Самые большие гэс мира

Результат

Самая мощная в мире гидроэлектростанция превосходит на 8,5 гигаватта предыдущего рекордсмена в данном показателе – ГЭС «Итайпу», расположенную в Паране. С момента начала подготовительных работ и до сдачи в эксплуатацию последнего агрегата прошло более двадцати лет. За всё это время китайские строители осуществили гигантский объём работ, что оценивается в 22,5 миллиарда американских долларов. Процесс получения электроэнергии в «Трёх ущельях» является довольно простым и типичным для других аналогичных объектов: вода из реки попадает в огромные лопасти турбин, раскручивает их, что приводит в действие генераторы.

Крупнейшие тепловые электростанции

Во многих странах до сих пор используются электростанции, работающие на ископаемом топливе и составляющие значительную долю в энергосистемах. Они успешно решают поставленные задачи, полностью обеспечивая электричеством промышленные, сельскохозяйственные и другие объекты.

ТЭС Tuoketuo

Самая мощная электростанция в мире в этом классе считается китайская тепловая установка Tuoketuo, с установленной мощностью 6600 мегаватт. Она включает в себя пять энергетических блоков, каждый из которых, в свою очередь, разделяется на две части по 600 мегаватт. Для собственных нужд станции дополнительно установлено еще два блока общей мощностью 600 МВт.

Темпы строительства составили своеобразный рекорд, поскольку временной промежуток между возведением двух блоков продолжался всего 50 дней. Топливом служит уголь, месторождение которого расположено в 50 км от объекта. Вода для технических нужд берется в Желтой реке, находящейся на расстоянии 12 км от станции. Все сооружения располагаются на площади 2,5 км2. Производство электроэнергии в течение года составляет более 33 млрд киловатт-часов.

Таичжунская ТЭС

Рассматривая крупнейшие электростанции мира следует отметить еще одну крупную тепловую установку – Таичжунскую, расположенную на острове Тайвань, как отмечено на карте. До 2011 года она считалась в своем классе наиболее крупной в мире, но затем уступила первенство станциям Tuoketuo и ГРЭС-2 города Сургута. После того как были установлены дополнительные блоки, Таичжунская ТЭС приобрела установленную мощность в 5824 МВт.

Схема электростанции включает в себя 10 энергетических блоков по 550 мегаватт, работающих на угле, потребляемом ежегодно в количестве 14,5 млн тонн. Дополнительно установлено еще 4 блока, работающих на природном газе, производительностью по 70 МВт. К общей мощности станции добавляется потенциал 22 ветровых турбин в размере 44 мегаватта. Весь комплекс зданий и сооружений располагается на территории с размерами 2,5х1,5 км. Среднегодовой показатель вырабатываемой электроэнергии находится в пределах 42 млрд киловатт-часов.

Тепловая атомная электростанция Германии

Рассматривая электростанции в Европе, следует остановиться на тепловой установке «Нойрат», расположенной в Германии южнее города Гревенбройхе, земля Северный Рейн-Вестфалия. На это место расположения указывает и карта электростанций всего мира.

Первые блоки электростанции в количестве пяти были введены в строй в 70-е годы прошлого века. Их общая производительность составила 2100 МВт или 2,1 гигаватт. В 2012 году станция пополнилась двумя новыми энергоблоками по 1000 мегаватт. Конструкция новых современных немецких установок дает возможность регулировать и равномерно распределять нагрузки в электрических сетях.

Общая мощность ТЭС, построенной в Германии, составляет 4,3 гигаватта, что позволяет отнести ее к наиболее крупным и мощным установкам, играющию важную роль в энергосистеме страны.

Топ 10 самых мощных АЭС в миреТоп 10 самых мощных АЭС в мире

Электростанции России (ТЭС, ГЭС, ГАЭС, АЭС)

Тепловые электростанции (ТЭС)

Геотермальные электростанции (ГТЭС)

Все атомные электростанции России

Газотурбинная электростанция (ГТЭС)

Гидроаккумулирующая электростанция (ГАЭС)

Гранд Диксенс (285 м)

Когда-то самой высокой гравитационной плотиной мира была Гранд Диксенс, являющаяся элементом гидроэнергетического комплекса Клезон-Диксенс, расположенного в бассейне Роны. В него входит ряд плотин с водохранилищами, деривационными гидроэлектростанциями и насосными станциями. Находится он в Швейцарском кантоне Вале. С 35 окрестных ледников талые воды стекают к плотине. Больше всего воды в водохранилищах гидрокомплекса набирается в сентябре, а в апреле уровень воды в них минимальный.
Плотину Гранд Диксенс начали строить в 1951 году, а закончили в 1965. В основании это гигантское сооружение имеет толщину 200 метров, его длина достигает 695 метров, а высота – 285 метров. Для её строительства было использовано 6 млн кубометров бетона. Плотину можно посетить, а некоторые пешеходные маршруты начинаются именно здесь.

2 место — «Итайпу», Бразилия, Парагвай

Электростанция находится на реке Парана, которая протекает на границе 2 латиноамериканских стран. Строительство ГЭС началось в 1978 году и объект все еще модернизируется. Для осуществления грандиозной задумки строительства ГЭС было осушена и пущена по другому руслу часть реки, а в близлежащих скалах был прорублен 150 метровый тоннель. Проектная мощность 16 тыс МВт.

Гидроэлектростанция «Итайпу», Бразилия и Парагвай

ГЭС вырабатывает такое количество электроэнергии, что потребности Бразилии обеспечиваются на 16,4%, а Парагвая — на 71,3%, а в целом — более трети жителей Южноамериканского Латинского континента пользуются электричеством.

Гроза, произошедшая в ноябре того года, повредила линии электропередач, произошло веерное отключение электричества во всем Парагвае и примерно у полсотни млн жителей Бразилии.

Гидроэлектростанция мирового масштаба

Безусловным лидером в этой области считается китайская электростанция «Санься» или «Три ущелья», возведенная на реке Янцзы, и занимающая особое место в энергосистеме Китая. Она считается самой дорогой и мощной станцией в мире, поставившей рекорды по многим индивидуальным позициям.

Река Янцзы относится к мощнейшим водным артериям мирового масштаба и является самой крупной в самом Китае. Большая часть русла проходит через горные районы, а исток располагается в Тибете на высоте свыше 5 тысяч метров. Такое расположение создало предпосылки для громадного гидроэнергетического потенциала.

Местом для строительства был выбран наиболее привлекательный участок в районе под названием Три ущелья. В этом месте река покидает горные районы Ушаня и перетекает на равнинную местность, где образуется заметный перепад высок. Узкая долина, насыщенный водный поток и другие природные факторы стали определяющими условиями для строительства этой крупнейшей ГЭС.

История создания станции достаточно сложная, сопряженная с трудностями как политического, так и экономического характера. Впервые это место было отмечено еще в 20-е годы прошлого века при первом президенте Китая Сунь Ят Сене. В 1932 году уже правительство Чан Кайши начало предварительное проектирование данного объекта.

Далее началась череда смен власти и интерес к проекту то повышался, то резко падал. С началом японо-китайской войны этот вопрос прорабатывался японскими инженерами. В 1945 году после изгнания японцев из Китая, работы попытались вести американцы, но помешала гражданская война. Победа коммунистов привела к власти Мао Цзэдуна, который заинтересовался проектом электростанции. Существенная помощь в проведении изыскательских работ была оказана инженерами из СССР, подготовившими необходимую техническую документацию по использованию данного участка реки.

Дальнейшие события в Китае, связанные с так называемой культурной революцией, привели к осложнению отношений с Советским Союзом и проект гидроэлектростанции был заморожен на неопределенный срок. На тот момент он не мог быть осуществлен на практике собственными силами. Руководство страны решило воспользоваться менее дорогим и не таким масштабным проектом, построив ниже по течению от основного места объект Гэчжоуба – русловую ГЭС мощностью 3,15 гигаватт. Строительство проводилось в период с 1970 по 1988 годы. В дальнейшем эта станция стала своеобразным контррегулятором после строительства основного энергетического комплекса.

Дата начала строительства гидроэлектростанции «Три ущелья» – 14.12.1994 года. Конец работ был запланирован на 2009 год, однако, сроки пришлось передвинуть из-за дополнительных проектов по оборудованию подземного блока гидроагрегатов. В результате, самая большая установка была введена в эксплуатацию в мае 2012 года. Длина дамбы получилась 2335 метров, высота – 181 метр. На станции установлено 32 основных генератора по 700 мегаватт и два дополнительных – по 50 МВт.

Типы гидроэлектростанций

Несмотря на сходный принцип действия, существуют ГЭС разных типов. Так как при их строительстве в большинстве случаев используется естественный рельеф местности, то различия связаны с использованием конкретных преимуществ, которые предоставляют природные условия. Типы гидроэлектростанций:

  • Деривационные. Размещаются на горных реках, где перепад высот позволяет использовать энергию падающего потока, но сильное течение исключает строительство плотины. Потоки воды направляют в специальные отводы, наклон которых сооружают так, чтобы обеспечить необходимый напор.
  • Плотинные. Основной тип ГЭС, предусматривающий строительство плотины, перегораживающей русло реки и создающей водохранилище. Плотина часто также имеет функцию борьбы с наводнениями. Благодаря водному резервуару, с помощью которого можно регулировать поток воды, электростанция способна реагировать на изменение потребления энергии (снижать и увеличивать выработку) и адаптироваться к сезонным колебаниям количества проточной воды.
  • Смешанного типа. Применяются в тех случаях, когда для успешной работы деривационных ГЭС необходимо и возможно построить плотину для создания резерва воды с целью регулирования потока.
  • Аккумуляторные (ГАЭС). У них есть два резервуара для воды: верхний и нижний. В период низкого энергопотребления электростанция перекачивает воду из нижнего в верхний, таким образом накапливая потенциальную энергию (это насосная работа ГАЭС). В свою очередь, генератор начинает работать, когда энергопотребление возрастает. Вода поступает из верхнего резервуара, приводя в движение турбину, посредством которой вырабатывается электричество.
  • Приливные (ПЭС). Используют колебания уровня воды, часто в устьях рек, где приливные явления вызывают двунаправленный поток. На прибрежном участке возводят плотину. Для эффективной работы необходимо, чтобы перепад воды был не менее 5 м. Мощность таких электростанций невелика, это связано с низкой энергией проточной воды. Большинство ПЭС используют пропеллерные турбины. Некоторые из них имеют внушительные размеры. Во Франции турбины, расположенные в нижней части Ла-Манша, имеют диаметр 21 м и мощность около 2,2 МВт.

Существует классификация гидроэлектростанций по совокупной мощности установленных генераторов, позволяющая разделить малые и крупные ГЭС, но она отличается для разных стран. Например, в Португалии, Испании, Ирландии, Греции и Бельгии 10 МВт было принято в качестве верхнего предела для малых ГЭС, в Италии – 3 МВт, Швеции – 1,5 МВт, а в Польше – 5 МВт.

Однако эти границы достаточно условны и могут изменяться государственными нормативными актами. Так, В США сначала максимальная мощность малых ГЭС была равной 5 МВт, затем 15 МВт, а сейчас уже 30 МВт. В РФ также гидроэлектростанции мощностью более 30 МВт считаются крупными.

Красноярская ГЭС (6000 МВт)

Красноярская ГЭС им. 50-летия СССР также стоит на Енисее, возле Дивногорска в Красноярском крае и является третьим звеном Енисейского каскада ГЭС. В Красноярском гидроузле есть судоподъёмник – единственный в России.
Первые два гидроагрегата здесь запустили в конце 1967 года, в следующем году к ним прибавились ещё 4, ещё один в 1970 году, а последние в 1971 году. Приём в эксплуатацию Красноярской ГЭС государственной комиссией прошёл с отметкой «отлично». В 1976 году началась пробная эксплуатация судоподъёмника, а с 1982 года он заработал на постоянной основе.
Красноярская ГЭС является важным центром нагрузок единой энергосистемы Сибири, обеспечивает стабильное снабжение Красноярского края электроэнергией. Она сглаживает неравномерное потребление энергии, особенно в случаях аварий. Так, после катастрофы на Саяно-Шушенской ГЭС, по команде системного оператора нагрузка на Красноярскую ГЭС возросла с 2450 МВт до 3932 МВт. Красноярская ГЭС производит свыше 30% электроэнергии Красноярского края. Но её функция состоит не только в выработке энергии, но и в защите лежащих ниже земель от наводнений, срезая пики паводков, она задерживает их в водохранилище. Она обеспечивает водой соседние населённые пункты, работой речной флот как выше, так и ниже плотины.

Итайпу, Парагвай/Бразилия (14 ГВт)

В 20 километрах от города Фос-ду-Игуасу, на бразильско-парагвайской границе на реке Парана построена плотина с гидроэлектростанцией «Итайпу». Своё название она унаследовала от острова в устье этой крупной реки, он и стал основой плотины. Именно эта электростанция в 2016 году стала первой в мире, сумевшей выдать свыше 100 миллиардов киловатт электричества, точнее – 103,1 млрд кВт*ч. Проектированием и подготовительными работами по её строительству занялись ещё в 1971 году, в 1991 году ввели в строй последние два генератора из 18 запланированных, а в 2007 году к ним добавились ещё 2 электрические машины, доведя мощность ГЭС до 14 ГВт.
В процессе строительства властям пришлось переселять примерно 10 тысяч семей, живших на берегах Параны, многие из них позднее стали членами движения безземельных крестьян. Первоначально эксперты оценили стоимость строительства ГЭС в 4,4 миллиарда долларов, но сменявшие один другого диктаторские режимы не отличались эффективной политикой, из-за чего реальная цифра расходов возросла до 15,3 млрд.

7 − Сянцзяба

ГЭС Сянцзяба находится в Китае на реке Цзиньша, она входит в состав каскада ГЭС на Янцзы − крупнейшего в мире объединения гидроэлектростанций. Возведение сооружения продолжалось 12 лет, объект начал работу в 2014 году. Электрическая сила ГЭС Сянцзяба − 6448 МВт, что в 2 раза больше, чем мощность Нурекской ГЭС, находящейся в Таджикистане.

Добычу электроэнергии на ГЭС Сянцзяба обеспечивают 4 генератора с электрической силой 812 МВт и также 4 − 800 МВт. Площадь водохранилища сооружения − 95,2 км², объем − 5,2 км³. ГЭС Сянцзяба участвует в регулировании стока реки Цзиньша. Проект преследует и такую цель, как снижение количества ила в воде. Объект имеет в числе своего оборудования судоподъемник лифтового типа. В год ГЭС Сянцзяба вырабатывает 30,8 млн  кВт⋅ч электроэнергии.

Богучанская ГЭС (2997 МВт)

В Красноярском крае неподалёку от города Кодинска в Кежемском районе на Ангаре была построена ещё одна электростанция – Богучанская, которая также вошла в Ангарский каскад в качестве последней четвёртой ступени. По своей проектной мощности она встала в ряд крупнейших российских гидроэлектростанций.
Строительство этого гидроузла велось в период с 1974 по 2014 год – это самый большой долгострой в истории отечественной гидроэнергетики. В российский период истории эту ГЭС строили совместно «Русал» и «Русгидро» в соответствии с госпрограммой комплексного развития нижнего Приангарья. В октябре 2012 года состоялся ввод в действие первых гидроагрегатов станции, а девятый – последний заработал в конце декабря 2014 года. В июле 2015 года гидроэлектростанцию вывели на проектную мощность после того, как её водохранилище заполнилось водой до проектного уровня в 208 метров.
Появление этой ГЭС должно положительно повлиять на экономическое развитие региона, а большую часть выданной ей электроэнергии собираются направить на строящийся Богучанский алюминиевый завод и прочие перспективные предприятия. Общественные организации, такие как «Гринпис» и «Всемирный фонд дикой природы», критиковали строительство Богучанской ГЭС, поскольку оно велось без предварительной оценки воздействия на окружающую среду.

Бурейская ГЭС (2010 МВт)

Эта крупнейшая на Дальнем Востоке ГЭС находится в Амурской области на реке Бурее, возле пос. Талакан. Её водохранилище находится на территории Хабаровского края и Амурской области. Является первой ступенью Бурейского каскада ГЭС. На полную мощность её вывели в 2011 году, а в 2014 году полностью сдали в эксплуатацию.
С её постройкой были решены важные задачи: обеспечить дефицитной электроэнергией юг Дальнего Востока, сделать более равномерной нагрузку на объединенную энергетическую систему Востока, повысить надёжность электроснабжения, избавиться от наводнений в поймах среднего Амура и Буреи, что позволит добавить к сельскохозяйственным землям 15000 га территории, продавать излишек энергии в Китай.

Ангарский каскад

На крупнейших реках страны построены комплексы гидроэлектростанций, размещенных одна за другой и представляющих собой единую гидротехническую систему. Крупнейший из таких комплексов — Ангарский каскад, в состав которого входят три станции из первой десятки. Суммарная мощность станций комплекса составляет 12,014 гигаватт, и за год они вырабатывают такое количество электроэнергии, которое покрывает 6 % от общего потребления по стране.

Первая ступень — Иркутская гидроэлектростанция (0,662 гигаватта), перегородившая Ангару в 1950–1959 годах. Получившееся в итоге водохранилище подняло уровень Байкала примерно на метр.

Ниже расположена Братская гидроэлектростанция (4,5 гигаватта), которая лидирует по среднегодовой выработке электроэнергии в стране. Ее строительство длилось с 1954 по 1966 год. Братское водохранилище является одним из самых больших в мире.

Усть-Илимская электростанция (3,84 гигаватта) — третья ступень — строилась с 1963 по 1980 год.

Богучанская гидроэлектростанция (2,9 гигаватта) у города Кодинска в Красноярском крае на текущий момент представляет собой нижнюю ступень Ангарского каскада. Она строилась с 1974-го и была введена в эксплуатацию только в 2014 году. Это самое длительное строительство в истории страны. Возведение Богучанской ГЭС вызвало негативную реакцию международных природоохранных организаций.

Однако в дальнейшем планируется строительство еще трех ступеней каскада: Нижнебогучанской гидроэлектростанции мощностью 660 МВт, Мотыгинской гидроэлектростанции мощностью 1 145 МВт и Стрелковской гидроэлектростанции мощностью 920 МВт. Все три станции пока находятся лишь в стадии проектирования. Автор проектов всех действующих и будущих ГЭС Ангары — институт «Гидропроект».

Енисейский каскад

Комплекс на реке Енисей — одной из самых длинных и полноводных в мире — состоит из трех станций, две из которых возглавляют первую десятку крупнейших гидроэлектростанций (ГЭС) в России. Первую его ступень создает Саяно-Шушенская гидроэлектростанция, а последнюю — Красноярская (6 гигаватт). Между ними расположена Майнская ГЭС (321 мегаватт). Ее строительство было начато в 1978 году, а завершено в 1987-м, однако официальная эксплуатация отсчитывается с 2000 года. Все электростанции Енисейского каскада спроектированы институтом «Ленгидропроект».

Саяно-Шушенская гидроэлектростанция

Самая большая ГЭС в России (6,4 гигаватта) начала строиться в 1963 году, а полностью закончена — в 2000-м. Огромная плотина перегородила Енисей в Восточных Саянах.

Станция является еще и самой высокой ГЭС в России. Высота ее плотины составляет 242 метра, а длина — больше километра. Эта махина имеет арочную конструкцию, благодаря которой она может удерживать напор воды. Часть нагрузки берут на себя скалы, на которые опирается плотина.

Несмотря на уникальное и талантливое инженерное решение, масштабы сооружения таковы, что критические ситуации неоднократно возникали еще во время строительства. Плотина шла трещинами, разрушались прилегающие гидротехнические сооружения. А в 2009 году здесь произошла крупнейшая в истории отечественной гидроэнергетики катастрофа, в результате которой погибли 75 человек. В 2011 году неподалеку от станции случилось 8-бальное землетрясение, однако на этот раз ГЭС выстояла.

6 место – «Саяно-Шушенская», Россия

В поселке Черемушки республики Хакасия на реке Енисей расположилась самая крупная ГЭС Российской Федерации. Она носит имя министра энергетики СССР П.С. Непорожнего, занимавшего пост с 60-х по 80-е года. Строительство гидроэлектростанции начато в 1963 году, закончено в 2000.

Гидроэлектростанция «Саяно-Шушенская», Россия

Своим названием она обязана географическому расположению вблизи Саянских гор и села Шушенское. В 2009 году на ГЭС произошла крупная авария, жертвами которой стали 75 человек. И если до аварии мощность электростанции составляла 6400 МВт, то после аварии ее рабочая мощность снижена до 1280 МВт.

  • Уникальная по своей конструкции плотина является крупнейшей мире и не ее постройку ушло столько бетономассы, что его с лихвой хватило бы на строительство дороги от Санкт-Петербурга до Владивостока.
  • ¾ электроэнергии, вырабатываемой ГЭС уходит алюминиевому заводу Саяногорска.

Крупнейшие по мощности ГЭС мира: тройка лидеров

Самая мощная и самая крупная в мире гидроэлектростанция располагается в Китае. Она называется «Три ущелья». Возведена на реке Янцзы в китайской провинции Хубэй. Ее установленная мощность не уступает ни одной существующей в мире ГЭС — 22.500 МВт! В 2014 году «Три ущелья» побила мировой рекорд в среднегодовой выработке энергии — 98,8 млрд кВт/ч. В 2018 году гидроэлектростанция поставила еще один рекорд, став самым тяжелым сооружением мира. Одна только ее бетонная плотина весит более 65,5 миллионов тонн. С помощью этой ГЭС Китай способен полностью покрывать годовой рост потребления электроэнергии.

На втором месте бразильская ГЭС под названием «Итайпу», расположенная рядом с одноименным островом на реке Парана. Фактическая установленная мощность «Итайпу» — 14.000 МВт. В 2016 году «Итайпу» по выработке электроэнергии побила рекорд «Трех ущелий», произведя 103,1 млрд кВт/ч! Работа этой станции удовлетворяет потребность в электричестве сразу у двух стран: Бразилии и Парагвая. Любопытно, что почетное второе место в списке самых мощных ГЭС мира «Итайпу» может уступить китайской «Байхэтань», которая на данный момент находится на стадии строительства. Согласно плану, «Байхэтань» будет производить 16.000 МВт. Ее запуск запланирован на 2021 год.

На третьем месте мощнейших ГЭС мира расположилась китайская «Силоду». Она возведена на реке Цзиньша — верхнем течении уже известной нам Янцзы. Ее установленная мощность лишь немного уступает «Итайпу», составляя 13.860 МВт. Помимо производства электроэнергии, «Силоду» задействована в программе по очистке речных вод. На месте своего возведения она контролирует сток воды, тем самым фильтруя ее от ила. К числу других знаковых особенностей «Силоду» относится ее высота — 285,5 м. Что делает ее четвертой в топе самых высоких ГЭС мира.

Дамба Чикоасен (261 м)

Насыпная дамба Чикоасен находится в Мексике, на реке Грихальва. Строить её начали в 1974 году, а в строй она вступила в 1980 году, после чего стала самой большой из себе подобных в Северной Америке. Длина плотины составила 485 метров. Площадь водохранилища, образовавшегося за плотиной, составила 52600 кв. м, а минимальный объём воды в ней достигает 1,6 млрд кубических метров.
Для засушливой Мексики плотина стала одним из основных способов водосбора. Плотина стала частью крупнейшей в Мексике гидроэлектростанции, которая официально называется Мануэль Морено Торрес – так звали её первого владельца, но среди населения чаще употребляется название региона, где она находится.

Волжская ГЭС (2671 МВт)

Ныне Волжская, а ранее Сталинградская и Волгоградская ГЭС построена на реке Волге на территории Волгоградской области. Она является крупнейшей в европейской части России, а на протяжении 1960-63 годов была крупнейшей в мире электростанцией. Является нижней ступенью Волжско-Камского каскада ГЭС. На правом берегу находится район Волгограда, а на левом – город Волжский.
Эту ГЭС строили с 1952 по 1961 год, она относится к средненапорной ГЭС руслового типа. Ввод её в строй решил многие вопросы энергоснабжения Донбасса и Нижнего Поволжья, объединения энергосистем центра, юга и Поволжья. В Нижнем Поволжье появилась энергетическая база для продолжения развития народного хозяйства. Благодаря Волжской ГЭС был завершён глубоководный водный путь от Саратова до Астрахани. По плотине ГЭС организовано постоянное автомобильное и железнодорожное движение через Волгу, которое обеспечило кратчайшую связь между собой районов Поволжья. Водохранилище ГЭС также используется для обводнения и орошения местных засушливых земель.

9 − Саяно-Шушенская

Саяно-Шушенская ГЭС − самая крупная ГЭС России. Сооружение находится на реке Енисей недалеко от города Саяногорска. Входит в число 3 гидроэлектростанций, которые представляют собой объединенную энергосистему Сибири.

Высота плотины, построенной на объекте − 242 м, длина − 1074 м. Свое название ГЭС получила благодаря находящимся вблизи Саянским горам. Строительство сооружения заняло 37 лет и окончилось в 2000 году. Саяно-Шушенская ГЭС располагает электрической силой в 6400 МВт − это в 1,5 раза больше, чем мощность Братской ГЭС в России.

Среднегодовая выработка электроэнергии посредством объекта − 24 млрд кВт⋅ч. Водохранилище, располагающееся на территории сооружения, имеет длину 320 км, площадь − 621 км², объем − 31,34 м³.

Авария, случившаяся в 2009 году, повлекла за собой смерть 75 людей и возникновение экологической катастрофы. Происшествие произошло ввиду того, что внезапное разрушение гидроагрегата №2 привело к тому, что водные массы под большим напором обрушились на его шахту.

Лидер среди атомных электроустановок

Безусловным лидером среди электрических станций этого типа по праву считается атомная электростанция в Японии возле населенного пункта Касивадзаки, на территории префектуры Ниигата. По месту своего расположения она и получила название Касивадзаки-Карива. По своим показателям она далеко обходит многие атомные электростанции мира.

На станции успешно эксплуатируются семь ядерных реакторных установок, работающих по кипящему принципу: пять из них обычные – BWR и две сделаны в улучшенном варианте. Вся производительность этих реакторных установок находится на уровне 8212 мегаватт.
Введение в действие 1-го энергетического блока состоялось в 1985 году. Остальные блоки последовательно возводились и начинали свою деятельность в период с 1990 по 1996 годы.

В 2007 году в 19 километрах от станции произошло землетрясение силой около 7 баллов по шкале Рихтера. В этот момент в работе АЭС находились 4 установки, а на трех проводился плановый осмотр. Под влиянием стихии на объекте возникла нештатная ситуация, после чего все действующие реакторы были остановлены. Подземные толчки вызвали сдвиги грунтов под основными сооружениями, а всего было получено свыше 50 повреждений различной тяжести.

Разрушениям подверглись резервуары с отработанным топливом, и ядерная радиоактивная вода в большом количестве попала под реактор № 6, а какая-то ее неустановленная часть вытекла в море. Одновременно произошло опрокидывание емкостей в количестве 438 штук, где хранились отходы с низкой радиоактивностью. Крышки на многих из низ были сорваны. В третьем блоке из-за возгорания трансформатора оказались поврежденными фильтры, в результате чего радиоактивная пыль вышла наружу. Станция была остановлена для проведения ремонтных работ и выполнения антисейсмических мероприятий. Подобные мероприятия проводят и другие атомные электростанции мира.

В 2009 году после окончания работ по восстановлению объекта, выполнен запуск седьмого энергоблока в тестовом режиме. В этом же году был запущен 6-й блок, японский вариант, а в 2010 году – 1-й блок. Остальные энергоблоки бездействовали до начала аварии на Фукусиме-1, случившейся в 2011 году. Тогда, одна из крупных, станция Касивадзаки-Карива была полностью остановлена. Перезапуск двух энергоблоков №№ 6 и 7 запланирован на 2019 год. В качестве дополнительной защиты от цунами предполагается строительство 15-метровой дамбы, будет расширен бассейн под радиоактивную воду.

Зачем проверять металлосвязь?

Принимая во внимание вышеизложенную информацию, можно указать следующие причины для проверки металлосвязи:

  1. Контроль непрерывности цепи заземления. Он включает в себя как электроизмерения, так и осмотр защитных проводников и других элементов заземления, на предмет их целостности.
  2. Измерение сопротивления переходных контактов (производится между электроустановкой и заземлителем), а также общих параметров цепи.
  3. Проверяется разность потенциалов между корпусом заземленной электроустановки и заземлителем. Проверка осуществляется в рабочем режиме и выключенном состоянии.

Как видим, основная цель проверки – осуществление измерений параметров заземляющих цепей, поскольку именно они характеризуют качество металлосвязи, а соответственно, и электробезопасность установки.

Измеритель сопротивления петли фаза-нуль ИФН-300 | Учебный фильм.Измеритель сопротивления петли фаза-нуль ИФН-300 | Учебный фильм.

Измерение контура заземления разными методами прибором SONEL MRU-120Измерение контура заземления разными методами прибором SONEL MRU-120

Измерение сопротивления металлосвязиИзмерение сопротивления металлосвязи

Крупнейшие аварии и происшествия

  • Крупнейшей аварией за всю историю ГЭС является прорыв плотины китайского водохранилища Баньцяо на реке Жухэ в провинции Хэнань в результате тайфуна Нина 1975 года. Число погибших более 170 тыс. человек, пострадало 11 млн.
  • 17 мая 1943 года — операция британских войск Chastise по подрыву плотин на реках Мёне (водохранилище Мёнезее) и Эдер (водохранилище Эдерзее), повлёкшие за собой гибель 1268 человек, в том числе около 700 советских военнопленных.
  • 9 октября 1963 года — одна из крупнейших гидротехнических аварий на плотине Вайонт в северной Италии, погибло более двух тысяч человек.
  • В ночь на 11 февраля 2005 года в провинции Белуджистан на юго-западе Пакистана из-за мощных ливней произошёл прорыв 150-метровой плотины ГЭС у города Пасни. В результате было затоплено несколько деревень, более 135 человек погибли.
  • 5 октября 2007 года на реке Чу во вьетнамской провинции Тханьхоа после резкого подъёма уровня воды прорвало плотину строящейся ГЭС Кыадат. В зоне затопления оказалось около 5 тыс. домов, 35 человек погибли.
  • 17 августа 2009 года — авария на Саяно-Шушенской ГЭС (самой мощной в России). В результате аварии погибло 75 человек, оборудованию и помещениям станции был нанесён серьёзный ущерб.

Силоду, Китай (13,86 ГВт)

В верховьях реки Янцзы есть приток Цзиньша, на котором была построена крупная гидроэлектростанция Силоду. Так назвали её по близлежащему посёлку Силоду – центру городского уезда Юншань провинции Юньнань. По руслу реки проходит административная граница с другой провинцией – Сычуань. После завершения строительства станция стала важнейшим элементом проекта регулируемого стока реки Цзиньша, который преследовал не только цели выработки электроэнергии, но и уменьшения количества ила, попадающего в Янцзы.
Силоду стала третьей по мощности гидроэлектростанцией мира. Максимальная вместимость её водохранилища равна почти 12,7 кубических километра.
В 2005 году строительство ГЭС временно было приостановлено для более детального изучения его последствий на экологию данной местности, но позднее было возобновлено. Русло Цзиньша было перекрыто в 2009 году, первую турбину на 770 МВт ввели в эксплуатацию в июле 2013 года, а в апреле 2014 году заработала уже 14-я турбина. В августе того же года были запущены и последние агрегаты ГЭС.

Самые большие ГЭС в мире: список «гигантов»

Судить о гидроэлектростанциях можно не только по их мощности — занимаемая площадь тоже важна. Ниже мы привели список гидроэлектростанций с самыми большими в мире водохранилищами:

  1. «Водопад Черчилля» — канадская ГЭС, возведенная на одноименной реке. Общая площадь ее водохранилища составляет рекордные 6.988 км2.
  2. «Жигулевская» — гидроэлектростанция в России, построенная на знаменитой реке Волге. Площадь ее водохранилища лишь немногим уступает лидеру топа и составляет 6.450 км2.
  3. «Братская» — еще одна станция родом из России. Стоит на реке Ангаре и образует одно из крупнейших в мире водохранилищ с площадью 5.426 км2.
  4. «Гури» — уже знакомая нам ГЭС из Венесуэлы с площадью водохранилища 4.250 км2.
  5. «Волжская» — очередной рекордсмен из России, построенный на все той же реке Волге в Волгоградской области. Водохранилище этой ГЭС занимает собой 3.117 км2.
Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий