Развернутая тепловая схема тэс описание работы

Преимущества АЭС перед ТЭС

Преимущества и недостатки АЭС зависят от того, с каким видом получения электроэнергии мы сравниваем ядерную энергетику. Поскольку основные конкуренты атомных станций – ТЭС и ГЭС, сравним достоинства и недостатки АЭС по отношению к этим видам получения энергии.

ТЭС, то есть теплоэлектростанции бывают двух видов:

  1. Конденсационные или коротко КЭС служат только для производства электроэнергии. Кстати, другое их название пришло из советского прошлого, КЭС также называют ГРЭСами – сокращенно от «государственная районная электростанция».
    2. Теплоэлектроцентрали или ТЭЦ позволяют только производить не только электрическую, но и тепловую энергию. Взяв, к примеру, жилой дом, понятно, что КЭС только даст в квартиры электричество, а ТЭЦ еще и отопление вдобавок.

Как правило, ТЭС работают на дешевом органическом топливе – угле или угольной пыли и мазуте. Самые востребованные энергетические ресурсы сегодня – это уголь, нефть и газ. По оценкам экспертов мировых запасов угля хватит еще на 270 лет, нефти – на 50 лет, газа – на 70. Даже школьник понимает, что 50летних запасов очень мало и их надо беречь, а не ежедневно сжигать в печах.

ВАЖНО ЗНАТЬ:

АЭС решают проблему нехватки органического топлива. Преимущество АЭС – это отказ от органического топлива, тем самым, сохранение исчезающих газа, угля и нефти. Вместо них на АЭС используется уран. Мировые запасы урана оцениваются в 6 306 300 тонн. Насколько лет его хватит, никто не считает, т.к. запасов много, потребление урана достаточно небольшое, и об его исчезновении думать пока не приходится. В крайнем случае, если запасы урана вдруг унесут инопланетяне или они испарятся сами собой, в качестве ядерного топлива может применяться плутоний и торий. Преобразовать их в ядерное топливо пока дорого и сложно, но можно.

Преимущества АЭС перед ТЭС – это и сокращение количества вредных выбросов в атмосферу.

Что выделяется в атмосферу при работе КЭС и ТЭЦ и насколько это опасно:

  1. Диоксид серы или сернистый ангидрид – опасный газ, губительный для растений. При попадании в организм человека в больших количествах вызывает кашель и удушье. Соединяясь с водой, диоксид серы превращается в сернистую кислоту. Именно благодаря выбросам диоксида серы возникает риск кислотных дождей, опасных для природы и человека.
    2. Оксиды азота – опасны для дыхательной системы человека и животных, раздражают дыхательные пути.
    3. Бенапирен – опасен тем, что имеет свойство скапливаться в организме человека. В результате длительного воздействия может вызывать злокачественные опухоли.

Суммарные годовые выбросы ТЭС на 1000 МВт установленной мощности – это 13 тысяч тонн в год на газовых и 165 тысяч тонн на пылеугольных тепловых станциях. ТЭС мощностью в 1000 МВт в год потребляет 8 миллионов тонн кислорода для окисления топлива, преимущества АЭС в том, что в атомной энергетике кислород не потребляется в принципе.

Вышеперечисленные выбросы для АЭС также не характерны. Преимущество АЭС — выбросы вредных веществ в атмосферу на атомных станциях ничтожно малы и по сравнению с выбросами ТЭС, безвредны.

Преимущества АЭС перед ТЭС – это низкие затраты на перевозку топлива. Уголь и газ чрезвычайно дорого доставлять на производства, в то время как необходимый для ядерных реакций уран можно поместить в одну небольшую грузовую машину.

Условные обозначения

  • БА ГВС (баки-аккумуляторы ГВС) – для сглаживания неравномерности расхода подпиточной воды.
  • БГВС (ПГВС) (бойлер, подогреватель горячего водоснабжения) – для подогрева подпиточной (осветлённой) воды.
  • БЗК (бак запаса конденсата) – для запаса обессоленной воды и сглаживания неравномерности в потреблении обессоленной воды.
  • БНТ (бак нижних точек) – бак для организованного сбора протечек обессоленной воды в турбинном отделении КТЦ.
  • БУ (бойлерная установка) – группа ОБ.
  • Водо-водяные теплообменники – для подогрева осветлённой воды.
  • Г – генератор
  • Дренажный бак – для сбора дренажей оборудования ТЭЦ.
  • Дренажный насос – для перекачки воды из дренажных баков в схему ТЭЦ.
  • ЗПН (зимний подпиточный насос) – для подачи подпиточной воды в обратные магистрали теплосети.
  • К – котёл
  • КН (конденсатный насос) – для откачки конденсата из теплообменных аппаратов.
  • Конденсатор – для конденсации обработанного в турбине пара.
  • ЛПН (летний подпиточный насос) — для подачи подпиточной воды при работе по однотрубной схеме теплосети (летний период).
  • НБЗК (насос БЗК) – для перекачки обессоленной воды в схему ТЭЦ.
  • НБНТ (насос баков нижних точек) – для перекачки воды из БНТ в схему ТЭЦ.
  • НОВ ГВС – для перекачки воды после мехфильтров ХЦ в схему ТО КТЦ).
  • НППВ (насос перекачки питательной воды) – для возврата конденсата с I очереди в деаэраторы II оч.
  • НСВ ГВС (насос сырой воды ГВС) – для подачи циркуляционной воды в схему подготовки подпиточной во-ды.
  • ОБ (основной бойлер) – для подогрева сетевой воды на I очереди.
  • ПВД (подогреватель высокого давления) – для подогрева питательной воды паром нерегулируемых отборов турбины.
  • ПВК (пиковый водогрейный котёл) для подогрева сетевой воды
  • Перекачивающий насос – для перекачки обессоленной воды из деаэраторов 1,2 ата I очереди в деаэраторы 6 ата.
  • ПНД (подогреватель низкого давления) – для подогрева основного конденсата паром нерегулируемых отборов турбины.
  • ПОВ (подогреватель обессоленной воды) – для подогрева обессоленной воды.
  • Подпорный насос – для подачи сетевой воды через СПГ на всас СН II очереди.
  • ПСВ (подогреватель сырой воды) – для подогрева сырой воды подаваемой на обессоливающую установку ХЦ.
  • ПЭН (питательный электронасос) – предназначен для обеспечения котлов питательной водой.
  • РД (регулятор давления) – для поддержания заданного значения давления.
  • РОУ (редукционная охладительная установка) – для снижения параметров пара по давлению и температуре.
  • Сливной насос – для перекачки конденсата греющего пара из ПНД в линию основного конденсата турбины.
  • СН (сетевой насос) – для подачи сетевой воды в город.
  • СПГ (сетевой подогреватель горизонтальный) – для подогрева сетевой воды на II очереди.
  • ТГ – турбогенератор
  • Эжектор – для удаления неконденсирующихся газов из теплообменных аппаратов.

О том какие вещи нужно продумывать при составлении ПТС — читайте в статье Что важно при разработке принципиальной тепловой схемы электростанции?

Схема водоснабжения ХЦ

Вода для ХЦ подаётся в основном от схемы ГВС – после встроенных пучков ТГ-3,4 (поэтому не рекомендуется поднимать температуру после встроенных пучков выше 30°С т.к. снижение температуры до 30°С связано с особенностями гидравлики трубопроводов).

Подача воды в ХЦ возможна также от насосов охлаждения подшипников и насосов сырой воды 0,4 кВ ТО (НСВ 0,4 кв)  с подогревом в подогревателе сырой воды (ПСВ-2), либо за счёт подмеса осветленной воды с горячей стороны водоводяных теплообменников.

Отличия принципиальной схемы от развернутой, можно узнать посмотрев, как выглядит развернутая схема тепловой электростанции.

(Visited 42 728 times, 17 visits today)

Условные обозначения

  • БА ГВС (баки-аккумуляторы ГВС) – для сглаживания неравномерности расхода подпиточной воды.
  • БГВС (ПГВС) (бойлер, подогреватель горячего водоснабжения) – для подогрева подпиточной (осветлённой) воды.
  • БЗК (бак запаса конденсата) – для запаса обессоленной воды и сглаживания неравномерности в потреблении обессоленной воды.
  • БНТ (бак нижних точек) – бак для организованного сбора протечек обессоленной воды в турбинном отделении КТЦ.
  • БУ (бойлерная установка) – группа ОБ.
  • Водо-водяные теплообменники – для подогрева осветлённой воды.
  • Г – генератор
  • Дренажный бак – для сбора дренажей оборудования ТЭЦ.
  • Дренажный насос – для перекачки воды из дренажных баков в схему ТЭЦ.
  • ЗПН (зимний подпиточный насос) – для подачи подпиточной воды в обратные магистрали теплосети.
  • К – котёл
  • КН (конденсатный насос) – для откачки конденсата из теплообменных аппаратов.
  • Конденсатор – для конденсации обработанного в турбине пара.
  • ЛПН (летний подпиточный насос) — для подачи подпиточной воды при работе по однотрубной схеме теплосети (летний период).
  • НБЗК (насос БЗК) – для перекачки обессоленной воды в схему ТЭЦ.
  • НБНТ (насос баков нижних точек) – для перекачки воды из БНТ в схему ТЭЦ.
  • НОВ ГВС – для перекачки воды после мехфильтров ХЦ в схему ТО КТЦ).
  • НППВ (насос перекачки питательной воды) – для возврата конденсата с I очереди в деаэраторы II оч.
  • НСВ ГВС (насос сырой воды ГВС) – для подачи циркуляционной воды в схему подготовки подпиточной во-ды.
  • ОБ (основной бойлер) – для подогрева сетевой воды на I очереди.
  • ПВД (подогреватель высокого давления) – для подогрева питательной воды паром нерегулируемых отборов турбины.
  • ПВК (пиковый водогрейный котёл) для подогрева сетевой воды
  • Перекачивающий насос – для перекачки обессоленной воды из деаэраторов 1,2 ата I очереди в деаэраторы 6 ата.
  • ПНД (подогреватель низкого давления) – для подогрева основного конденсата паром нерегулируемых отборов турбины.
  • ПОВ (подогреватель обессоленной воды) – для подогрева обессоленной воды.
  • Подпорный насос – для подачи сетевой воды через СПГ на всас СН II очереди.
  • ПСВ (подогреватель сырой воды) – для подогрева сырой воды подаваемой на обессоливающую установку ХЦ.
  • ПЭН (питательный электронасос) – предназначен для обеспечения котлов питательной водой.
  • РД (регулятор давления) – для поддержания заданного значения давления.
  • РОУ (редукционная охладительная установка) – для снижения параметров пара по давлению и температуре.
  • Сливной насос – для перекачки конденсата греющего пара из ПНД в линию основного конденсата турбины.
  • СН (сетевой насос) – для подачи сетевой воды в город.
  • СПГ (сетевой подогреватель горизонтальный) – для подогрева сетевой воды на II очереди.
  • ТГ – турбогенератор
  • Эжектор – для удаления неконденсирующихся газов из теплообменных аппаратов.

О том какие вещи нужно продумывать при составлении ПТС — читайте в статье Что важно при разработке принципиальной тепловой схемы электростанции?

Основные принципы работы ТЭС

На рис.1 представлена типичная тепловая схема конденсационной установки на органическом топливе.

Рис.1 Принципиальная тепловая схема ТЭС

1 – паровой котёл; 2 – турбина; 3 – электрогенератор; 4 – конденсатор; 5 – конденсатный насос; 6 – подогреватели низкого давления; 7 – деаэратор; 8 – питательный насос; 9 – подогреватели высокого давления; 10 – дренажный насос

Топливо и окислитель, которым обычно служит подогретый воздух, непрерывно поступают в топку котла (1).

В качестве топлива используется уголь, торф, газ, горючие сланцы или мазут.

Большинство ТЭС нашей страны используют в качестве топлива угольную пыль.

За счёт тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар поступает по паропроводу в паровую турбину (2), назначение которой — превращать тепловую энергию пара в механическую энергию.

Все движущиеся части турбины жёстко связаны с валом и вращаются вместе с ним. В турбине кинетическая энергия струй пара передается ротору следующим образом. Пар высокого давления и температуры, имеющий большую внутреннюю энергию, из котла поступает в сопла (каналы) турбины. Струя пара с высокой скоростью, чаще выше звуковой, непрерывно вытекает из сопел и поступает на рабочие лопатки турбины, укрепленные на диске, жёстко связанном с валом. При этом механическая энергия потока пара превращается в механическую энергию ротора турбины, а точнее говоря, в механическую энергию ротора турбогенератора, так как валы турбины и электрического генератора (3) соединены между собой. В электрическом генераторе механическая энергия преобразуется в электрическую энергию.

После паровой турбины водяной пар, имея уже низкое давление и температуру, поступает в конденсатор (4). Здесь пар с помощью охлаждающей воды, прокачиваемой по расположенным внутри конденсатора трубкам, превращается в воду, которая конденсатным насосом (5) через регенеративные подогреватели (6) подаётся в деаэратор (7).

Деаэратор служит для удаления из воды растворённых в ней газов; одновременно в нём, так же как в регенеративных подогревателях, питательная вода подогревается паром, отбираемым для этого из отбора турбины. Деаэрация проводится для того, чтобы довести до допустимых значений содержание кислорода и углекислого газа в ней и тем самым понизить скорость коррозии в трактах воды и пара.

Деаэрированная вода питательным насосом (8) через подогреватели (9) подаётся в котельную установку. Конденсат греющего пара, образующийся в подогревателях (9), перепускается каскадно в деаэратор, а конденсат греющего пара подогревателей (6) подаётся дренажным насосом (10) в линию, по которой протекает конденсат из конденсатора (4).

Как работают ТЭС на угольном топливе

Для того чтобы станция работала непрерывно, по железнодорожным путям постоянно привозят уголь, который разгружается при помощи специальных разгрузочных устройств. Далее имеются такие элементы, как транспортерные ленты, по которым разгруженный уголь подается на склад. Далее топливо поступает в дробильную установку. При необходимости есть возможность миновать процесс поставки угля на склад, и передавать его сразу к дробилкам с разгрузочных устройств. После прохождения этого этапа раздробленное сырье поступает в бункер сырого угля. Следующий шаг — это поставка материала через питатели в пылеугольные мельницы. Далее угольная пыль, используя пневматический способ транспортировки, подается в бункер угольной пыли. Проходя этот путь, вещество минует такие элементы, как сепаратор и циклон, а из бункера уже поступает через питатели непосредственно к горелкам. Воздух, проходящий сквозь циклон, засасывается мельничным вентилятором, после чего подается в топочную камеру котла.

Далее движение газа выглядит примерно следующим образом. Летучее вещество, образовавшееся в камере топочного котла, проходит последовательно такие устройства, как газоходы котельной установки, далее, если используется система промежуточного перегрева пара, газ подается в первичный и вторичный пароперегреватель. В этом отсеке, а также в водяном экономайзере газ отдает свое тепло на разогрев рабочего тела. Далее установлен элемент, называющийся воздухоперегревателем. Здесь тепловая энергия газа используется для подогрева поступающего воздуха. После прохождения всех этих элементов, летучее вещество переходит в золоуловитель, где очищается от золы. После этого дымовые насосы вытягивают газ наружу и выбрасывают его в атмосферу, использую для этого газовую трубу.

Схема водоснабжения ХЦ

Вода для ХЦ подаётся в основном от схемы ГВС – после встроенных пучков ТГ-3,4 (поэтому не рекомендуется поднимать температуру после встроенных пучков выше 30°С т.к. снижение температуры до 30°С связано с особенностями гидравлики трубопроводов).

Подача воды в ХЦ возможна также от насосов охлаждения подшипников и насосов сырой воды 0,4 кВ ТО (НСВ 0,4 кв)  с подогревом в подогревателе сырой воды (ПСВ-2), либо за счёт подмеса осветленной воды с горячей стороны водоводяных теплообменников.

Отличия принципиальной схемы от развернутой, можно узнать посмотрев, как выглядит развернутая схема тепловой электростанции.

(Visited 42 728 times, 17 visits today)

Схема подготовки подпиточной воды ГВС

В целях увеличения тепловой мощности ТЭЦ и для использования тепла конденсаторов ТГ – 1,2 работающих по тепловому графику (с закрытыми диафрагмами, включёнными бойлерами) на подогрев воды, идущей на всас НСВ ГВС № 1,2,3.4 2 оч, используется следующая схема.

Циркуляционная вода поступает в конденсаторы ТГ – 1,2 подключенных последовательно, где происходит её нагрев до 10-15°С.далее из сливных водоводов левой и правой половин конденсатора ТГ – 2 вода через две задвижки Ду 500 мм (№ 708/III, 711/III) направляется в трубопровод Ду 700 мм (смонтированный вдоль машзала –на I оч. по ряду «Д», на II оч. по ряду «А») и через задвижку Ду 600 мм (№ 1342) попадает на всас НСВ ГВС – 1,2,3,4 и далее через встроенные пучки конденсаторов ТГ – 3,4, где происходит её дальнейший нагрев (максимально до 40°С) на механические фильтры ХЦ.

После осветления вода насосами (НОВ НВС-1,2,3,4), либо помимо них, подаётся через водоводяные теплообменники (холодная сторона), где она подогревается до температуры 50-60°С, к подогревателям горячего водоснабжения (ПГВС) ТГ-3,4. В ПГВС паром 7,6,5 отборов турбин осветленная вода нагревается до 90-95°С. После ПСГВ вода поступает в деаэраторы теплосети (ДГВС-1,2 ата № 7, 8, 11,12), где она нагревается до температуры насыщения (104°C), из неё удаляются коррозионноопасные газы (О2, СО2).

Из деаэраторов теплосети вода сливается (за счёт разности высот установки деаэраторов и баков-аккумуляторов, либо насосами перекачки в баки аккумуляторы – НПБА) через водоводяные темплообменники (горячая сторона) в баки-аккумуляторы ГВС. В водоводяных теплообменниках вода охлаждается (осветлённой водой, идущей из ХЦ) до температуры 70°С.

В летних условия, когда оборудование 1 очереди находится в резерве, всас НСВ ГВС взят непосредственно с напорного циркводовода.

ТЭС на угле

Уголь уже давно стал одним из основных источников энергии в повседневной жизни и производственной деятельности людей. Широкое распространение данного вида топлива стало возможным благодаря его доступности. Во многих месторождениях он расположен в нескольких метрах от поверхности земли и может добываться более дешевым открытым способом. Кроме того, уголь не требует каких-то особых условий хранения и складируется в обычные кучи неподалеку от объекта.

Промышленное использование угля началось в конце 18-го века. В дальнейшем, когда появился железнодорожный транспорт, уголь стал источником движущей силы для паровозов. Позднее он стал применяться на первых тепловых электростанциях, построенных в конце 19-го века. Многие ТЭС и в настоящее время работают на угле.

На самых первых электростанциях сжигание угля осуществлялось путем его укладки на колосниковые решетки. Загрузка топлива и удаление шлака выполнялось вручную. Постепенно эти процессы были механизированы и уголь попадал на решетки из верхнего бункера. Решетка приводилась в движение и отработанный шлак ссыпался в специальный приемник.

Современные тепловые электростанции уже давно не пользуются кусковым углем. Вместо него в котлы загружается угольная пыль, получаемая в дробилках или мельницах. Подача топлива к горелкам производится сжатым воздухом. Попадая в топку, угольная пыль вперемешку с воздухом начинает гореть, выделяя большое количество тепла.

Газотурбинные электростанции

Основу современных газотурбинных электростанций составляют газовые турбины мощностью 25-100 МВт. Упрощенная принципиальная схема энергоблока газотурбинной электростанции представлена на рис.12.

Рис.12. Принципиальная технологическая схема электростанции с газовыми турбинами
КС — камера сгорания; КП — компрессор; ГТ — газовая турбина;
G — генератор; Т — трансформатор; М — пусковой двигатель

Топливо (газ, дизельное горючее) подается в камеру сгорания, туда же компрессором нагнетается сжатый воздух. Горячие продукты сгорания отдают свою энергию газовой турбине, которая вращает компрессор и синхронный генератор. Запуск установки осуществляется при помощи разгонного двигателя и длится 1-2 мин, в связи с чем газотурбинные установки (ГТУ) отличаются высокой маневренностью и пригодны для покрытия пиков нагрузки в энергосистемах. Основная часть теплоты, получаемая в камере сгорания ГТУ, выбрасывается в атмосферу, поэтому общий КПД таких электростанций составляет 25-30%.

Для повышения экономичности газовых турбин разработаны парогазовые установки (ПГУ), В них топливо сжигается в топке парогенератора, пар из которого направляется в паровую турбину. Продукты сгорания из парогенератора, после того как они охладятся до необходимой температуры, направляются в газовую турбину. Таким образом, ПГУ имеет два электрических генератора, приводимых во вращение: один — газовой турбиной, другой — паровой турбиной.

Схема работы

Принцип работы ТЭС построен следующим образом.

Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла.

В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф.

Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль.

Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле.

В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину.

Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.

Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.

Как происходит процесс преобразования энергии на тэс, работающей на органическом топливе?

Преобразование
энергии на ТЭС, работающей на угле,
мазуте, природном газе или других видах
органического топлива, происходит
следующим образом:


химическая
энергия
,
заключенная в органическом топливе, в
процессе горения топлива в топочной
камере котла превращается в тепловую
энергию

котельных газов;


за счет высокой температуры в котле
происходит нагрев и испарение воды в
теплообменных трубах, а затем перегрев
образовавшегося пара; при этом тепловая
энергия

котельных газов преобразуется в
потенциальную
механическую энергию

сжатого пара;


в турбине пар расширяется, и потенциальная
механическая энергия

сжатого пара превращается в кинетическую
механическую энергию

движущегося пара;


давление движущегося пара на лопатки
турбины приводит во вращение ротор
турбины и электрогенератора, следовательно,
кинетическая
механическая энергия движения пара

преобразуется в кинетическую
механическую энергию вращения ротора
;


вращение ротора электрогенератора
приводит к возникновению электродвижущей
силы (ЭДС) в обмотках статора, что означает
преобразование кинетической
механической энергии

вращения ротора в электрическую
энергию
.

Что такое технологическая схема тэс? Что включает в себя технологическая схема пылеугольной тэс? Какое оборудование тэс и аэс считается основным, а какое вспомогательным?

Технологическая
схема ТЭС

отражает общую последовательность и
взаимосвязь технологических процессов,
осуществляемых на электростанции для
производства и отпуска электрической
и тепловой энергии.

На
рис. 4 приведена упрощеннаятехнологическая
схема пылеугольной электростанции
.

Рис. 4. Технологическая
схема пылеугольной ТЭС

Эту
технологическую схему можно разделить
на две основные части – топливно-газо-воздушный
тракт
(ТГВТ)
и пароводяной
тракт
(ПВТ).
Центральным элементом схемы является
парогенератор, который входит одновременно
в состав и ТГВТ, и ПВТ.

ТГВТ включает в
себя:


топливное хозяйство (ТХ), в том числе
приемно-разгрузочные и транспортные
устройства, склады топлива, топливопроводы
и др.;

— устройства
подготовки топлива к сжиганию (ПТ);

— тягодутьевую
установку в составе дутьевых вентиляторов
(ДВ), дымососов (ДС) и дымовых труб (ДТ);

— золоуловители
(ЗУ) и систему золошлакоудаления (ЗШУ).

В состав ПВТ входят:

— турбина (Т),
находящаяся на одном валу с электрогенератором
(ЭГ);

— конденсаторы (К)
с конденсатными насосами первой (КН1) и
второй (КН2) ступени и конденсатоочисткой
(КО);

— подогреватели
высокого (ПВД) и низкого (ПНД) давления;

— деаэратор (Д) с
бустерным (БН) и питательным (ПН) насосами;

— система технического
водоснабжения (СТВ) с циркуляционными
насосами (ЦН);

— химводоочистка
(ХВО) для подготовки добавочной воды;


сетевые подогреватели (СП) для снабжения
тепловой энергией внешних потребителей
(ТП на рис. 4 – это тепловой потребитель).

В свою очередь,
ПВТ можно условно разделить на три
участка:


конденсатный
тракт
– от
конденсатора до деаэратора;


питательный
тракт
– от
деаэратора до парогенератора (а весь
путь рабочего тела от конденсатора до
парогенератора называют конденсатно-питательным
трактом
);


паровой тракт
– от парогенератора до конденсатора.

На
ТЭС, работающей на органическом топливе,
к основному
оборудованию

относят турбины и котлы, а на АЭС –
реакторы, парогенераторы и турбины.
Остальное оборудование ТЭС и АЭС
считается вспомогательным.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий