Магнитное поле катушки с током. электромагниты и их применение

Содержание

Схема подключения на 380 в

Стандартная схема используется в тех случаях, когда необходим запуск двигателя. Управление осуществляется при помощи кнопок «Пуск» и «Стоп». Вместо двигателя через магнитные пускатели может быть подключена любая нагрузка.

В случае питания от трехфазной сети в силовую часть входит:

  1. Трехполюсный автоматический выключатель.
  2. Три пары силовых контактов.
  3. Трехфазный асинхронный электродвигатель.

Цепь управления питается от первой фазы. В нее же включены кнопки «Пуск» и «Стоп», катушка и подключенный параллельно кнопке «Пуск» вспомогательный контакт.

При нажатии на кнопку «Пуск» на катушку попадает первая фаза. После этого пускатель срабатывает, и все контакты замыкаются. Напряжение проходит на нижние силовые контакты и по ним поступает на электродвигатель.

Определение слова «Электромагнит» по БСЭ:

Электромагнит — электротехническое устройство, состоящее обычно из токопроводящей обмотки и ферромагнитного сердечника, который намагничивается (приобретает свойства магнита) при прохождении по обмотке электрического тока. Э. используют в основном для создания магнитного потока (в электрических машинах) и усилия (в приводных механизмах). Несмотря на конструктивное разнообразие, Э. обычно состоят из следующих частей, имеющих одинаковое назначение: катушки с токопроводящей обмоткой, намагничивающегося сердечника (неподвижной части магнитопровода) и якоря (подвижной части магнитопровода), передающего усилие деталям приводимого в действие механизма. Обмотки Э. выполняются из изолированного алюминиевого или медного провода (существуют также Э. с обмоткой из сверхпроводящих материалов. см. Магнит сверхпроводящий). Магнитопроводы Э. изготовляют из магнитно-мягких материалов — обычно из электротехнической или качественной конструкционной стали, литой стали и чугуна, железоникелевых и железокобальтовых сплавов. Для снижения потерь на вихревые токи магнитопроводы выполняют из набора листов.В зависимости от способа создания магнитного потока и характера действующей намагничивающей силы Э. подразделяют на 3 группы: Э. постоянного тока нейтральные, Э. постоянного тока поляризованные, Э. переменного тока. У нейтральных Э. сила притяжения зависит только от величины магнитного потока и не зависит от направления тока в обмотке. при отсутствии тока в обмотке магнитный поток, а следовательно, сила притяжения практически равны нулю. У поляризованных Э. создаётся 2 независимых магнитных потока: поляризующий, который образуется обычно полем постоянного магнита (иногда другого Э.), и рабочий магнитный поток, который возникает под действием намагничивающей силы рабочей или управляющей обмотки.Если ток в них отсутствует, на якорь действует сила притяжения, созданная поляризующим магнитным потоком. Действие такого Э. зависит как от величины магнитного потока, так и от направления электрического тока в рабочей обмотке. В Э. переменного тока питание обмотки осуществляется от источника переменного тока, а магнитный поток периодически изменяется по величине и направлению, в результате чего сила притяжения пульсирует от нуля до максимального значения с удвоенной частотой по отношению к частоте питающего тока. Э. различают также по ряду других признаков: по способу включения обмоток — с параллельными и последовательными обмотками. по характеру работы — работающие в длительном, прерывистом и кратковременном режимах. по скорости действия — быстродействующие и замедленного действия и т. д.Наиболее широкая и важная область применения Э. — электрические машины и аппараты, входящие в системы промышленной автоматики, в аппаратуру регулирования, защиты электротехнических установок. В составе различных механизмов Э. используются в качестве привода для осуществления необходимого поступательного перемещения (поворота) рабочих органов машин или для создания удерживающей силы. Примером таких Э. могут служить Э. грузоподъёмных машин, Э. муфт сцепления и тормозов, Э., применяемые в различных пускателях, контакторах, выключателях, электроизмерительных приборах и т. п. Перспективно использование Э. в тяговых приводах скоростных транспортных средств для создания т. н. магнитной подушки. Развивающейся областью применения Э. является медицинская аппаратура. В научных целях Э. используют в эксперимент. химии, биологии, физике. В связи с широтой применения конструктивное исполнение, размеры, потребляемая мощность Э. находятся и широких пределах. В зависимости от назначения Э. могут весить от долей г до сотен т, потреблять электрическую мощность — от долей вт до десятков Мвт.Лит.: Гордон А. В., Сливинская А. Г., Электромагниты постоянного тока, М. — Л., 1960. Карасик В. Р., Физика и техника сильных магнитных полей, М., 1964. Тер-Акопов А. К., Динамика быстродействующих электромагнитов, М. — Л., 1965. Сливинская А. Г., Электромагниты и постоянные магниты, М., 1972.М. И. Озеров.

Конструктивный расчет при переменном токе

Сверхпроводящий электромагнит

Сверхпроводимостью считают свойство материалов с сопротивлением, близким к нулю. Электромагниты с практически нулевым показателем сопротивления обладают сверхмощным магнитным полем. Сила магнитного воздействия может заставить парить в пространстве такие диамагнетики, как кусочки свинца и органические объекты.

Как было замечено физиками, металлы приобретают свойство сверхпроводимости при сверхнизкой температуре. Чтобы получить эффект сверхпроводимости, обмотки ЭМ помещают в сосуд Дьюара с жидким гелием, который снабжён клапаном для сброса паров вещества. Сверхпроводящие магниты применяют в медицинском оборудовании – аппаратах МРТ (магнитный резонансный томограф). В экспериментальных поездах на воздушной подушке применяются сверхпроводящие магниты.


Сверхпроводящий магнит

Полезные сервисы:

Изготовление электромагнита в домашних условиях

Для изготовления электромагнита своими руками в начале необходимо подобрать материал для сердечника. Наиболее простым и подходящим вариантом будет гвоздь больших размеров, длиной от 100 до 200 мм. Его нужно вначале сильно разогреть, а потом дать остыть и очистить от окалины. После этого гвоздь сгибается ровно пополам, а шляпка и кончик отпиливают ножовкой.

Вторым этапом будет изготовление катушки. Конструкция катушки включает следующие элементы: бумажная шейка прямоугольной формы (48х37 мм), бумажные упорные венчики (48х3 мм) и картонные ободки круглой формы с отверстием в середине. Их наружный и внутренний диаметр соответственно будет 19 и 7 мм.

После подготовки деталей можно приступать к сборке электромагнита. Шейка с более узкой стороны наматывается на гвоздь в свободном состоянии и фиксируется клеем. Далее на нижнюю и верхнюю часть шейки надеваются картонные ободки. Упорные венчики смазываются клеем, наматываются по краям шейки и приклеивается к ободкам. Клей на всех участках должен хорошо высохнуть.

Для обмотки подойдет провод, длиной примерно 15-20 метров. Проволоку наматывают на катушку с таким расчетом, чтобы по краям оставались концы по 10 сантиметров. Намотка должна быть ровной, чтобы все витки располагались плотно между собой. От этого полностью зависит мощность будущего электромагнита. Наибольшая сложность состоит в наматывании первого слоя. Каждый готовый ряд оборачивается тонкой бумагой в два слоя. По окончании обмотки вся катушка сверху оборачивается изолентой. Оставшиеся концы обмотки необходимо зачистить для дальнейшего подключения.

К полученной конструкции остается присоединить выключатель и батарейку. Таким образом, электромагнит своими руками будет полностью сделан.

Электромагнит, в отличие от постоянного магнита, приобретает свои свойства только под воздействием электрического тока. С его помощью он меняет силу притяжения, направление полюсов и некоторые другие характеристики.

Некоторые увлеченные механикой люди самостоятельно делают электромагниты, чтобы использовать их в самодельных установках, механизмах и разнообразных конструкциях. Сделать электромагнит своими руками несложно. Используются простые приспособления и подручные материалы.

Самый простой набор для изготовления электромагнита

Что понадобится:

  • Один железный гвоздь 13-15 см. в длину или иной металлический предмет, который и станет сердечником электромагнита.
  • Около 3 метров изолированной медной проволоки.
  • Источник электропитания — аккумуляторная батарея или генератор.
  • Небольшие провода для контакта провода с батарейкой.
  • Изолирующие материалы.

Если вы используете более крупную металлическую заготовку для создания магнита, то количество медной проволоки должно пропорционально увеличиваться. Иначе магнитное поле получится слишком слабым. Сколько именно понадобится обмотки, точно ответить нельзя. Обычно мастера выясняют это экспериментальным путем, увеличивая и уменьшая количество проволоки, параллельно измеряя изменения магнитного поля. Из-за избытка проволоки сила магнитного поля тоже становится меньше.

Пошаговая инструкция

Следуя простым рекомендация, вы легко сделаете электромагнит самостоятельно.Зачищаем концы медного проводаШаг 1 Очистите от изоляции концы медного провода, который будете наматывать на сердечник. Достаточно 2-3 см. Они понадобятся, чтобы соединить медную проволоку с обычной, которая в свою очередь будет подключаться к источнику питания.

Наматываем медный провод вокруг гвоздяШаг 2 Вокруг гвоздя или другого сердечника аккуратно намотайте медный провод так, чтобы витки были расположены параллельно друг к другу. Делать это необходимо только в одном направлении. От этого зависит расположение полюсов будущего магнита. Если вы захотите изменить их расположение, то можно просто перемотать проволоку в другом направлении. Не выполнив этого условия, вы добьетесь того, что магнитные поля различных секций будут воздействовать друг на друга, из-за чего сила магнита будет минимальной.

Подсоединяем провод к батарейкеШаг 3 Концы очищенного медного провода соедините с двумя заранее подготовленными обычными проводками. Соединение заизолируйте, а один конец проводка подключите к клемме положительного заряда на аккумуляторе, а другой — на противоположный конец

Причем неважно, какой проводок к какому концу будет подключен — это не отразится на эксплуатационных возможностях электромагнита. Если все сделано правильно, то магнит сразу же начнет работать! Если у аккумулятора есть реверсивный способ подключения, то вы сможете изменить направление полюсов

Электромагнит работает!

Усиление обычного магнита

Множество вопросов возникает, когда обычные магниты перестают выполнять свои прямые функции. Это часто происходит из-за того, что бытовые магниты таковыми не являются, ведь, по сути, они намагниченные металлические части, которые теряют свойства с течением времени. Усилить мощность таких деталей или вернуть им свойства, которые были изначально, невозможно.

Надо заметить, что прикреплять к ним магниты, даже более мощные, не имеет смысла, поскольку, при их соединении обратными полюсами, внешнее поле становится гораздо слабее или вообще нейтрализуется.

Это можно проверить с помощью обычной бытовой занавески-москитки, которая должна закрываться посередине при помощи магнитов. Если на слабые исходные магниты сверху прикрепить более мощные, то в результате штора вообще потеряет свойства соединения с помощью притяжения, потому что противоположные полюса нейтрализуют внешние поля друг друга на каждой из сторон.

Свойства

Ферромагнитные жидкости под действием магнитного поля — завораживающее зрелище. На поверхности образуются складки похожие на конусы, и при перемещении магнитного поля эти складки движутся за полем. Они располагаются по силовым линиям, и их высота зависит от силы магнитного поля. Сила магнитного поля, в свою очередь, зависит от того, как близко расположен магнит относительно жидкости. Ниже мы обсудим различные применения ферромагнитных жидкостей. Все эти применения основываются на этом свойстве ферромагнитной жидкости двигаться за магнитным полем.

Разобранный гидродинамический подшипник накопителя на жестких магнитных дисках

Свойства ферромагнитных жидкостей изменяются с температурой. При очень высоких температурах, известных как температура или точка Кюри, наночастицы теряют магнитные свойства и ферромагнитная жидкость превращается в обычную жидкость. Также, со временем поверхностно-активное вещество теряет отталкивающие свойства, и наночастицы слипаются, так что при этом свойства ферромагнитной жидкости пропадают.

Электронный коммутатор мостового типа

Самая простая конструкция электронного коммутатора выполняется на четырех силовых ключах. В каждом плече мостовой схемы присутствует по два мощных транзистора, столько же электронных ключей с односторонней проводимостью. Напротив ротора магнитного двигателя размещается два датчика, которые контролируют положение постоянного магнита на нем. Располагаются они как можно ближе от ротора. Функции этого датчика выполняет простейший прибор, который способен работать под воздействием магнитного поля — геркон.

Датчики, считывающие положение постоянного магнита на роторе, размещаются следующим образом:

  1. Первый находится у торца соленоида.
  2. Второй расположен со сдвигом в 90 градусов.

Выходы датчиков подключаются к логическому устройству, которое усиливает сигнал, а затем подает его на входы управления полупроводниковых транзисторов. С помощью подобных цепей работает и электромагнитный клапан остановки двигателя внутреннего сгорания.

На обмотках электрического генератора установлена нагрузка. В цепях питания катушки и коммутатора есть элементы, предназначенные для управления и защиты. При помощи автоматического переключателя можно произвести отключение аккумуляторной батареи, чтобы вся машина перешла на питание от электрического генератора (автономный режим).

Электромагнитный запорный механизм в составе СКУД

Замок может работать от ключа либо под управлением контроллера системы управления контроля доступом (СКУД). Система подает постоянный ток на обмотку электромагнита либо отключает его, управляя функционированием запорного механизма. Если конструкция замка подразумевает наличие геркона, то контроллер также может отслеживать, закрыта дверь или открыта. При помощи СКУД можно задать время срабатывания механизма. Однако, все эти возможности недоступны, если нет электричества. В такой ситуации дверь просто откроется. Поэтому двери, запирающиеся на замки, управляемые СКУД, оснащают дополнительным источником питания либо механическим замком.

Расчет электромагнита

Чтобы провести примерный расчёт электрического магнита, необходимо задать тяговое усилие, которое требуется для мотора. Допустим, требуется произвести расчёт электрического магнита с тяговым усилием 100 Н (10 кг). Теперь после этого можно рассчитать параметры конструкции электромагнита, если зазор его составляет 10-20 мм. Тяговая сила, которая развивается электромагнитом, считается так:

  1. Перемножаются индукция в воздушном зазоре и площадь полюса. Индукция измеряется в Теслах, площадь – в квадратных метрах.
  2. Полученное значение необходимо разделить на значение магнитной проницаемости воздуха. Оно равно 1,256 х 10^-6 Гн/м.

Если задать индукцию 1,1 Тл, то можно вычислить площадь сечения магнитопровода:

  1. Тяговая сила умножается на магнитную проницаемость воздуха.
  2. Полученное значение необходимо разделить на квадрат индукции в зазоре.

Для трансформаторной стали, которая используется в магнитопроводах, индукция в среднем равна 1,1 Тл. Используя кривую намагничивания низкоуглеродистой стали, можно определить среднее значение напряженности магнитного поля. Если правильно сконструировать электрический магнит, то вы достигнете максимальной силы потока. Причём электропотребление обмотки будет минимальным.

Расчет неоднородной магнитной цепи постоянного тока, изображенной на рис.Мц.1.2. Содержит несколько этапов. На первом этапе решаем прямую задачу расчета магнитной цепи.

По
значению магнитного потока в зазоре
Ф
и известным
геометрическим параметрам элементов
магнитопровода (в задание указаны
значения S1,
S2,
S3
,
l1,
l2,
l3,

,
,
MAX),
а также для выбранной марки ферромагнитного
материала определяем требуемую
магнитодвижущую силу (МДС) F=IW,
а,следовательно,
при известном количестве витков катушки
W
и ее ток I
.

На
втором этапе решается обратная задача
– по известной величине магнитодвижущей
силы F
определяем величину магнитного потока
в магнитопроводе
Ф
ст
(а также величину магнитной индукции
Bст) в
отсутствии зазора. И, наконец, для
нескольких значений воздушного зазора
в диапазоне от 0 до

определяем величины магнитной индукции
B в зазоре
для расчета тяговой характеристики
электромагнита.

1. Решаем прямую
задачу
.

В
соответствии с направлением токаI
в обмотке определяем по правилу
правоходового винта направление
магнитного потока Фст
(создается обмоткой возбуждения) в
сердечнике и направление МДС для схемы
замещения (рис.1).

Исходя
из постоянства магнитного потока Ф
= Фст=
Ф
вдоль
всей цепи, по заданному потоку Фи сечениям
Sk
находим магнитные индукции на каждом
участке

Рис.
1

=0,48310-4
/132
10-6=0,37
Тл,

=0,48310-4
/196
10-6=0,25
Тл,

=0,48310-4
/340
10-6=0,14
Тл,

,=0,48310-4/9210-6=

=0,53
Тл,

,
=0,48310-4/48010-6=

=0,1
Тл,

По
кривым намагничивания стали
определяем напряженности поля Hkдля
ферромагнитных участков цепи,

В1
H1
40 А/м,

В2
H2
6 А/м,

В3
H3
52 А/м,

В4
H4
12 А/м,

Напряженность
поляH
в зазоре ( μо= 4π 10-7
Гн/м – постоянная, абсолютная магнитная
проницаемость вакуума):


=
0,1/410-7
0,1/1,256
10-6
79618 А/м.

Подсчитываем
сумму падений магнитного напряжения
вдоль всей магнитной цепи, которая будет
равна искомой МДС

F
= W I = H
1
l1+H2
l2+
H
3
l3
+ H
4
l4+Hl5
=

=
40
0,0
22
+6

0,0
37+
52
0,038+120,044+796180,002
163 А.

Величина токаI
в катушке (число витков Wкатушки задано):

I
= F / W =
163360=
0,45 А

При известных: токе
I и магнитном потоке
Ф,можно также рассчитать
индуктивность катушки L

Потокосцепление 
можно определить как произведение
магнитном потока Ф на число витков
катушкиW с которыми
он сцеплен

=
Ф
W

и одновременно

=LI

Следовательно,
индуктивность катушки Lсоставит:

L=
W
Ф
I =
3600,48310-40,45
386
10-4Гн.

Прежде
чем переходить ко 2-му этапу заданиясделаем некоторые расчеты, которые
нам будут необходимы для выполнения
3-го пункта задачи.

Тяговое
усилие, возникающее в одном зазоре Fтяг
для
исходного состояния электромагнита
составит:

Fтяг
= В2S
/ (2
μо)
=

=0,1 248010
-6 / (2
4
10-7)1,9
Н

1.4 Определяем значения напряженности поля в якоре и ярме и в сердечнике электромагнита по кривой намагничивания, соответствующие полученным значениям Вя и Вс .

Удостоверения, Свидетельства

Применение грузоподъемных и крупномасштабных электромагнитов

Электродвигатели и генераторы жизненно важны в современном мире. Мотор принимает электрическую энергию и использует магнит, чтобы превратить электрическую энергию в кинетическую. Генератор, наоборот, преобразует движение, используя магниты, чтобы вырабатывать электричество. При перемещении габаритных металлических объектов используются грузоподъемные электромагниты. Они также необходимы при сортировке металлолома, для отделения чугуна и других черных металлов от цветных.

Настоящее чудо техники — японский левитирующий поезд, способный развивать скорость до 320 километров в час. В нем используются электромагниты, помогающие парить в воздухе и невероятно быстро передвигаться. Военно-морские силы США проводят высокотехнологичные эксперименты с футуристической электромагнитной рельсовой пушкой. Она может направлять свои снаряды на значительные расстояния с огромной скоростью. Снаряды обладают огромной кинетической энергией, поэтому могут поражать цели без использования взрывчатых веществ.

Примеры использования ЭМ

В качестве примеров применения электромагнитов можно привести следующие приборы:

  • телевизоры;
  • трансформаторы;
  • пусковые устройства автомобилей.

Телевизоры

Современные жилища, как правило, заполнены различными электроприборами. Находясь вблизи телеприёмника, они могут воздействовать магнитной индукцией на экран телевизора (ТВ). В ТВ уже существует встроенная защита от намагничивания экрана. Если на поле дисплея появились разноцветные пятна, то надо выключить прибор на 10-20 минут. Встроенная защита уберёт намагниченность экрана.

В некоторых случаях этот способ не оказывает нужную помощь. Тогда применяют специальный электромагнит, который называют дросселем. Это своеобразная катушка индукции. Прибор подключают к розетке бытовой электросети и проводят им вдоль и поперёк экрана. В результате наведённые магнитные поля поглощаются дросселем.

Трансформаторы

Конструкция трансформаторов очень схожа со строением электромагнитов. И там, и там есть обмотки и сердечники. Отличие трансформатора от ЭМ состоит в том, что у первого магнитопровод имеет замкнутую форму. Поэтому суммированная магнитная сила обнуляется встречными магнитными потоками.

Пусковое устройство автомобиля

Стартер автомобиля работает как пусковое устройство двигателя. Он включается на время заводки мотора. Временная передача стартового усилия на коленвал двигателя обеспечивается втягивающим электромагнитом.

При повороте ключа в замке зажигания ЭМ втягивает шестерню в зубцы коленвала. Во время контакта электродвигатель стартера проворачивает мотор до возникновения цикла сгорания топлива в цилиндрах мотора. Затем тяговое реле отключает электромагнит, и шестерня стартера возвращается в исходное положение. После чего автомобиль может двигаться.


Стартер с тяговым реле

Электромагниты настолько плотно вошли в сферу деятельности человека, что существование без них немыслимо. Нехитрые устройства можно встретить повсеместно. Знание принципа их действия позволит домашнему мастеру справляться с мелким ремонтом бытовых электротехнических устройств.

1.7.9 Определяем фактическую плотность тока по формуле

Что такое электромагнитная подвеска автомобиля.

Процесс изготовления мощного 12-вольтового магнита

Конечно, в роли сердечника можно использовать и любой другой массивный стальной штырь. Но подкова от старого замка подойдет как нельзя лучше. Ее изгиб будет служить в качестве своеобразной ручки, если мы начнем поднимать грузы, обладающие внушительным весом. Итак, в данном случае процесс изготовления электромагнита своими руками следующий:

  1. Наматываем проволоку из трансформатора вокруг одной из подков. Витки кладем как можно плотнее. Изгиб подковы будет немного мешать, но ничего страшного. Когда заканчивается длина стороны подковы, укладываем витки в противоположную сторону, поверх первого ряда витков. Делаем, в общей сложности, 500 витков.
  2. Когда обмотка одной половины подковы готова, обматываем ее одним слоем изоленты. Изначальный конец провода, предназначенного для подпитки от источника тока, выводим в верхнюю часть будущей ручки. Обматываем нашу катушку на подкове еще одним слоем изоленты. Другой конец проводника приматываем к изгибающейся сердцевине ручки и на другой стороне делаем еще одну катушку.
  3. Наматываем проволоку на противоположную сторону подковы. Делаем все так же, как и в случае с первой стороной. Когда 500 витков уложено, так же выводим конец провода для запитки от энергоисточника. Кому непонятно, порядок действий хорошо показан в этом видео.

Заключительная стадия изготовления электромагнита своими руками — подпитка к энергоисточнику. Если это аккумулятор, наращиваем концы зачищенных проводников нашего электромагнита при помощи дополнительных проводов, которые подсоединяем к клеммам аккумулятора. Если это блок питания, отрезаем штекер, идущий на потребитель, зачищаем провода и к каждому прикручиваем по проводу от электромагнита. Изолируем изолентой. Включаем блок питания в розетку. Поздравляем. Вы сделали своими руками мощный электромагнит на 12 вольт, который в состоянии поднимать грузы свыше 5 кг.

Как сделать электромагнит?

Электромагнит – это довольно простое устройство, которое можно использовать, как для развлечений, так и для построения всевозможных электрических схем. В этой статье мы поговорим о том, как сделать электромагнит своими руками в домашних условиях. Для этого нам не потребуются какие-то особые знания физики или сложные составные элементы.

Особенности конструкции магнитного двигателя

Если сравнивать с аналогичными устройствами, то вышеприведенная конструкция имеет следующие особенности:

  1. Используются очень экономичные электромагниты.
  2. На роторе располагается постоянный магнит, который вращается внутри дугового электромагнита.

В зазорах электромагнита постоянно изменяется полярность. Ротор изготавливается из немагнитных материалов, причём желательно, чтобы он был тяжёлым. Он выполняет функцию инерционного маховика. А вот в конструкции электромагнитного клапана остановки двигателя необходимо использовать сердечник из магнитных материалов.

Как выбрать замок

Конфигурацию замка выбирают, исходя из параметров двери, на которую он будет установлен: тип рамы, материал, из которого сделаны дверная панель и короб. Замки бывают врезными либо накладными

Выбирая врезной электромагнитный замок, следует принимать во внимание толщину двери, в которую он будет монтироваться. Накладной электромагнитный замок подобрать проще

Они представлены в достаточном разнообразии, чтобы найти устройство под любую дверную панель. Для легких дверей из ДСП подойдут самые простые модели, а при выборе запирающего устройства для металлических дверей следует ориентироваться на замки с ригелем, который поможет закрыть тяжелую дверь.

Электромагнитный замок с карточкой — подходящий вариант для контроля пропускного режима в офисе. Также все чаще используют электромагнитные замки отели и даже хостелы. Это особенно удобно тем, что можно изготовить необходимое количество ключей от номеров и отеля, аннулировать ключ, если он утерян, и запрограммировать новый.

Устанавливая электромагнитный замок на калитку, важно выбрать модель с наилучшими характеристиками защиты от атмосферных и физических воздействий

Преимущества замков с электромагнитом

Особой популярностью такие замки пользуются на предприятиях, где необходим контроль доступа персонала в помещения. Также электромагнитный замок уличный встречается практически на каждой подъездной двери. Устройства подобного типа чаще используются именно на выходах из здания, и тому есть ряд причин:

  • Электромагнитный замок — идеальный вариант для эвакуационного выхода: он автоматически открывается в экстренной ситуации.
  • Запорные устройства на электромагните устойчивы к перепадам температур и другим погодным испытаниям, поэтому они не выходят из строя даже в суровых климатических условиях.
  • Такой замок нельзя вскрыть при помощи отмычки.
  • Конструкция не имеет подвижных элементов, за счет чего замок имеет больший срок эксплуатации.
  • Электромагнитные замки не создают скачков напряжения при срабатывании.

Разновидности электромагнитных замков

Запирающие механизмы принято делить на группы по следующим характеристикам:

  • вид запорного механизма;
  • тип управления.

По виду запорного механизма модели подразделяются на:

  • Удерживающие: в них якорь работает на отрыв, то есть дверь удерживается силой притяжения магнита. Как правило, это накладные виды замков.
  • Сдвиговые: якорь работает на сдвиг в поперечном направлении. Чаще сдвиговый электромагнитный замок устанавливается в дверь, так как имеет врезную конструкцию, его можно монтировать как вертикально, так и горизонтально.

По типу управления механизмы разделяются на:

  • Замки с датчиками Холла, контролирующими срабатывание замка. Им необходимо дополнительное питание.
  • Электромагнитный замок с герконом, позволяющим контролировать положение двери. Когда дверь находится в закрытом положении, геркон срабатывает под действием магнитного поля, а когда дверь открывается, поле ослабевает, он отключается.

Итоги

Итоги

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий