Расчёт индуктивности. часть 3

Применение катушек индуктивности

Индуктивности широко используются в аналоговых схемах и схемах обработки сигналов. Они в сочетании с конденсаторами и другими радиокомпонентами образуют специальные схемы, которые могут усилить или отфильтровать сигналы определенной частоты.

Катушки индуктивности получили широкое применение начиная от больших катушек индуктивности, таких как дроссели в источниках питания, которые в сочетании с конденсаторами фильтра устраняют остаточные помехи и другие колебания на выходе источника питания, и до столь малых индуктивностей, которые располагаются внутри интегральных микросхем.

Две (или более) катушки индуктивности, которые соединены единым магнитным потоком, образуют трансформатор, являющимся основным компонентом схем работающих с электрической сетью электроснабжения. Эффективность трансформатора возрастает с увеличением частоты напряжения.

По этой причине, в самолетах используется переменное напряжение с частотой 400 герц вместо обычных 50 или 60 герц, что в свою очередь позволяет значительно сэкономить на массе используемых трансформаторов в электроснабжении самолета.

Так же индуктивности используются в качестве устройства для хранения энергии в импульсных стабилизаторах напряжения, в высоковольтных электрических системах передачи электроэнергии для преднамеренного снижения системного напряжения или ограничения ток короткого замыкания.

Выбираем магнитопровод

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Если частота работы устройства до 3 кГц, то подойдет магнитопровод из трансформаторного железа. Если частота выше 7 кГц, то предпочтение следует отдать ферритам. На частотах 3 — 7 кГц можно использовать и железные и ферритовые сердечники. Но эффективность устройств на этих частотах обычно ниже, чем на других, так как тут железо уже теряет свою привлекательность, растут потери, а ферриты еще не могут раскрыть свой потенциал. До 150 кГц для дросселя с зазором (а подавляющее большинство дросселей делается с зазором), марка феррита значения не имеет. От магнитной проницаемости феррита в расчете ничего не зависит. На частотах свыше 150 кГц следует применять специальные высокочастотные марки ферритов.

Расчет для железа и ферритов на разных частотах имеет только одно отличие. Для железа максимальная индукция выбирается в районе 1 Тл. Для ферритов: при частоте до 100 кГц — 0.3 Тл, при частоте выше 100 кГц — 0.1 Тл. При желании снизить потери на перемагничивание магнитопровода максимальная индукция выбирается еще меньше.

Провод выбирается, исходя из плотности тока 5А / 1 кв. мм сечения. Это хуже европейских стандартов, но, как показала практика, вполне приемлемо. Если сила тока небольшая (менее 0.25 А), то дроссель мотается одним проводом нужного диаметра, если более 0.25 А, то жгутом из проводов 0.25 мм (для исключения скин — эффекта). Один такой провод хорошо работает при токе до 0.25 А.

Проверяя, хватит ли места для обмотки в окне магнитопровода, мы полагаем, что плотность заполнения окна не превысит 50%. Плотнее уложить провод удается только на станке. Вручную получить лучшую плотность нам не удавалось никогда.

Плагин Ferrite: Расчет индуктивности на ферритовом стержне

В отличии от тороидальной индуктивности на ферритовом кольце, магнитный поток катушки на ферритовом стержне не замкнут целиком внутри феррита и каждая силовая линия проходит и по ферритовому стержню и по воздуху, поэтому расчет такой катушки представляет довольно сложную задачу. Индуктивность зависит от:

  • магнитной проницаемости ферритового стержня и его размеров;
  • размеров самой катушки;
  • взаимного соотношения размеров катушки и стержня;
  • положения катушки относительно центра стержня.

Расчет индуктивности катушки на ферритовом стержне основан на определении относительной эффективной проницаемости стержня. Другими словами, нам нужно определить насколько возрастет индуктивность катушки с “воздушным сердечником” если внутрь нее вставить ферритовый стержень. Основная формула выглядит вот так:

,где Lf / Lair – отношение индуктивности катушки с ферритом к индуктивности той же катушки без феррита, а коэффициенты x, k и μfe вычисляются по следующему алгоритму:

  1. l’ = lc + 0.45 dc;
  2. φ_φmax ≈ 1 / [ 1 + { ( ( lf – lc ) / df )1.4 } / ( 5 μ ) ];
  3. Canf = 0.5 π ε ( lf – lc ) / [ ln { 2 ( lf + df) / df } – 1 ];
  4. k = [ (φ_φmax Canf / ε ) + 2 df ] / 2 dc
  5. x = 5.1 [ l’ / dc ] / [1+ 2.8 ( dc / l’ )];
  6. μfe = ( μ -1) ( df /dc)2 +1;

где ε = 8,8542*10-12 Ф/м – электрическая постоянная, μ – начальная магнитная проницаемость материала стержня. Основные размеры в метрах, обозначения понятны из рисунка:

Немного теории обосновывающей этот алгоритм.

  • Можно считать что воздушная катушка имеет магнитную цепь состоящую из двух частей. Снаружи катушки и внутри нее. Они отличаются плотностью силовых линий и . Если магнитное сопротивление внутренней части магнитной цепи выше, чем наружной части (а это так, поскольку ее площадь поперечного сечения намного меньше), тогда применение феррита уменьшает это сопротивление и имеет эффект увеличения индуктивности. Это отношение двух частей магнитных сопротивлений магнитной цепи воздушной катушки обозначено в основной формуле как x и вычисляется на 5-ом шагу алгоритма.
  • Параметр μfe учитывает случай, когда обмотка не плотно прилегает к стержню, т.е. между стержнем и обмоткой существует радиальный зазор.
  • Параметр Canf учитывает влияние частей стержня, которые выступают за пределы катушки. Эти части уменьшают магнитное сопротивление внешней части магнитной цепи и также увеличивают индуктивность.
  • Параметр φ_φmax учитывает конечное магнитное сопротивление феррита. Этот параметр, наряду с параметром Canf используется для расчета коэффициента k из основного уравнения

При смещении катушки относительно стержня индуктивность катушки уменьшается, это обстоятельство учитывается с помощью поправочного коэффициента K:

,где

sh – относительное смещение = смещение s деленное на половину длины сердечника [sh = s / ( lf / 2 )].

Эта формула получена методом регрессионного анализа и справедлива при s = 0,05 – 0,75

В итоге индуктивность катушки на ферритовом стержне определяется по следующей формуле:

Индуктивность катушки  “воздушным” сердечником Lair рассчитывается по алгоритму расчета однослойной катушки с учетом шага намотки. Длину намотки можно определить по следующей формуле:

,где

  • N – число витков.
  • dw – диаметр провода.
  • p – шаг намотки.

Алгоритм имеет следующие ограничения в расчетах:

  • шаг намотки не может превышать удвоенного диаметра провода;
  • диаметр катушки не может быть больше удвоенного диаметра стержня;
  • длина намотки должна быть меньше 3/4 длины стержня;
  • длина стержня должна быть не менее чем в 12 раз больше его диаметра;
  • при смещении катушки она не должна доходить до края стержня на 1/8 его длины;
  • начальная магнитная проницаемость стержня должна быть больше 100;

Также как и в дросселе на ферритовом кольце с немагнитным зазором, при больших значениях начальной магнитной проницаемости стержня его эффективная магнитная проницаемость слабо зависит от начальной и составляет величину не более нескольких десятков.

Кроме того, вы можете воспользоваться онлайн-калькулятором катушки на ферритовом стержне.

Особая благодарность за конструктивную помощь и соавторство в разработке методики расчета.

Индуктивность и емкость в цепи переменного тока

Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальные фазы напряжения и э. д. с. соответственно будут иметь некоторые значения ϕ и ψ. При таком условии мгновенные значения силы тока, напряжения и э. д. с. будут выражаться следующими формулами:

i = Iм sin ωt

u = Uм sin (ϕ + ωt),

e = Ɛm sin (ψ + ωt).

Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току и находить по формуле:

R=(pl/S)(1 + at).

В цепи переменного тока, имеющей только активное сопротивление, например в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. ϕ=0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.


График и схема подключения

Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω:

ХL = ωL.

Влияние индуктивного сопротивления на силу тока в цепи наглядно иллюстрируется опытом, изображенным на рис. 26.6. При опускании ферромагнитного сердечника в катушку лампа гаснет, а при его удалении вновь загорается. Это объясняется тем, что индуктивность катушки сильно возрастает при введении в нее сердечника. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.

Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.


Катушки индуктивности

Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока. Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω;

Хс = 1/ωС

Из сравнения формул (26.11) и (26.12) видно, что катушки индуктивности представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Напряжение на емкостном сопротивлении Ха отстает по фазе от тока. Индуктивное XL и емкостное Хс сопротивления называют реактивными. В теории переменного тока доказывается, что при последовательном включении индуктивного и емкостного сопротивлений общее реактивное сопротивление равно их разности:

Будет интересно Что такое короткое замыкание

X = XL—XC

и имеет индуктивный характер при XL > Хс и емкостный характер при XL < Xc.

В заключение заметим, что средняя активная мощность переменного тока, показывающая, сколько энергии за единицу времени передается электрическим током данному участку цепи, определяется формулой:

P = IU cos ϕ.

Мощность, затрачиваемая только на тепловое действие тока, выражается формулой:

Р = I2R

Для увеличения активной мощности переменного тока нужно повышать cos ϕ. (Объясните, почему наибольшее значение cos ϕ имеет при XL=XC.)


Индуктивность

Расчёт размагничивающего фактора

Как я уже говорил, размагничивающий фактор N зависит от размеров сердечника

Катушка индуктивности с разомкнутым сердечником

Для его определения введём коэффициент λ, зависящий от отношения длины сердечника lc к его диаметру dc

Тогда в интервале 2 ≤ λ ≤ 50 с точностью 10 % размагничивающий фактор данного сердечника можно определить по следующему выражению

где λ – отношение длины сердечника к диаметру сердечника

Тогда эффективная магнитная проницаемость разомкнутого сердечника можно рассчитать по следующей формуле

где μr – относительная магнитная проницаемость вещества сердечника,

lc – длина сердечника,

dc – диаметр сердечника.

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Индуктивность проводника

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.


Конструкция катушек

Опыты

В заключение хотелось бы рассказать о некоторых любопытных свойствах катушек индуктивности, которые вы могли бы сами понаблюдать, имея под рукой простейшие материалы и доступные приборы. Для проведения опытов нам потребуется отрезки изолированного медного провода, ферритовый стержень и любой современный мультиметр с функцией измерения индуктивности. Вспомним, что любой проводник с током создаёт вокруг себя магнитное поле такого вида, показанное на рисунке 7.

Рис. 8. Магнитное поле катушки с током.

Намотаем на ферритовый стержень четыре десятка витков провода с небольшим шагом (расстоянием между витками). Это будет катушка №1. Затем намотаем такое же количество витков с таким же шагом, но с обратным направлением намотки. Это будет катушка №2. И затем намотаем 20 витков в произвольном направлении вплотную. Это будет катушка №3. Затем аккуратно снимем их с ферритового стержня. Магнитное поле таких катушек индуктивности выглядит примерно так, кака показано на рис. 8.

Рис. 10.

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. На рисунке 8 показана катушка с немагнитным сердечником, роль немагнитного сердечника исполняет воздух. На рис. 9 показаны примеры катушек индуктивности с магнитным сердечником, который может быть замкнутым или разомкнутым.

Рис. 11.

В основном используют сердечники из феррита и пластин из электротехнической стали. Сердечники повышают индуктивность катушек в разы. В отличие от сердечников в форме цилиндра, сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, так как магнитный поток в них замкнут.

Рис. 12.

Подключим концы мультиметра, включенного в режим измерения индуктивности, к концам катушки №1. Индуктивность такой катушки чрезвычайно мала, порядка нескольких долей микрогенри, поэтому прибор ничего не показывает (рис. 10). Начнём вводить в катушку ферритовый стержень (рис. 11). Прибор показывает порядка десятка микрогенри, причем при продвижении катушки к центру стержня её индуктивность возрастает примерно в три раза (рис. 12).

Рис. 13.

По мере продвижения катушки к другому краю стержня, значение индуктивности катушки опять падает. Вывод: индуктивность катушек может регулироваться путем перемещения в них сердечника, и максимальное её значение достигается при расположении катушки на ферритовом стержне (или, наоборот, стержня в катушке) в центре. Вот мы и получили настоящий, пусть и несколько неуклюжий, вариометр. Проделав вышеописанный опыт с катушкой №2, мы получим аналогичные результаты, то есть направление намотки на индуктивность не влияет.

Рис. 14.

Уложим витки катушки №1 или №2 на ферритовом стержне поплотнее, без зазоров между витками, и снова измерим индуктивность. Она увеличилась (рис. 13).

Рис. 15.

А при растягивании катушки по стержню её индуктивность уменьшается (рис. 14). Вывод: изменяя расстояние между витками можно подстраивать индуктивность, а для максимальной индуктивности наматывать катушку надо «виток к витку». Приёмом подстройки индуктивности путём растягивания или сжатия витков частенько пользуются радиотехники, настраивая свою приёмопередающую аппаратуру на нужную частоту.

Установим на ферритовый стержень катушку №3 и измерим её индуктивность (рис. 15). Число витков уменьшилось в два раза, а индуктивность уменьшилась в четыре раза. Вывод: чем меньше количество витков — тем меньше индуктивность, и нет линейной зависимости между индуктивностью и числом витков.

Автор статьи: Sergey Akishkin

Методы расчета индуктивностей

Наиболее полно теоретические основы методов расчета индуктивностей изложены в справочной книге: «». Здесь же хотелось бы немного систематизировать подходы к расчету индуктивностей.

Прежде всего отметим, что расчет индуктивности можно вести двумя способами:∙ Численный метод с различной степенью упрощения задачи ∙ Расчет по упрощенным эмпирическим формулам

Эмпирический подход предполагает подбор (подгонку) относительно несложных аппроксимирующих формул по результатам измерений индуктивности реальных катушек. Расчет по упрощенным эмпирическим формулам имеет ограничения в точности и применим только к катушкам с определенной геометрией намотки. Большинство таких формул можно найти здесь. Несмотря на невысокую точность, такой расчет чаще всего вполне достаточен в радиолюбительской практике.

Численные методы основываются на реальных физических моделях катушек индуктивности и их, в свою очередь, можно разбить на две категории:

  1. Расчет в программах основанных на фундаментальных законах классической электродинамики, так называемых электромагнитных симуляторах. К ним можно отнести , , , и т.п. Эти программы используют специальные численные методы, такие как и . Расчет в таких программах довольно точен, позволяет учесть множество нюансов, рассчитать катушку произвольной формы, однако требует огромных ресурсов компьютера. Применяется при научном анализе или если катушка работает в режиме, когда ее нельзя представлять как сосредоточенный элемент []
  2. Численные методы расчета, основанные на фундаментальных формулах физики, применимых к круговым проводникам, выведенных в XIX веке . Позволяют провести расчет более точно, чем по эмпирическим формулам, но не требуют запредельных аппаратных ресурсов компьютера. На них следует остановится подробнее, т.к их и использует Coil32…

Расчет индуктивности в программе Coil32 основан на модели Максвелла, в которой катушка представляется как множество соосных бесконечно тонких круговых проводников.Из следует, что силовые линии магнитного поля всегда замкнуты. Из этого следует, что магнитный поток порожденный круговым контуром с током весь проходит через поверхность, ограниченную этим контуром. Это обстоятельство отражено в следующей формуле:

Из этой формулы можно вывести определение для собственной индуктивности кругового проводника через двойной контурный интеграл Ф.Е.Неймана для взаимоиндукции :

Как показал Д.К.Максвелл, для двух бесконечно тонких круговых соосных проводников этот интеграл имеет однозначное решение, которое выглядит следующим образом:

, где:

  • M — взаимоиндукция;
  • r1, r2 — радиусы двух бесконечно тонких круговых проводников;
  • x — расстояние между центрами кругов, ограниченных этими проводниками;
  • K,E — , соответственно первого и второго рода;

Численный метод расчета по формуле Максвелла сводится к численным методам решения эллиптических интегралов.

По формуле Максвелла можно рассчитывать как индуктивность многослойных и однослойных катушек, так и взаимную индуктивность двух отдельных катушек. Погрешности модели, связанные с допущением, что провод бесконечно тонкий и представляет собой набор круговых проводников (хотя на самом деле — это спираль), можно уменьшить с помощью соответствующих поправок.

Рассчитывая взаимоиндукцию проводника «самого на себя», т.е. его самоиндукцию (собственную индуктивность), Максвелл использует понятие — «среднее геометрическое расстояние» — GDM (g), для круглого провода:

g = e0.25*rw, где rw — радиус провода.

Очень важен следующий момент. Вся вышеприведенная логика рассуждений и вывода формул, начиная от формулы Неймана, справедлива в случае равномерного распределения плотности тока вдоль катушки. В подавляющем большинстве практических случаев так и есть. Однако если катушка работает вблизи частот собственного резонанса, начинает проявляться неравномерность распределения плотности тока по проводнику! Другими словами, начинает проявляться зависимость индуктивности от частоты, которая в наших расчетах не учитывается. Поэтому индуктивность катушки можно рассчитать корректно только на частотах не превышающих 60-70% от частоты ее собственного резонанса. Таким образом Coil32 не годится для точных расчетов, например, катушек Тесла или спиральных резонаторов. В этом случае и в случае если катушка работает в режиме выше частоты собственного резонанса — ее нужно представлять только в виде модели длинной линии и рассчитывать в программах-электромагнитных симуляторах, либо пользоваться специальными эмпирическими формулами.

Ссылки:

  1. D W Knight 2013
  2. Robert Weaver 2012
  3. Marc T. Thompson 1999
  4. M.A.Bueno A K T Assis 1995

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I2

а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность. При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б). Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.

Поэтому:

u = R*Imsinωt  + ωLImsin(ωt+π/2).

Что такое катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Расчёт поправки на собственную индуктивность витков

Как я писал в начале статьи, полная индуктивность катушки L состоит из расчётной индуктивности LP и поправки на изоляцию ∆L, которая в свои очередь состоит из поправки на собственную индуктивность витков ∆1L и поправки на взаимную индуктивность витков ∆2L

Данные поправки зависят от взаимного расположения витков в катушке. Для провода круглого сечения возможны следующие варианты заполнения катушки

Расположение провода круглого сечения в катушке индуктивности. s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции), p – шаг намотки по длине катушки, q – шаг намотки по толщине катушки.

В общем случае поправка на собственную индуктивность витков рассчитывается по следующему выражению

где μ – магнитная постоянная, μ = 4π•10-7 Гн/м;

ω – число витков соленоида;

DСР – средний диаметр катушки, м;

I – коэффициент, зависящий от расположения витков катушки.

Коэффициент I определяется в зависимости от расположения провода, варианты которого изображены на рисунке выше.

Для варианта а), провод намотан с небольшим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта б), провод намотан с большим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта в), провод намотан с шагом p по длине катушки и с шагом q по толщине катушки

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта г), провод намотан в один слой по длине катушки с шагом p. В зависимости от способа вычисления расчётной индуктивности LP

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной нулю (расcчитывалась как соленоид), то коэффициент I будет равен

где p – шаг намотки по длине катушки, sp – диаметр голого провода (без изоляции).

Для варианта д), провод намотан в один слой по толщине намотки с шагом q, также возможно два случая

— если при вычислении расчётной индуктивности LP длина намотки l принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP длина намотки l принята равной нулю (рассчитывалась как плоская катушка), то коэффициент I будет равен

где q – шаг намотки по толщине катушки, sp – диаметр голого провода (без изоляции).

Расчет катушки в броневом ферритовом сердечнике

Ферритовые сердечники для катушек индуктивности бывают самыми разнообразными. Ш-образные, П-образные, броневые разных модификаций. Кроме феррита для таких сердечников используют и порошковые материалы, карбонильное железо. Расчет катушек на таких сердечниках можно вести разными способами.

На Западе при расчете катушек с любым ферритовым сердечником принят способ расчета через специальный параметр AL и расчет ведется по таким же формулам как и для ферритовых колец. Основная формула расчета:

  • L – индуктивность (нГн)
  • AL – коэффициент индуктивности сердечника (нГн/виток в квадрате)
  • N – число витков катушки

Параметр AL можно найти в спецификациях производителя, для каждого типоразмера сердечника свой, да и размерность коэффициента часто различается. Основное отличие бронированных сердечников от кольцевых заключается в том, что хотя практически весь магнитный поток также сосредоточен внутри сердечника, однако на пути магнитного потока есть зазор в месте прилегания чашек друг к другу. Этот зазор имеет высокое магнитное сопротивление и, в итоге, относительная магнитная проницаемость сердечника всегда меньше его начальной.

  • μотн – относительная магнитная проницаемость сердечника;
  • μн – начальная магнитная проницаемость;
  • lз,lс – длина зазора и средняя длина магнитной силовой линии в сердечнике, соответственно.

Кроме зазора между чашками, величина которого зависит от плотности их прилегания друг к другу, существует технологический зазор в центральном керне. Этот зазор призван стабилизировать параметры сердечника уменьшив зависимость относительной магнитной проницаемости от плотности прилегания чашек. У разных типов сердечников от разных производителей этот зазор отличается.

Величина коэффициента индуктивности AL зависит только от μотн и размеров сердечника.

  • Sc – площадь сечения магнитной цепи (зависит только от размеров сердечника);
  • lc – средняя длина силовой линии магнитного поля (зависит только от размеров сердечника);
  • α – постоянный коэффициент не зависящий от размеров сердечника.

Зная размеры сердечника и его начальную магнитную проницаемость, мы можем определить фактор индуктивности катушки AL. Поскольку величина зазора между чашками много меньше средней длины магнитной линии и отношения между ними у разных типоразмеров чашек близки, – можно упростить расчет и оперировать начальной магнитной проницаемостью вместо относительной. β – коэффициент меньше единицы, учитывающий зазор в сердечнике.

В конечном итоге, объединив коэффициенты α и β в общий коэффициент k мы приходим к следующим эмпирическим формулам:

  • L – индуктивность (мкГн)
  • µ – начальная магнитная проницаемость сердечника
  • N – число витков катушки
  • k = 19.74 для ферритовых сердечниковk = 60 для карбонильных сердечников
  • D1,D2,d1,d2,h1,h2 – геометрические размеры сердечника в мм.

Формулы справедливы для стандартных броневых сердечников типов “Б”, “СБ”. Есть возможность выбрать один из нескольких стандартных сердечников, что позволяет рассчитать катушку несколькими щелчками мыши. При этом программа рассчитывает число витков для катушки при полностью выведенном подстроечнике. Для расчета при полностью введенном подстроечнике можно принять D2 =0. Это касается конечно сердечников из карбонильного железа, т.к. ферритовые в основном идут без подстроечников. Среднее отношение зазора к длине силовой линии у ферритовых и карбонильных сердечников отличается, что и нашло свое выражение в различной величине коэффициента k.

Необходимо иметь ввиду, что упрощение расчета без учета реальной величины магнитного зазора (введение коэффициента β) существенно понижает точность расчета. Кроме того разброс µ для одного типоразмера довольно высок и зависит от температуры. Поэтому расчет катушек в броневом сердечнике по этой методике имеет существенную погрешность, достигающую ±30% и выше и он годится только для сердечников с неизвестным AL. Для более точных вычислений необходимо непосредственно пользоваться коэффициентом AL, если он есть в даташитах на броневой сердечник.

Исходные формулы из книги:

Назад…      

Итог

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий