Как сделать блок питания на 12 вольт своими руками

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Виды подходящих преобразователей

Сегодня рынок электронике имеет огромный ассортимент блоков питания, которые можно подключить к светодиодной ленте. Кроме преобразователя напряжения, данное устройство может еще называться и электронным трансформатором. Но это уже порядком устаревшее название. Иногда его даже могут назвать «драйвером», что, по сути, является некорректным названием, ведь БП является источником напряжения, а не источников тока.
Чтобы расчет требуемой мощности блок питания не был проведен в пустую, при покупке светодиодной ленты нужно, необходимо знать, какие вообще БП могут к ней подключаться. Их классификация бывает самой разнообразной. Поэтому рассмотрим наиболее часто встречаемые деления на различные виды устройств.
Поскольку блок питания преобразует напряжение, он достаточно сильно нагревает при своей работе. В связи с этим важным параметром выбора данного типа устройства будет способ его охлаждения. По способу охлаждения, преобразователи бывают следующих типов:

активные. Из названия видно, что для охлаждения используется активный механизм – вентиляторов. Он установлен в корпусе прибора и обеспечивает его достаточно эффективное охлаждение. Такие БП характеризуются небольшими размерами и высокими мощностями. Поэтому к ним можно подключать много метров светодиодной ленты;

Активный блок питания для светодиодной ленты

пассивные. Внешне они напоминают блок питания для ноутбука. При этом он имеет решетчатую часть корпуса, через которую происходит пассивное охлаждение. Такие модели менее эффективны, так как не всегда могут охлаждать устройство. К ним не рекомендуется подключать длинную подсветку из светодиодов.

Пассивный блок питания для светодиодной ленты

Также преобразователи, которые можно подключать в сему питания светодиодной ленты, могут различаться по своему внешнему виду на следующие группы:

  • черный пластиковый корпус, очень похожий на БП от ноутбука. На корпусе имеется наклейка с указанием на ней всей необходимой информации о технических характеристиках изделия. Для светодиодной ленты они считаются достаточно оптимальным выбором;
  • алюминиевый герметичный корпус. Такие изделия следует приобретать для помещений, где имеется повышенная влажность. Подключать их необходимо к светодиодной продукции влагостойкого типа, которая будет выступать в качестве подсветки на кухне, в ванной комнате или балконе;
  • металлический корпус, в котором имеется контактная площадка, а также отверстия. Данный тип БП нужно использовать только в помещениях, где преобладает сухой микроклимат. Причем размещать их нужно в закрытом месте, которое надежно защищено от пыли и грязи. Это, наверное, самые малоэффективные преобразователи.

Внешний вид блоков питания

Это далеко не полная классификация БП.

Индикатор цифровой для блока

Для визуализации показаний напряжения и тока в нагрузке применил  вольтамперметр DSN-VC288, который обладает следующими характеристиками:

  • диапазон измерений:  0-100 В 0-10A;
  • рабочий ток: 20mA; 
  • точность измерения: 1%;
  • дисплей: 0.28 ” (Два цвета: синий (напряжение), красный (сила тока);
  • минимальный шаг измерения напряжения: 0,1 В;
  • минимальный шаг измерения силы тока: 0,01 A;
  • рабочая температура: от -15 до 70 °С;
  • размер: 47 х 28 х 16 мм;
  • рабочее напряжение, необходимое для работы электроники ампервольтметра: 4,5 – 30 В.

Учитывая диапазон рабочего напряжения существует два способа подключения:

Если источник измеряемого напряжения работает в диапазоне от 4,5 до 30 Вольт, то тогда схема подключения выглядит так:

Если источник измеряемого напряжения работает в диапазоне 0-4,5 В или выше 30 Вольт, то до 4,5 Вольт ампервольтметр не запустится, а при напряжении более 30 Вольт он просто выйдет из строя, во избежание чего следует воспользоваться следующей схемой:

В случае с данным блоком питания, напряжение для питания ампервольтметра есть из чего выбрать. В блоке питания есть два стабилизатора – 7824 и 7812. До 7824 длина провода получалась короче, поэтому запитал прибор от него, подпаяв провод к выходу микросхемы.

Проверка конструкции

Перед первым включением БП нужно проверить. В первую очередь проверяется монтаж, например, могли остаться следы от пайки, несмытый флюс. Какой-либо компонент, установленный на плате, может оказаться неисправным.

Если с монтажом все в порядке, можно приступать ко второй стадии проверки с помощью лампочки. В качестве лампочки можно использовать любую лампу накаливания. Для этого подключаем изготовленный нами источник питания последовательно с лампочкой, как показано на рисунке ниже.

Если лампочка не светится, значит, в цепи БП есть обрыв. Нужно проверить дорожки платы, дроссель, диодный мост.

Лампочка постоянно горит. В блоке питания короткое замыкание. Причина может быть в пробое конденсаторов, транзисторов. Нужно также проверить дорожки печатной платы, выходные цепи трансформатора.

Если лампочка вспыхнула и погасла, значит, БП исправен, конденсаторы зарядились.

Сейчас читают:

Блок питания что это такое и какими они бывают

Как отремонтировать своими руками блок питания ноутбука

Как соединять батарейки и аккумуляторы последовательно или параллельно — схемы и особенности сборки

Неисправности блока питания компьютера и способы их устранения

Как установить и подключить блок питания к компьютеру

Аккумулятор 18650 и его разновидности

Основной элемент будущего бесперебойника это аккумулятор литий-ионного типа 18650. По форме и размерам — аналог стандартных пальчиковых батареек ААА или АА.

Емкость пальчиковых аккумуляторов находится в границах 1600–3600 мАч. С выходным напряжением в 3.7 В.

Есть несколько разновидностей батарей класса 1865. Различия только по химическому составу:

  1. Литий-марганцевые (Lithium Manganese Oxide).
  2. Литий-кобальтовые (Lithium Cobalt Oxide).
  3. Литий-железо-фосфатные (Lithium Iron Phosphate или феррофосфатные).

Все они с успехом применяются:

  • в телефонных зарядках;
  • в ноутбуках;
  • фонариках и так далее.

Варианты БП для самостоятельного монтажа

Блок питание выбирается исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное, подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Для измерения потребляемого нагрузкой тока, задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Вольтметр можно использовать цифровой.

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для заряди АКБ.

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В и ток минимум 300 мА. Назначение этого источника – запитка схемы БП.
  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток.
  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне.

Для размещения элементом схемы изготавливают печатную плату.

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может «отдыхать», функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

«Умный» блок питания представлен на схеме.

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Внешний вид устройства и внутреннее расположение компонентов представлено на фото.

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

Watch this video on YouTube

Как сделать блок питания для светодиодной ленты 12 В своими руками

Не всегда удается приобрести подходящую модель блока питания на 12 В. В таком случае прибор можно изготовить своими руками:

Фото Описание работ
Готовим необходимые материалы и инструменты:
  • Зарядное от телефона, рассчитанное на 5 В и 1 А;
  • Повышающий DC-DC преобразователь.
С помощью мультиметра проверяем полярность зарядного устройства.
Припаиваем DC-DC преобразователь к зарядному, соблюдая полярность.
Подсоединяем ленту к выходным контактам DC-DC преобразователя, соблюдая полярность.
Проверяем работоспособность созданного блока питания 12 В.

Вместо блока питания от телефона можно использовать преобразователь от компьютера или другой техники. Трансформатор для светодиодной ленты 12 вольт может оказаться не лучшим выбором, так как их параметры часто превосходят требуемые в два и более раза. Это приведет к тому, что в процессе эксплуатации такой прибор будет постоянно перегреваться. Дополнительное охлаждение не позволит справиться с возникшей проблемой. Именно поэтому при наличии выбора лучше отдать предпочтение импульсному блоку питания.

Характеристики лабораторного блока питания

  • входное напряжение: 24 В переменного тока;
  • выходное напряжение: от 0 до 30 В (регулируемое);
  • выходной ток: 2 мА – 3 А (регулируемый);
  • пульсации выходного напряжения: менее 0.01%
  • размер платы 84 х 85 мм;
  • защита от короткого замыкания;
  • защита по превышению установленной величины тока.
  • О превышении установленного тока сигнализирует светодиод.

Для получения полноценного блока следует добавить лишь три компонента – трансформатор с напряжением на вторичной обмотке 24 вольта при 220 вольтах на входе (важный момент, о котором подробно ниже) и током 3,5-4 А, радиатор для выходного транзистора и кулер на 24 Вольта для охлаждения радиатора при большом токе нагрузки. Кстати, в интернете нашлась и схема данного блока питания:

Из основных узлов схемы можно выделить:

  • диодный мост и фильтрующий конденсатор;
  • регулирующий узел на транзисторах VT1 и VT2; 
  • узел защиты на транзисторе VT3 отключает выход, пока питание операционных усилителей не будет нормальным
  • стабилизатор питания вентилятора на микросхеме 7824;
  • на элементах R16, R19, C6, C7, VD3, VD4, VD5 построен узел формирования отрицательного полюса питания операционных усилителей. Наличие этого узла обуславливает питание всей схемы именно переменным током от трансформатора; 
  • выходные конденсатор С9 и  защитный диод  VD9.

Отдельно нужно остановиться на некоторых компонентах примененных в схеме:

  • выпрямительные диоды 1N5408, выбраны впритык – максимальный выпрямленный ток 3 Ампера. И хоть диоды в мосте работают попеременно, все же не будет лишним заменить их более мощными, например диодами Шотки на 5 А;
  • стабилизатор питания вентилятора на микросхеме 7824 выбран на мой взгляд не совсем удачно – под рукой у многих радиолюбителей наверняка найдутся вентиляторы на 12 вольт от компьютеров, а вот куллеры на 24 В встречаются гораздо реже. Покупать такой не стал, решив заменить 7824 на 7812, но в процессе испытаний БП отказался от этой идеи. Дело в том, что при входном переменном напряжении в 24 В, после диодного моста и фильтрующего конденсатора получаем 24*1,41=33,84 Вольта. Микросхема 7824 прекрасно справится с задачей рассеивания лишних 9, 84 Вольта, а вот 7812 приходится тяжко, рассеивая в тепло 21,84 Вольта. 

Кроме того, входное напряжение для микросхем 7805-7818 регламентировано производителем на уровне 35 Вольт, для 7824 на уровне 40 Вольт. Таким образом, в случае простой замены 7824 на 7812, последняя будет работать на грани. Вот ссылка на даташит.

Учитывая вышеприведенное, имевшийся в наличии кулер на 12 Вольт подключил через стабилизатор 7812, запитав ее от выхода штатного стабилизатора 7824. Таким образом, схема питания кулера получилась хоть и двухступенчатой, но надежной. 

Операционные усилители TL081, согласно даташита требуют двуполярное питание +/- 18 Вольт – в целом 36 Вольт и это максимальное значение. Рекомендуемое +/- 15.

И вот тут начинается самое интересное относительно переменного входного напряжения величиной 24 Вольта! Если взять трансформатор, который при 220 В на входе, выдает 24 В на выходе, то опять же после моста и фильтрующего конденсатора получаем 24*1,41=33,84 В.

Таким образом, до достижения критической величины остается всего 2,16 Вольта. При увеличении напряжения в сети до 230 Вольт (а такое бывает в нашей сети), с фильтрующего конденсатора снимем уже 39,4 Вольта постоянного напряжения, что приведет к гибели операционных усилителей.

Выхода тут два: либо заменить операционные усилители другими, с более высоким допустимым напряжением питания, либо уменьшить количество витков во вторичной обмотке трансформатора. Я пошел по второму пути, подобрав количество витков во вторичной обмотке на уровне 22-23 Вольта при 220 В на входе. На выходе БП получил 27,7 Вольта, что меня вполне устроило. 

В качестве радиатора для транзистора D1047 нашел в закромах радиатор процессора. На нем же закрепил стабилизатор напряжения 7812. Дополнительно установил плату контроля оборотов вращения вентилятора. Ею со мной поделился донорский компьютерный блок питания ПК. Терморезистор закрепил между ребер радиатора.

При токе в нагрузке до 2,5 А вентилятор вращается на средних оборотах, при повышении тока до 3 А в течении длительного времени вентилятор включается на полую мощность и снижает температуру радиатора.

Преимущество блока питания как аналога батареек

Установка газовой колонки – отличная перспектива перехода на метод индивидуального нагрева воды. Кроме того, это позволяет существенно сэкономить на оплате коммунальных услуг. Монтаж газового проточного нагревателя делает вас независимым от котельной и водоканала и позволяет получить горячую воду в любой момент. Так, регулярное отключение горячей воды из-за летних профилактических работ будет уже не страшно.


Батарейки для проточного газового водонагревателя на 1,5 VИсточник sat-oskol.ru

Существующие газовые колонки работают при наличии подключенного газа и батареек:

  • D-R-20 – солевые.
  • D-LR20 – щелочные.

Наличие независимого источника делает их независимыми от того, есть ли в доме электричество или нет. Горячая вода будет всегда, даже в том случае, если будет отключено центральное электроснабжение.

Недостаток метода заключается в возникновении необходимости регулярной замены комплекта батареек. Причём качественные щелочные элементы стоят около 200 руб, а хватает их не более, чем на 12 месяцев. Дешевые солевые приходят в негодность ещё раньше. Кроме того, в большинстве случаев, батарейки «садятся» в самый неподходящий момент. Например, вечером или в выходные, когда вы планировали отдохнуть, а не бежать в ближайший магазин.

Причины быстрого разряда батареек

Как уже упоминалось, срок службы батареек зависит от их вида, солевые – 2-5 недель, алкалиновые – до 1 года. Тем не менее, существует несколько причин, существенно сказывающихся на их быстром разряде:

  • Повышенная влажность. Чаще всего наблюдается на устройствах, установленных в ванных и санузлах. На контактах образуется влага, способствующая окислению и ухудшению токопропускной способности.
  • Неверная работа ионизационного сенсора. В большинстве случаев он просто смещается в сторону, искра вырабатывается долго, что приводит к тому, что энергия заряда расходуется напрасно.
  • Смещение расположения разжигающего электрода. Причина аналогична, решается корректировкой контакта
  • Сбой в работе блока управления. При проблемах данного характера рекомендуется вызвать мастера.


Блок, в который устанавливаются батарейкиИсточник Avito

БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.

Принципиальная схема бестрансформаторного блока питания

Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.

Вместо микросхемы 78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).

Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.

Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.

Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.

Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.

Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.

Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!

На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.

Видео работы схемы бестрансформаторного БП

Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы. Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.

Форум по ИП

Обсудить статью БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ

radioskot.ru

Назначение и принцип работы

Блок или адаптер питания предназначен для подключения техники к источникам питания для ее нормальной работы. Блок питания для ленты светодиодов служит преобразователем входного напряжения до необходимого напряжения на выходе. В данном случае, речь идет о двенадцати вольтах.

Использование подобного устройства питания требует определенной компетентности. Если использовать устройство по назначению, оно не будет представлять угрозу ни здоровью владельца, ни технике.

Импульсные адаптеры выравнивают скачки напряжения с помощью специального фильтра. Поэтому электросеть с нестабильным напряжением критически нуждается в подобном устройстве. Скачки напряжения могут не просто негативно сказаться на работе электрооборудования, но и вывести его из строя.

Схема трансформаторного блока питания шуруповёрта

Напоследок сделаем своими руками трансформаторный блок питания для шуруповёрта 12, 14 или 18 В. Такой источник, конечно, будет достаточно громоздким, но прелесть конструкции заключается в её простоте. С повторением схемы справится и начинающий радиотехник, имеющий лишь общие знания по электротехнике.

Для этого самодельного блока питания понадобится трансформатор, способный выдать необходимый нам ток при напряжении 12–13 В (для 12-вольтового инструмента), 14–16 В (для 14-вольтового) или 18–20 В для 18-вольтового инструмента. Ещё придётся найти 4 мощных выпрямительных диода и несколько электролитических конденсаторов.

Если у нас шуруповёрт на 12 вольт, потребляющий ток до 10 А (большинство бытовых), то можно взять унифицированный анодно-накальный трансформатор ТАН-138-127/220-50 (ТАН-138 220-50), имеющий 2 обмотки по 6,3 В при токе 10 А. Весит он, правда, более 6 кг.

Обмотка Напряжение, В Номинальный ток, А
1–2, 4–5 110 3,9/2,3
2–3, 5–6 7 3,9/2,3
7–8 355 0,285
16–17 355 0,285
9–10 200 0,25
18–19 200 0,25
11–12 25 0,285
20–21 25 0,285
13–14 (15) 5 (6,3) 10
22–23 (24) 5 (6,3) 10

Ещё один вариант — накальный трансформатор ТН-61-127/220-50 (ТН-61 220-50). Он сможет обеспечить ток 8 А при напряжении 12,6 В (две обмотки) или 18,9 В (3 обмотки). Весит он хоть и поменьше, но тоже немало — 3 кг.

Обмотка Напряжение, В Номинальный ток, А
1–1а, 4–4а 3,2 1,66/0,95
1–1б, 4–4б 6,3 1,66/0,95
1–2, 4–5 110 1,66/0.95
1–3, 4–6 127 1,66/0,95
4–8 6,3 6,1
9–10 6,3 8
11–12 (13) 5 (6,3) 8
14–15 (16) 5 (6,3) 8

Если мы обладаем соответствующими знаниями и навыками, то для изготовления БП можно использовать любой разборный сетевой трансформатор мощностью 200–250 Вт. Разбираем, сматываем все вторичные обмотки, оставив лишь сетевую, и вместо них наматываем одну вторичную на нужные напряжение и ток.

Если в нашем распоряжении есть трансформатор с тороидальным сердечником, то лучше предпочесть его. Перематывать сложнее, но, во-первых, его не нужно разбирать, значит, не будет проблем с гудением после сборки. Во-вторых, габариты такого трансформатора при той же мощности намного меньше.

Какие нужны диоды? Подойдут любые выпрямительные, выдерживающие ток 10–20 А и обратное напряжение не ниже 30–40 В. Конденсаторы электролитические на напряжение не ниже 25 В (для 12-вольтового блока питания) и один бумажный неполярный с ёмкостью 1 мкФ на рабочее напряжение не ниже 400 В. Впрочем, без последнего можно обойтись. А теперь взглянем на схему.

Сетевое напряжение поступает на трансформатор Tr1, понижается до необходимой величины, выпрямляется диодным мостом VD1–VD4 и по проводам подаётся на инструмент, в рукоять или отсек, из которого удалены неисправные аккумуляторы, установлены конденсаторы С3–С5. Они являются накопителями энергии и обеспечивают высокий пусковой ток во время включения шуруповёрта.

Конденсатор С1, включённый параллельно сетевой обмотке трансформатора, уменьшает реактивную составляющую индуктивной нагрузки (трансформатора) и несколько увеличивает КПД устройства. Как указывалось выше, без него можно обойтись. Собирая прибор, не забываем установить диоды на радиаторы, электрически не соединённые друг с другом. Если радиатор общий (к примеру, металлический корпус или шасси блока питания), то диоды на него устанавливаем через слюдяные изолирующие прокладки.

Вот мы и выяснили, как запитать аккумуляторный шуруповёрт от сети. Теперь сможем подобрать подходящий для этих целей блок питания или изготовить его самостоятельно.

Сейчас читают:

Как переделать аккумуляторный шуруповерт на 12 или 18В в сетевой своими руками

Как сделать самодельный регулируемый блок питания — подборка схем

Как отремонтировать блок питания компьютера своими руками

Как сделать блок питания или зарядное устройство из компьютерного БП ATX

Как переделать шуруповерт на литий ионные аккумуляторы

Какое напряжение с блока питания компьютера можно получить

Вы, наверное, сами прекрасно понимаете, что системный блок ПК – это комплекс устройств позволяющих системе работать. Каждое из них требует подключения к электрической сети. Но вот для определенного оборудования оно может быть разным. Допустим, большинство вентиляторов работают от 5 Вольт при силе тока в 0.1 Ампер. Для других устройств требуются другие значения. Именно для обеспечения работы всех комплектующих имеется блок питания компьютера. Он преобразует напряжение и обеспечивает каждое изделие необходимым током. Если мы рассмотрим БП компьютера, то увидим, что в нем имеется огромное количество проводов и портов для подключения. Они имеют свои цвета, и это не просто так. На боковой или задней стенке корпуса блока питания имеется табличка, на которой указана вся необходимая информация.

Разбираемся с маркировкой

Взгляните на картинку. Там указано, что оранжевый провод (orange) имеет исходящее напряжение в +3.3V, желтый (yellow) — +12V, красный (red) — +5V и так далее. Кроме этого, есть пометка о силе тока. Черный провод в большинстве случаев является общим (минусом или «земля»). Исходя из полученной информации, можно понять, что получить нужное напряжение с блока питания, даже работающего, совсем не сложно.

Маркировка светодиодных лент и их различия

Один из распространенных типов светодиодного освещения — лента. Ее мощность напрямую зависит от того, сколько подключено к сети питания рабочих диодов. В производстве допускаются диоды разных габаритов, отсюда и получилось две категории лент:

  • SMD 3028;
  • SMD 5050.

Теперь рассмотрим расшифровку маркировки. Цифры 30 и 28, к примеру, указывают на конкретный размер. То есть размер светодиода будет 3,0 мм на 2,8 мм. В случае с 5050, размер будет 5,0 на 5,0 миллиметров. Ленты с маркировкой SMD 3028 могут содержать 60, 120 и 240 световых диодов. На ленте SMD 5050 может располагаться 30, 60 и 120 диодов.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий