Расчет емкостных токов присоединений в сети 6(10) кв

Меры профилактики по предотвращению КЗ

Предотвратить возникновение коротких замыканий в значительной степени помогают меры предосторожности и профилактические мероприятия. Наиболее важными из них являются следующие:

Наиболее важными из них являются следующие:

Перед тем как найти короткое замыкание в проводке, следует обращать внимание на заметное искрение или треск в розетке и выключателях, сопровождающиеся запахом горелой пластмассы. Именно эти факторы чаще всего приводят к аварийному режиму

В таких случаях нужно обязательно заменить неисправные установочные изделия.
Перед прокладкой новых проводов нужно заранее рассчитать мощность потребителей, которые будут использованы в данной сети. Правильно выбранное сечение предохраняет кабели от излишних перегрузок. В процессе монтажа проводка не должна быть перекручена. Кабели укладываются параллельно, а между ними оставляется свободное пространство.
При выполнении ремонтных работ, связанных со сверлением стен, необходимо заранее уточнить места прокладки кабельных линий.
Установка средств автоматической защиты позволит избежать негативных последствий, за счет отключения линии в момент КЗ.
Не реже 2-3 раз в год проводить плановые осмотры, выключателей, розеток, распределительных коробок, откуда расходятся провода и мощного оборудования. Проводку с алюминиевыми жилами по возможности лучше устраняем и меняем, поскольку этот материал при нагревании увеличивает сопротивление цепи, вызывая увеличенный нагрев, замыкание и расплавление кабельных линий.
При поиске короткого замыкания все действия с проводкой и электрическими приборами следует выполнять при строгом соблюдении техники безопасности. Выполняя рекомендации специалистов и точно соблюдая порядок действий, вполне возможно не только самостоятельно обнаружить аварию, но также исправить все ее последствия.

Поиск замыкания электропроводкиПоиск замыкания электропроводки

Как найти короткое замыкание в проводке автомобиля

Причины возникновения короткого замыкания

Что такое ток короткого замыкания

Что такое короткое замыкание, его виды и причины возникновения

Как рассчитать ток короткого замыкания

Формула тока короткого замыкания

Пример 1 – Расчет несиметричных токов к.з. за трансформатором 6/0,4 кВ со схемой соединения обмоток У/Ун-0 (Y/Y-0)

Требуется определить трехфазный, двухфазный и однофазный ток к.з. за трансформатором 6/0,4 кВ на стороне 0,4 кВ со схемой соединения обмоток У/Ун-0 (Y/Y-0).

Исходные данные:

  • Мощность трансформатора: Sн.т.=630 кВА;
  • Номинальное напряжение вторичной стороны трансформатора Uн.т.НН=0,4 кВ;
  • Напряжение короткого замыкания для двухобмоточного тр-ра типа ТМГ-630: Uк%=5,5%; (выбирается из каталожных данных Завода-изготовителя, либо принимается из справочников);

Решение

1.1 Определяем сопротивление трансформатора приведенное к стороне 0,4 кВ, по формуле 2-8 , также данное значение можно принять по таблице П11 :

Обращаю Ваше внимание значение полного сопротивления трансформатора в таблице П11 представлен в Ом, а по формуле 2-8 мы получаем в мОм.
Для расчета токов к.з. значение zт принимаем в Омах, zт = 0,014 Ом

1.2 Определяем ток трехфазного к.з. за трансформатором, на стороне 0,4 кВ:

Еще раз напоминаю, что для упрощения расчетов принята система бесконечной мощности, поэтому подставляем только сопротивление трансформатора, то есть хΣ = zт.

1.3 Определяем ток двухфазного к.з. за трансформатором, на стороне 0,4 кВ:

1.4 Определяем полное сопротивление трансформатора при однофазном к.з. по таблице П11, zт(1)=0,129 Ом. Данное значение также можно определить из таблицы 2.4 , чтобы получить значение zт(1) = (zт(1)/3)*3=43*3 = 129 мОм или 0,129 Ом.

1.5 Определяем ток однофазного к.з. за трансформатором, на стороне 0,4 кВ по формуле представленной на рис.24 :

где: Uф = Uл/√3 = 400/√3 = 230 В – фазное напряжение.

Для проверки себя можем рассчитать ток однофазного к.з. по обще принятой формуле 49 :

где:

  • Uф = 230 В – фазное напряжение;
  • Zпт = 0 — полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом, в данном примере, мы считаем ток однофазного к.з. сразу за трансформатором, без учета полного удельного сопротивления петли фаза-нуль для кабеля.

Как мы видим из результатов расчета, значения тока однофазного к.з. у нас практически совпали, что показывает правильность расчета.

1.6 Определим ток однофазного к.з. приведенный к стороне 6 кВ по формуле представленной на рис.24 :

В двух других фазах ток будет:

1.7 Определяем ток трехфазного к.з. за трансформатором, приведенный к стороне 6 кВ:

1.8 Определяем ток двухфазного к.з. приведенный к стороне 6 кВ:

2.2.4 Расчет токов к. з. в точке К4

Рис.6. Схема замещения для расчета КЗ в т. К4.

Для расчета токов КЗ в именованных единицах сопротивление всех элементов расчетной схемы приводим к той ступени напряжения на которой вычисляется ток КЗ. Приведение осуществляется через квадрат коэффициента трансформации.

Определяем приведенное сопротивление трансформатора

;

; Ом

Определяем приведенное сопротивление КЛ.

; ; Ом

Определяем приведенное сопротивление реактора

;

; Ом

Определяем приведенное сопротивление линии 10 кВ по формуле

; Ом

Определяем приведенное сопротивление генератора

;

; Ом

Определяем полное приведенное сопротивление до т. К4.

;

; Ом

Рассчитываем Iкз (3)
в точке К4., по формуле

;

; кА

Рассчитываем Iкз (2)
в точке К4., по формуле

; ; кА

Популярное изложение закона Ома

До детального изучения явления нужно вспомнить базовые определения из школьного курса физики. Основные зависимости описывает известная формула (закон Ома):

I = U / R,

где:

  • I – сила (величина) тока в амперах (А), которая определяет плотность энергии в контрольном участке и при достаточной величине способна разогреть проводник до высокой температуры;
  • U – напряжение (ЭДС, разница потенциалов между определенными точками);
  • электрическое сопротивление (R) – препятствует прохождению электрического тока, увеличивается при нагреве проводника.

«Магический» треугольник помогает запомнить основные формулы для расчета. Взаимные зависимости рассматриваемых параметров часто поясняют на примере с трубопроводом:

  • ток (движение заряженных частиц) подобен потоку;
  • напряжение – разница давления на входе и выходе;
  • сопротивление – внутренний диаметр, ограничивающий пропускные способности транспортной системы.

По приведенным аналогам несложно догадаться о том, что тонкий (толстый) проводник затрудняет (упрощает) прохождение тока. Дополнительные ограничения объясняются проводимостью определенного материала и наличием посторонних примесей.

Расчет МТЗ линии

3.1. Определим ток срабатывания МТЗ по условию отстройки от самозапуска двигателей нагрузки после восстановления питания действием автоматики по выражению 1-1 :

где:

  • kн = 1,1 – 1,15 – коэффициент надежности, берется по ана0логии из расчета ТО;
  • kв — коэффициент возврата, для цифровых терминалов рекомендуется принимать – 0,96, для Sepam принимается 0,935;
  • kсзп. – коэффициент самозапуска, в связи с тем, что в данном примере линия питает только бытовую нагрузку (двигательная нагрузка — отсутствует), по опыту эксплуатации и проведенных исследований рекомендуется принимать kсзп. = 1,2 – 1,3 , при условии, что время срабатывания защиты будет не менее 0,5 с.

Если же у вас в виде нагрузки преобладают асинхронные двигатели напряжением до 1000 В, в этом случае нужно определить коэффициент самозапуска.

В качестве примера, расчет коэффициента самозапуска, рассмотрен в статье: «Пример выбора уставок секционного выключателя 6(10) кВ».

Iраб.макс. – максимальный рабочий ток линии, то есть Iраб.макс. – это сумма номинальных токов всех трансформаторов, питаемых по защищаемой линии, без учета коэффициента загрузки трансформаторов.

Определяя Iраб.макс. без учета коэффициента загрузки, мы создаем определенный расчетный запас на несколько лет.

3.2. Определяем вторичный ток срабатывания реле по выражению 1-3 :

3.3. Определяем коэффициент чувствительности при двухфазном КЗ в основной зоне действия защиты (точка КЗ с наименьшим током КЗ) по выражению 1-5 :

3.4. Определяем коэффициент чувствительности в зоне резервирования, т.е. когда КЗ у нас на шинах 0,4 кВ трансформаторов ответвления.

3.4.1. Определим токи КЗ за трансформаторами:

3.4.2. Определяем коэффициенты чувствительности при двухфазном КЗ в зоне резервирования:

Согласно ПУЭ 7-издание пункт 3.2.25 kч ≥1,2. Очень часто МТЗ не чувствительна к повреждениям за маломощными трансформаторами, в этом случае, допускается не резервировать отключение КЗ за трансформаторами, согласно ПУЭ 7-издание пункт 3.2.17.

3.5. Определяем ток срабатывания МТЗ по условию согласования с плавкими вставками предохранителей трансформаторов по выражению 4.3 :

где:

  • kотс. = 1,3 – коэффициент отстройки;
  • k”отс. = 2 – коэффициент отстройки от номинального тока плавкой вставки предохранителей;
  • Iвс.ном.макс. – наибольший из номинальных токов плавких вставок предохранителей, А;
  • ∑Iраб.макс. – суммарный ток нагрузки неповрежденных присоединений, А.

Если же в место предохранителя у вас установлен автоматический выключатель, то ток срабатывания определяется по формуле 4.4 :

Предварительно принимает наибольший ток срабатывания МТЗ Iс.з. = 195 A.

3.6. Определяем выдержку времени МТЗ с независимой времятоковой характеристикой.

Как видно из рис. П-11 при токе МТЗ Iс.з. = 195 A время плавления плавкой вставки достигает 8 с, что неприемлемо, поэтому нужно увеличить ток срабатывания МТЗ, что бы уменьшить время срабатывания.

Построим карту селективности для предохранителя ПКТ-50 по следующим точкам используя типовую времятоковую характеристику (см. рис. П-11): 200А – 8 с, 400 А – 0,55 с, 500 А – 0,3 с, 600 А – 0,18 с, 700 А – 0,14 с, 800 А – 0,09 с, 900 А – 0,07 с, 1000 А – 0,05 с.

В соответствии с ГОСТ 2213-79 отклонения значения ожидаемого тока КЗ при данном времени плавления плавкого элемента tпл. от значения тока КЗ, получаемого по типовой времятоковой характеристике плавления, не должно превышать ±20%.

Исходя из этого, типовая характеристика предохранителя типа ПКТ 50 должна быть смещена вправо на 20%.

Построим времятоковую характеристику с учетом 20% по следующим точкам:

  • 200А + 20% = 240 А – 8 с;
  • 400А + 20% = 480 А – 0,55 с;
  • 500А + 20% = 600 А – 0,3 с;
  • 600А + 20% = 720 А – 0,18 с;
  • 700А + 20% = 840 А – 014 с;
  • 800А + 20% = 960 А – 0,09 с;
  • 900А + 20% = 1080 А – 0,07 с;
  • 1000А + 20% = 1200 А – 0,05 с;

Исходя из времятоковой характеристики плавких предохранителей, принимаем ток срабатывания МТЗ Iс.з. = 500 A, при таком токе плавкая вставка предохранителя расплавится за время tвс = 0,3 с.

Согласно ступень селективности между защитой линии 10 кВ и предохранителем должна быть в пределах ∆t = 0,5 – 0,7 с.

3.6.1. Определяем время срабатывания МТЗ линии:

tс.з. = tвс + ∆t = 0,3 + 0,5 = 0,8 с

Принимает ток срабатывания МТЗ Iс.з. = 500 A и время срабатывания МТЗ tс.з. = 0,8 с.

Литература:

1. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г. 2. Расчет токов короткого замыкания в электросетях 0,4-35 кВ, Голубев М.Л. 1980 г. 3. Расчеты релейной защиты и автоматики распределительных сетей. М. А. Шабад, 2003г. 4. СТО ДИВГ-059-2017 «Релейная защита распределительных сетей 6-10 кВ. Расчет уставок. Методические указания» ООО «НТЦ «Механотроника» 2017 г. 5. Расчет токов короткого замыкания для релейной защиты. И.Л.Небрат. 1998 г.

Активное реактивное сопротивление

Активные и реактивные сопротивления в цепи переменного тока тоже суммируются геометрически.

Активные и реактивные сопротивления отдельных участков цепи соответственно равны: г 4 ом; хи 15ом; xci — 40 ом; г212ом; jci220 ом; /, 20 ом; г45 ом; хи10 ом; г52сш; С5 14сш; г 8 ом; Ze20 ом; л: 1725 о.ч. Вычислить активные и реактивные мощности отдельных участков цепи и всей цепи, коэффициент мощности созф всей цепи. Построить векторную диаграмму напряжений и токов.

Активные и реактивные сопротивления одной фазы трансформатора определяют по результатам опыта короткого замыкания. Короткое замыкание при номинальном первичном напряжении является аварийным режимом, при котором токи в обмотках превышают номинальные в 10 — 15 раз, и опасно для трансформатора.

Активные и реактивные сопротивления приемников соответственно равны: / 15 2 ом; яи13 ом; г232 ом; zC224 ом; г320 ом.

Активные и реактивные сопротивления приемников соответственно равны: гх32 ом; хи 30, 2 ом; г218 5 ом, яС27 6 ом; г340 ом. Определить показания приборов, а также активную и реактивную мощности каждого приемника, если амперметр Аг показывает ток / 15 а.

Активные и реактивные сопротивления фаз соответственно равны: R 25 4 Ом; XL Xc 44 Ом.

Удельные активные и реактивные сопротивления г0, х0 определяют по справочным таблицам, так же как и для воздушных линий. Из (2.3), (2.7) видно, что Хо уменьшается, а Ьо растет при сближении фазных проводов. Для кабельных линий расстояния между проводами значительно меньше, чем для воздушных, и х0 очень мало.

Активные и реактивные сопротивления разных фаз таких токопроводов неодинаковы. При значительной длине токопроводов с фазами, расположенными в одной плоскости, для выравнивания сопротивлений и потерь напряжения всех фаз применяют транспозицию. Для полного выравнивания сопротивлений каждая фаза должна поочередно занимать на одной трети длины токопровода каждое из трех возможных положений, например при вертикальном расположении — верхнее, среднее и нижнее.

Активные и реактивные сопротивления параллельных ветвей соответственно равны: г1 16 ом; xL 2 ом; г248 ом; л: с64 ом.

Активные и реактивные сопротивления разных фаз таких токопроводов неодинаковы. При значительной длине токопроводов с фазами, расположенными в одной плоскости, для выравнивания сопротивлений вех фаз применяют транспозицию. Для полного выравнивания сопротивлений каждая фаза должна поочередно занимать на одной трети длины токопровода каждое из трех возможных положений, например при вертикальном расположении — верхнее, среднее и нижнее.

Активные и реактивные сопротивления разных фаз таких токопроводов неодинаковы. При значительной длине токопроводов с фазами, расположенными в одной плоскости, для выравнивания сопротивлений всех фаз применяют транспозицию.

Активные и реактивные сопротивления однопроволочного провода быстро растут с увеличением его диаметра. Поэтому в электрических сетях однопрово-лочные провода применяют с диаметром не более 5 мм. Провода с сечением 25 мм2 и выше выполняют многопроволочными.

Активное и реактивное сопротивления или соответственно их значения можно представить на числовой плоскости Гаусса в виде отрезков. Омическое сопротивление ( например, сопротивление электролита) не вызывает сдвига фазы тока при приложенном напряжении, и наоборот. Его можно представить как отрезок реальной оси, причем длина отрезка соответствует значению сопротивления.

Активное и реактивное сопротивления нагрузки при известных сопротивлениях амперметра га и ха, а также ваттметра гвт и хвт находятся как гнг0б — га — гвт; хн — х0б — ха — хвт.

Активное и реактивное сопротивления алюминиевых и сталеалюминиевых проводов.

Причины короткого замыкания

Пример, который оценят женщины (чудо, если они будут читать эту статью) – из-за постоянных перегибов ухудшается изоляция, и в один “прекрасный” момент фен или утюг “бахают” на вводе или около вилки.

Другой пример – из-за механической поломки или внешнего воздействия токоведущие части по какой-то причине оказываются слишком близко друг к другу, вплоть до полного соприкосновения. Это может случиться из-за природных явлений (упало дерево на провода), ударов, падений электроприборов.

Ну и классический пример – КЗ из-за вмешательства в электропроводку домашних “мастеров на все руки”. По законам жанра, у мастера после этого инцидента обязательно должны стоять дыбом волосы, а лицо быть черным. Мне от таких картинок не смешно – всё происходит по другому.

Выбор и описание работы устройства АРВ

Рис.10. Схема АВР двухстороннего действия для двухтрансформаторной п/с

а) — поясняющая схема; б) — схема АВР и управления выключателем Q1 (аналогично Q2); в) — схема АВР для секционного выключателя.

Данная схема применяется на сельских 2х
-трансформаторных п/с 110…35/10 кВ, где все выключатели оборудованы пружинными приводами. Секционный выключатель Q3 нормально отключен и включается устройством АВР при отключении выключателей ввода напряжением 10 кВ Q1 или Q2 или исчезновение напряжения на шинах 6 (10) кВ секций I или II в результате отключения питающей линии электропередачи W1 или W2. Особенность схемы АВР — при восстановлении напряжения на питающей линии автоматически восстанавливается нормальная схема п/с.

Пусковой орган схемы АВР состоит из двух реле времени KT1 и KT2, Выполняющих одновременно роль органов минимального напряжения и выдержки времени. При снижении или исчезновении напряжения реле при возврате якоря обеспечивают заданную выдержку времени. Обмотки реле подключаются к разным трансформаторам: KT1 — к трансформатору собственных нужд (ТСН1), а КТ2 — к измерительному трансформатору (ТН1). При этом исключается возможность ложной работы пускового органа при неисправностях в цепях напряжения.

На рис.10 контакты выключателей и реле показаны для рабочего положения: выключатели Q1 и Q2 включены, в результате чего имеется напряжение на шинах 6 (10) кВ подстанции; приводы всех выключателей подготовлены для операции включения; реле положения выключателей «Включено» KQC находятся под напряжением и их контакты замкнуты. Напряжение на шинки обеспеченного питания (ШОП) подается ТСН1 и ТСН2.

При повреждении, например, трансформатора Т1 под действием релейной защиты отключается выключатель Q1, замыкается его вспомогательный контакт SQ1.3 в цепи включения секционного выключателя Q3 и последний включается, т.е. происходят АВР без выдержки времени и восстановление напряжения на секции I. Однократность действия АВР обеспечивается тем, что при отключении выключателя Q1 реле KQC теряет питание и размыкает свой контакт KQC.2 в цепи автоматической подготовки привода выключателя Q3. Схема АВР перестаёт действовать при отключении контактной перемычки (накладки) XB2.

Схема работает в другом аварийном режиме — при отключении, например, питающей линии W1 — с помощью пускового органа минимального напряжения. При исчезновении напряжения со стороны линии W1 реле КТ1 и КТ2 возвращается в исходное состояние, с выдержкой времени замыкаются их контакты КТ1.2 и КТ2.2 в цепях отключения выключателя Q1. Выключатель Q1 отключается, и далее схема АВР действует на включение выключателя Q3 так же, как описано ранее. Напряжение на шинах секции I восстанавливается, якорь реле КТ2 втягивается, и его контакт КТ2.1 замыкается, а контакт КТ2.2 размыкается. Реле КТ1 по-прежнему находится в исходном состоянии, и его контакт КТ1.1 разомкнут. В данном случае реле КТ1 используют для контроля за появлением напряжения со стороны питающей линии. Пусковым же органом восстановления нормальной предварительной схемы п/с служит реле времени КТ3, срабатывающее при подаче напряжения.

Если напряжение о стороны линии W1 появилось, то срабатывает реле КТ1 и замыкает свой контакт КТ1.1 При этом начинает работать реле КТ3, которое своим проскальзывающим контактом КТ3.2 (замыкается на 1…1.5 с) создаёт цепь на включение выключателя Q1, а конечным контактом КТ3.3 — цепь на отключение секционного выключателя Q3. Таким образом, восстанавливается нормальная схема п/с с отключенным выключателем Q3 который автоматически подготавливается к будущему действию устройства АВР.

Использование ударного коэффициента

Ударный коэффициент в режиме короткого замыкания играет важную роль, поэтому его следует рассмотреть более подробно. Этот показатель, применяемый в расчетах, можно выразить короткой формулой: Ку = iy/inm. Здесь iy является ударным током КЗ, а inm представляет собой амплитуду периодической составной части.

Данный коэффициент применяется при расчетах ударного тока. Если в формуле амплитуду inm заменить на действующий ток, получится следующее выражение: Ку = iy√2inm. Следовательно, формула для вычисления ударного тока приобретет следующий вид: iy = Ку√2inm. На практике значение ударного коэффициента КЗ принимается за 1,8 в электроустановках более 1 кВ; величина 1,3 берется при возникновении КЗ за участком кабельной линии большой протяженности.

Этот же показатель используется для вторичной стороны понижающего трансформатора с мощностью, не превышающей 1000 кВА и сетей с напряжением до 1 кВ. Для ускорения расчетов существует таблица, содержащая коэффициенты для аварийных ситуаций, встречающихся чаще всего.

Оборудование и установки Постоянная времени Та Ударный коэффициент Ку
Турбогенераторы 0,1-0,3 1,95
Блок, состоящий из генератора и трансформатора 0,04 1,8
Высоковольтная ЛЭП 0,01 1,3
Короткая низковольтная ЛЭП 0,001

Теоретически, при отсутствии в цепи активных сопротивлений и постоянной времени, равной бесконечности, затухание периодической компоненты вообще бы не наступило, и она сохранила бы свое начальное значение на весь период КЗ до момента отключения аварийного участка. При этом, ударный коэффициент достиг бы своего максимума и составил Ку = 2.

Если короткое замыкание наступило в местах, удаленных от источника питания на значительные расстояния, токи, появляющиеся в этой точке, будут небольшими, сравнительно с номинальным током этого источника питания. В процессе КЗ изменения номинала будут практически незаметными, а напряжение на клеммах следует принять за постоянную величину.

Таким образом, периодическая компонента будет оставаться постоянной по своей амплитуде на протяжении всего времени КЗ. Изменения самого тока КЗ будут происходить лишь когда апериодическая составляющая будет постепенно затухать.

Замыкание и перегрузка

Чем отличаются эти два явления – короткое замыкание и перегрузка?

В электрической цепи можно выделить 4 принципиально разных режима, которые отличаются по току потребления:

  1. Режим холостого хода. Ток равен нулю, напряжение номинальное, потерь на проводах никаких нет. Розетка, к которой ничего не подключено, работает как источник напряжения в режиме холостого хода.
  2. Номинальный режим. Иначе – нормальный режим, когда мощность нагрузки не превышает расчетную. В этом режиме всё хорошо, мы спокойно наслаждаемся благом электрификации страны. “Просадка” напряжения если и будет, то незначительная – единицы процента.
  3. Режим перегрузки. В этом режиме ток может незначительно (на десятки процентов) либо в несколько раз (на сотни процентов) превышать номинальный. Перегрузка может произойти из-за частичного ухудшения изоляции, превышения суммарной мощности подключенных потребителей, либо из-за неисправности внутри отдельного электроприбора (например, межвитковое замыкание либо заклинивание электродвигателя, или замыкание внутри ТЭНа).
  4. Режим короткого замыкания. Это самый тяжелый, разрушительный режим с большим выделением тепла. Ток в месте замыкания – максимально возможный для данных условий. Другие побочные эффекты КЗ – понижение напряжения у других потребителей (как из-за пониженного напряжения сгорели новые немецкие холодильники на областном складе “Магнита”) и асимметрия фаз (к чему приводит асимметрия (перекос) фаз и как от этого защититься).

То есть, перегрузка от короткого замыкания отличается величиной сверхтока. При КЗ ток становится максимально возможным в данной точке цепи, а при перегрузке значение тока больше номинального, но меньше тока КЗ.

Из-за перегрузки может легко возникнуть КЗ – провода греются, изоляция плавится, и так далее, со всеми вытекающими, стреляющимися и взрывающимися последствиями.

Не стоит путать перегрузку, короткое замыкание и искрение (дуговой пробой). Если первые два понятия отличаются значением сверхтока, то при последовательном дуговом пробое (например, ослабла затяжка клеммы в розетке) действующее значение тока может быть совсем незначительным (единицы ампер), что не вызовет срабатывания ни автоматического выключателя, ни УЗО. Спасти ситуацию от пожара сможет лишь Устройство защиты от искрения (от дугового пробоя), которое ещё встречается сравнительно редко.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий