением угольного и графитового электрода, и точечным методом

Закон полного тока

Постулаты Кирхгофа

Эти принципы используют для расчета сложных электрических схем. Базовые сведения о токах и напряжениях помогут уточнить контрольные параметры в отдельных узлах. С помощью этой информации корректируют характеристики отдельных функциональных компонентов. Они пригодятся для определения уровня выходного сигнала в определенных точках без применения измерительной аппаратуры.

Первый постулат

По классической формулировке сумма (алгебраическая) входящих и выходящих из одного узла токов определяется выражением:

i1 + i2 + … + in = 0.

Это соотношение справедливо для любой контрольной точки схемы, где соединяются ветви. Не имеет значения, какие именно компоненты включены в отдельные цепи:

  • реактивные;
  • пассивные;
  • источники питания в любой полярности.

Второй постулат

Это правило определяет равенство сумм напряжений и ЭДС, включенных в один контур. Для наглядности можно представить простейший пример с двумя резисторами, подключенными к источнику постоянного тока. С помощью мультиметра измеряют напряжения на выводах:

  • UR1 = 4 V;
  • UR1 = 2,5 V;
  • Uакб = 6,5 V = UR1 + UR2.

Второе правило действительно для всех замкнутых контуров, смешанных и сложных соединений. Для проверки вычислений можно суммировать последовательно разницу потенциалов контрольных точек. Если в цепи отсутствуют дополнительные генераторы (аккумуляторные батареи), получится результат, равный нулю. Выбирают направление обхода контура, соответствующее положительному току (входящему в узел). Выше показан частный случай, когда складывают результаты измерений.

К сведению. Второй постулат Кирхгофа применяют для расчета схем, подключенных к источнику питания переменного тока.

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторов R1 и R2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте. Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения

Делают расчёты для каждого такого звена, после – всей цепи целиком

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Результат первого свёртывания

Далее можно уже определить Rэкв. для участков AB, BC, CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезках AB и CD

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторам R7 и R8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Видео, демонстрирующее работу схемы

Потребляемая мощность

Для хозяина дома важно знать, сколько потребляется энергии. Это легко подсчитать по всем электроприборам. Сложив все мощности и поделив результат на 1000, получим суммарное потребление, например 10 кВт

Для бытовых электроприборов достаточно одной фазы. Однако потребление тока значительно возрастает в частном доме, где есть мощная техника. На один прибор может приходиться 4-5 кВт

Сложив все мощности и поделив результат на 1000, получим суммарное потребление, например 10 кВт. Для бытовых электроприборов достаточно одной фазы. Однако потребление тока значительно возрастает в частном доме, где есть мощная техника. На один прибор может приходиться 4-5 кВт.

Важно спланировать потребляемую мощность трехфазной сети на этапе ее проектирования, чтобы обеспечить симметрию по напряжениям и токам. В дом заходит четырехжильный провод на три фазы и нейтраль. Напряжение электрической сети составляет Между фазами и нулевым проводом подключаются электроприборы на 220 В

Кроме того, может быть еще трехфазная нагрузка

Напряжение электрической сети составляет Между фазами и нулевым проводом подключаются электроприборы на 220 В. Кроме того, может быть еще трехфазная нагрузка

В дом заходит четырехжильный провод на три фазы и нейтраль. Напряжение электрической сети составляет Между фазами и нулевым проводом подключаются электроприборы на 220 В. Кроме того, может быть еще трехфазная нагрузка.

Расчет мощности трехфазной сети производится по частям. Сначала целесообразно рассчитать чисто трехфазные нагрузки, например электрический котел на 15 кВт и асинхронный электродвигатель на 3 кВт. Суммарная мощность составит P = 15 + 3 = 18 кВт. В фазном проводе при этом протекает ток I = Px1000/(√3xUxcosϕ). Для бытовых электросетей cosϕ = 0,95. Подставив в формулу числовые значения, получим величину тока I = 28,79 А.

Теперь следует определить однофазные нагрузки. Пусть для фаз они составят P A = 1,9 кВт, P B = 1,8 кВт, P C = 2,2 кВт. Смешанная нагрузка определяется суммированием и составляет 23,9 кВт. Максимальный ток будет I = 10,53 А (фаза С). Сложив его с током от трехфазной нагрузки, получим I C = 39,32 А. Токи на остальных фазах составят I B = 37,4 кВт, I A = 37,88 А.

В расчетах мощности трехфазной сети удобно пользоваться таблицами мощности с учетом типа подключения.

По ним удобно подбирать защитные автоматы и определять сечения проводки.

Расчет параллельного соединения резисторов

Для лучшего понимания процессов следует подробно рассмотреть представленную ниже схему. В контрольных точках (разрывах цепей) условно показаны измерительные приборы. Аналогичным образом подключают мультиметр для уточнения результатов теоретических вычислений. Чтобы не усложнять объяснение, использован «идеальный» источник постоянного тока. Его сопротивление в расчетах не учитывается. Аналогичным образом игнорированы емкостные (индуктивные) реактивные составляющие, которые способны создать незначительные нелинейные искажения.

Электрическая схема с пояснительными формулами

В рассматриваемом примере ток (I) идет по замкнутому контуру от положительного к отрицательному электроду АКБ. На входе параллельного участка (точка «а») он разделяется на I1 (I2), проходящие через разные ветки с электрическими сопротивлениями R1 (R2), соответственно. В точке «б» происходит объединение токов.

Если присоединить клеммы мультиметра к положительной клемме аккумулятора и входной точке, а после повторить измерение на выходе, будут определены одинаковые значения. Однако в отдельных ветвях токи будут отличаться, если применены разные сопротивления (R1≠R2). Сложение показаний подтвердит равенство суммы полученным ранее результатам измерений на входе (выходе). Промежуточный вывод, подтвержденный экспериментально:

Iобщ = I1 + I2.

Далее можно проверить разницу потенциалов на клеммах источника питания (Uип), в контрольных точках (Uаб) и на отдельных резисторах (UR1 и UR2). Несложно убедиться в том, что Uип = Uаб = UR1 = UR2. Для отдельных ветвей будут действительны пропорции:

  • UR1 =  I1 * R1;
  • UR2 = I2 * R2.

Однако с учетом результатов измерений можно приравнять обе стороны выражений:

UR1 = UR2 = I1 * R1 = I2 * R2.

Простым преобразованием получают соотношение:

I1/I2 = R2/R1.

На основе этой формулы надо сделать следующий важный вывод: токи обратно пропорциональны электрическим сопротивлениям в соответствующих ветвях параллельной цепи.

Пример с исходными данными:

  • батарейка Uип = 6V;
  • сопротивление параллельных резисторов: R1 = 50 Ом, R2 = 150 Ом.

Расчет:

  • найти ток в первой ветке можно по формуле: I1 = Uип / R1 = 6/50 = 0,12А = 120 мА;
  • аналогичным образом вычисляют: I2 = Uип / R2 = 6/150 = 0,04А = 40 мА;
  • суммарное значение: Iобщ = I1 + I2 = 120 + 40 = 160 мА;
  • соблюдается отмеченный выше принцип пропорциональности: I1/I2 = R2/R1 = 50/150 = 40/120 ≈ 0,333.

Следует отметить разную силу тока в отдельных ветках. Для наглядности можно вспомнить пример с аналогом из водопроводных труб. В разветвленном участке по протоку с крупным диаметром пройдет больше жидкости, по сравнению с другим за контрольный временной интервал. Аналогичным образом действует электрическое сопротивление. При увеличении номинала пассивного элемента создаются дополнительные препятствия прохождению тока.

Для расчета сложных схем используют технологию эквивалентных сопротивлений. Этим термином обозначают расчетную величину (Rэкв), которая равна сумме измеряемых параметров отдельных компонентов на определенном участке цепи. Проще всего сделать вычисления, если соединить резисторы (номиналы из примера) последовательно:

Rэкв = R1 + R2 = 50 + 150 = 200 Ом.

Ниже подробно рассмотрен вариант с параллельной схемой:

  • по закону Ома для всей цепи действительно выражение: Iобщ = Uип/ Rэкв;
  • в отдельных ветках: I1 = U1/ R1 (I2 = U2/ R2);
  • по закону Кирхгофа для каждого провода: I = I1+ I2;
  • преобразование перечисленных соотношений позволяет сделать промежуточный вывод: Uип/ Rэкв = U1/ R1 + U2/ R2;
  • с учетом равенства напряжений: Uип = U1 = U2, можно переделать предыдущую формулу следующим образом: Uип/ Rэкв = Uип / R1 + Uип / R2 = Uип (1/R1 + 1/R2);
  • делением на общий множитель Uип получают итоговое выражение: 1/Rэкв = 1/R1 + 1/R2.

Последняя позиция позволяет сделать несколько важных заключений:

  • общая проводимость (величина, обратная электрическому сопротивлению) равна сумме проводимостей параллельных участков цепи;
  • эквивалентное сопротивление можно вычислить делением единицы на проводимость;
  • Rэкв при параллельном соединении всегда меньше самого меньшего из пассивных компонентов цепи.

Последовательное соединение элементов

Параллельное соединение резисторов

Подобное включение подразумевает комбинацию деталей в прямой последовательности. Выход одного сопротивления подключается к входу другого. При этом отсутствуют какие-либо ответвления на участке. Величина тока, который проходит через все соединённые последовательно компоненты, будет одна и та же.

Внимание! Снижение потенциала на каждом резистивном элементе в сумме даст полное напряжение, приложенное к последовательной цепи. Последовательное включение резисторов


Последовательное включение резисторов

В случае постоянного тока формула закона Ома для отрезка цепи имеет вид:

I = U/R.

Сила тока зависит от приложенного напряжения и оказанного ему сопротивления. Если выразить R, его формула:

R = U/I.

Параметры последовательной цепи, включающей n соединённых друг с другом элементов, имеют свои особенности.

Проходящий по цепи ток везде одинаковый:

I = I1= I2= … = In.

Прикладываемое напряжение является суммой напряжений на каждом резисторе:

U = U1 + U2+ … + Un.

Следовательно, рассчитать можно общее:

Rэкв.= U1/I + U2/I + … +Un/I) = R1 + R2 + … +Rn.

Важно! Последовательная цепь, имеющая в своём составе N резисторов равного номинала, имеет эквивалентное сопротивление Rэкв. = N*R

Закон Кирхгофа (страница 1)

Закон Кирхгофа (страница 1)
Применение закона Кирхгофа к расчету линейных электрических цепей постоянного тока

1. В цепи (рисунок 10) известны значения токов ; величины сопротивлений . Определить напряжение U на входных зажимах цепи, сопротивление и величину Е источника ЭДС.Решение:
По закону Ома определим напряжение между узлами 3-2:
Из уравнения, составленного по первому закону Кирхгофа для узла 3:
определим ток :
Тогда, по закону Ома для ветви с сопротивлением :
откуда выражаем величину Е источника ЭДС:
Напряжение можно выразить из уравнения, записанного по II закону Кирхгофа для контура 1-3-2-1:
Зная величины напряжения и тока , определим величину сопротивления :
Напряжение на входных зажимах цепи определится:
Ток определим из уравнения, записанного по первому закону Кирхгофа для 1 узла:тогда
2. В цепи (рисунок 11) известны величины сопротивлений резистивных элементов ; мощность, изменяемая ваттметром Р=320 Вт. Определить токи ветвей, напряжение на зажимах цепи.Решение:
Из формулы для расчета мощности выражаем ток :
Затем определяем напряжение на зажимах параллельных ветвей:
По закону Ома определяем ток в ветви с сопротивлением :
Значение тока в неразветвленной части цепи определим из уравнения, записанного по первому закону Кирхгофа для узла 1:
Напряжение на входных зажимах цепи можно представить как сумму падений напряжений на сопротивлениях :
где тогда

3. На рисунке 12 показана часть сложной цепи. Задано: . Найти напряжение .Решение:
Уравнение по второму закону Кирхгофа для данного контура, при выбранном направлении обхода контура, запишется следующим образом:
откуда выражаем напряжение :
4. В схеме (рисунок 13) известны: . Определить напряжения .Решение:
Считаем направления обходов контуров совпадающими с направлениям искомых напряжений. Запишем уравнения по второму закону Кирхгофа для каждого контура и выразим напряжения:контур 1-2-6-5-1
контур 3-4-6-5-3
контур 1-3-5-1
контур 2-4-6-2
контур 1-4-6-5-1
контур 2-3-5-6-2
5. Определить показание амперметра (рисунок 14), если .Решение:
По закону Ома определим значения токов в ветвях:
Запишем уравнение по первому закону Кирхгофа для узла b:
откуда
6. На рисунке 15 показана часть сложной цепи. Найти напряжения , если .Решение:
По закону Ома определим ток на участке с-d:
Запишем уравнение по второму закону Кирхгофа для контура a-b-c-d:
откуда выразим напряжение :

7. В схеме электрической цепи, приведенной на рисунке 16, определить токи в ветвях пользуясь законами Кирхгофа. Параметры элементов цени: .Решение:
Выбираем произвольно положительные направления искомых токов ветвей и обозначаем их на схеме. Составляем уравнение по первому закону Кирхгофа для узла 1. Выбрав направления обходов контуров, составляем уравнения по второму закону Кирхгофа. Получаем систему из трех уравнений:
Решаем полученную систему уравнений с помощью определителей:
Находим значения токов:
Для проверки правильности расчета составим уравнение баланса мощностей:
Мощность источников:
Мощность потребителей:
8. Определить токи ветвей цепи (рисунок 17), если: .Решение:
Произвольно задаемся положительными направлениями токов в ветвях с сопротивлениями . В ветви с источником тока направление тока уже определено полярностью источника. Составляем уравнение по первому закону Кирхгофа для узла 1. Количество контурных уравнений зависит от количества ветвей с неизвестными токами, т.е. ветвей, не содержащих источники тока. Для данной цепи количество контурных уравнений равно 1. Составим систему уравнений:
Решаем систему уравнений с помощью определителей:
Определяем значения токов:

Смотри полное содержание по представленным решенным задачам.

Как определить формулой общее сопротивление цепи

Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.

Вам это будет интересно Описание и использование неодимового магнита

Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.


Таблица удельной величины для различных проводников

Закон Ома

Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.

Георг Симон Ом

  • Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
  • Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
  • Формула закона Ома записывается в следующем виде:
  1. где
  2. I – сила тока в проводнике, единица измерения силы тока — ампер ;
  3. U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт ;
  4. R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом .

Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза

И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.

Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Где и когда можно применять закон Ома?

Нужна помощь в написании работы?

Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

Назначение измерительных трансформаторов тока

Браузерный онлайн-калькулятор

Если элементов в цепи немного, то, упрощая схему, довольно легко посчитать, используя формулы для параллельного и последовательного включения резисторов, общий импеданс цепи. Но если в схеме много элементов, да ещё она такая, что содержит и то, и другое соединение (комбинированная), проще воспользоваться браузерными онлайн-калькуляторами.

В их основе используются всё те же формулы для расчёта эквивалентного резистора, но все вычисления происходят автоматически. Существует огромное количество предложений таких калькуляторов. Но при этом все они работают одинаково. Онлайн-расчёт представляет собой программный код, в котором заложен алгоритм вычисления. Потребителю необходимо только в специальных ячейках указать, какой вид соединения используется, сколько элементов в контуре и сопротивления резисторов. Далее надо нажать кнопку «Рассчитать» и через считанные секунды получить ответ.

Необходимо отметить, что, если даже это в программе не указано, все значения вводятся только в Международной системе единиц, сила тока — ампер, напряжение — вольт, сопротивление — Ом. Тогда и ответ получится в Омах.

Бонусом является и то, что многие такие программы сразу рассчитывают и мощность элемента. Для этого используется формула: P = U2/Ro = I2*Ro, Вт.

[править] Общее описание и свойства

Светодиодная лента на батарейках: сборка, преимущества и недостатки

Переменный ток.

В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками.

Последним этапом находим действительные токи, для этого нужно записать для них выражения. Работа активного двухполюсника под нагрузкой в номинальном режиме определяется уравнением 1.

Определим параметры электрической цепи рис. Неуправляемые нелинейные элементы имеют одну вольт-амперную характеристику; управляемые — семейство характеристик.

Определить ток I1 в заданной по условию схеме с источником тока, используя метод эквивалентного генератора. Чтобы решить такую систему можно воспользоваться программой MathCad. В цепи должен соблюдаться баланс мощностей, то есть энергия отданная источниками должна быть равна энергии полученной приемниками. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Читайте дополнительно: Нормы прокладки кабеля под землей

АГЗ МЧС РГР №1 Расчёт линейных цепей постоянного тока

Уравнения по второму закону составляют для независимых контуров. Определим параметры электрической цепи рис. Контурный ток равен действительному току, который принадлежит только этому контуру. Свернуть цепь можно с помощью эквивалентных преобразований последовательного, параллельного и смешанного соединений.

Направление обхода контура совпадает с направлением контурных токов. Режим работы электрической цепи рис. Переменный синусоидальный ток или напряжение задается уравнением: Здесь Im — амплитуда тока. Например, с помощью закона Кирхгофа, который гласит, что сумма ЭДС в контуре равна сумме напряжений в нем. Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.

Определить токи во всех ветвях схемы на основании метода наложения.

Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Следовательно, схема источника тока рис. Вычислим коэффициент подобия.

Составить баланс мощностей в исходной схеме схеме с источником тока , вычислив суммарную мощность источников и суммарную мощность нагрузок сопротивлений. Рекомендуется узлы схемы a, b, c, d заменить на 1, 2, 3, 4 соответственно. Исключением служат цепи, содержащие более сложные соединения звездой и треугольником. В нашем случае эти токи направлены по часовой стрелке.
Законы Кирхгофа — Теория и задача

Законы Кирхгофа | Теория и задачаЗаконы Кирхгофа | Теория и задача

Активные и пассивные элементы электрической цепи

Эти же соображения относятся и к многофазным электродвигателям. Если ток изменяется в определённых пределах которые зависят от детали , то нижняя граница всегда равна нулю, и эта составляющая начинает отдавать энергию внешней цепи.
Третья часть состоит из передающих устройств — проводов и других установок, обеспечивающих уровень и качество напряжения. Особенности нанесения разметок на схемы: Для ЭДС источников они указываются произвольно. Каждый активный элемент характеризуется только одним параметром — ЭДС или током на выходных зажимах источников.
А определить мощность можно, умножив ток на напряжение. Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника.
Законы, которые понадобятся при работе с цепями постоянного тока Анализ и расчет будут гораздо эффективнее, если одновременно использовать закон Ома, а также первый и второй законы Кирхгофа. А выключатели или приборы защиты всегда подсоединяются последовательно, т. Трехфазные системы в настоящее время получили наибольшее распространение.
По мере роста числа параллельно включенных потребителей проводимость цепи gэкв возрастает, и наоборот, общее сопротивление Rэкв уменьшается. Вторая — элементами, преобразующими электричество в другие виды энергии.

Параллельное соединение конденсаторов

Если в электрическую цепь были включены источники напряжений, то данный показатель будет равен нулю. Функция зависимости тока, протекающего по двухполюсному компоненту, от напряжения на этом компоненте называется вольт-амперной характеристикой ВАХ. Причем включение или отключение одного или нескольких потребителей не отражается на работе остальных.

В ней содержатся условные обозначения элементов, а также способы из соединения. Основные элементы электрической цепи, в зависимости от конструкции и роли в схемах, могут быть классифицированы по разным системам. Во всех практических случаях реальные источники ЭДС или источники питания не являются идеальными, так как обладают внутренним сопротивлением. Различают два типа источников: первичные, когда в электрическую энергию превращается другой вид, и вторичные, которые на входе, и на выходе имеют электрическую энергию в качестве примера можно привести выпрямительное устройство.

Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений. Параллельное соединение источников применяется в первую очередь тогда, когда номинальные ток и мощность одного источника недостаточны для питания потребителей. Рассмотрим процесс возникновения синусоидальной ЭДС. Так, когда элемент нагревается, то сопротивление начинает возрастать. В этом случае ток в нагрузке становится равным нулю, и как следует из соотношения 1.
КАК ТЕЧЁТ ТОК В СХЕМЕ — Читаем Электрические Схемы 1 часть

КАК ТЕЧЁТ ТОК В СХЕМЕ | Читаем Электрические Схемы 1 частьКАК ТЕЧЁТ ТОК В СХЕМЕ | Читаем Электрические Схемы 1 часть

По какой формуле вычисляется мощность электрического тока

Правильное и точное решение вопроса чему равна мощность электрического тока, играет решающую роль в деле обеспечения безопасной эксплуатации электропроводки, предупреждения возгораний из-за неправильно выбранного сечения проводов и кабелей. Мощность тока в активной цепи зависит от силы тока и напряжения. Для измерения силы тока существует прибор – амперметр. Однако не всегда возможно воспользоваться этим прибором, особенно когда проект здания еще только составляется, а электрической цепи просто не существует. Для таких случаев предусмотрена специальная методика проведения расчетов. Силу тока можно определить по формуле при наличии значений мощности, напряжения сети и характера нагрузки.

Существует формула мощности тока, применительно к постоянным значениям силы тока и напряжения: P = U x I. При наличии сдвига фаз между силой тока и напряжением, для расчетов используется уже другая формула: P = U x I х cos φ. Кроме того, мощность можно определить заранее путем суммирования мощности всех приборов, которые запланированы к вводу в эксплуатацию и подключению к сети. Эти данные имеются в технических паспортах и руководствах по эксплуатации устройств и оборудования.

Таким образом, формула определения мощности электрического тока позволяет вычислить силу тока для однофазной сети: I = P/(U x cos φ), где cos φ представляет собой коэффициент мощности. При наличии трехфазной электрической сети сила тока вычисляется по такой же формуле, только к ней добавляется фазный коэффициент 1,73: I = P/(1,73 х U x cos φ). Коэффициент мощности полностью зависит от характера планируемой нагрузки. Если предполагается использовать лишь лампы освещения или нагревательные приборы, то он будет составлять единицу.

При наличии реактивных составляющих в активных нагрузках, коэффициент мощности уже считается как 0,95. Данный фактор обязательно учитывается в зависимости от того, какой тип электропроводки используется. Если приборы и оборудование обладают достаточно высокой мощностью, то коэффициент составит 0,8. Это касается сварочных аппаратов, электродвигателей и других аналогичных устройств.

Для расчетов при наличии однофазного тока значение напряжения принимается 220 вольт. Если присутствует трехфазный ток, расчетное напряжение составит 380 вольт. Однако с целью получения максимально точных результатов, необходимо использовать в расчетах фактическое значение напряжения, измеренное специальными приборами.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий